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Abstract: The integrated optimization of stope design and underground mine production scheduling
is an approach that has been shown to effectively leverage the synergies among these two under-
ground mine planning components to generate truly optimal stope layouts and extraction sequences.
The existing stochastic integrated methods, however, do not include several elements of a mining
complex, such as stockpiles, due to the computational complexity and non-linearity that they might
add to the optimization of the long-term mine plan. Additionally, sequential simulation methods that
rely on two-point statistics and Gaussian distribution assumptions are commonly used to generate
the input realizations of the mineral deposit. These methods, however, are not able to properly char-
acterize complex spatial geometries or the high-grade connectivity of non-Gaussian and non-linear
natural phenomena. The present work proposes an extension of previous developments on the inte-
grated stope design and underground mine scheduling optimization through an expanded stochastic
integer programming formulation that incorporates long-term stockpiling decisions. An application
of the proposed method at an operating underground copper mine compares the cases in which the
geological simulated orebody models are based on high-order and Gaussian sequential simulation
methods. The extraction sequence and related final stope design are shown to be physically different.
It is seen that the optimization process takes advantage of the better representation of high-grade
connectivity when high-order sequential simulations are used, by targeting the areas with grades
that follow the mill’s blending requirements and by making less use of the stockpiles. Overall, a
4% higher copper metal production and a resultant 6% higher net present value are observed when
high-order sequential simulations are used.

Keywords: underground mine planning; high-order simulation; geological uncertainty; sublevel
stoping; non-Gaussian phenomena; mathematical programming application

1. Introduction

Sublevel longhole open stoping (SLOS) is an underground mining method in which
the orebody is divided into vertically oriented open stopes that are self-supported by
rock pillars and are posteriorly backfilled. Horizontal extraction levels define the vertical
boundaries of the stopes, and sublevel drifts and crosscuts are developed to enable longhole
drilling [1–3]. The long-term mine planning process for this mining method relies on
three main components. The stope layout defines the spatial design of mineable volumes
according to geomechanical and geological properties [4–9]. A network design of ramps,
shafts, raises, wises, and other developments is completed in order to define accesses
and ventilation systems [10–12]. The last component defines the production schedule of
stopes by maximizing the net present value (NPV) of the related life-of-mine (LOM) [13–23].
Little et al. [17] show that these three components should be optimized simultaneously so
that the interdependencies among stope grades, development costs, and the time value of
money are captured in the mine planning optimization. In addition, geological uncertainty
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in grades and material types is known as a critical source of risk for mining projects
and its management is essential for meeting production targets and generating realistic
forecasts [24–26].

A mixed integer programming (MIP) model that integrates underground mine design
and production scheduling was first proposed by Little et al. [17] and Little et al. [27]. The
MIP maximizes the discounted cash flow of the mined stopes and considers the stope size
and location, while under the constraints of the ore production and backfilling capacities.
Therefore, the stope boundaries are an outcome of the production schedule. However,
the costs associated with the development of access are not covered in this approach.
Copland and Nehring [28] incorporate level access development decisions in an integer
program (IP) that maximizes the discounted revenue from mined stopes while minimiz-
ing the level’s development costs. Foroughi et al. [29] optimize the underground mine
production scheduling and stope layout through an IP that aims to jointly maximize two
weighted objectives, the NPV and the overall metal recovery. Hou et al. [30] integrate
the mathematical formulation into the development of longitudinal drives and shaft-level
segments as unitary decisions linked to the stope’s extraction decisions. Although an
analysis of the forecasts given different simulations of the orebody is conducted, the risk
associated with the geological uncertainty is not managed or assessed through this ap-
proach. Furtado e Faria et al. [31] propose an integrated stochastic framework for the stope
design and long-term mine production scheduling, tailored for the sublevel open stopping
(SLOS) mining method. The authors develop a two-stage stochastic integer programming
(SIP) [32] formulation that jointly optimizes the stope design and production scheduling
while considering the cumulative development costs and managing the geological risk.
Carelos Andrade et al. [33] also explore the integrated stochastic approach to the SLOS
mining method variant that uses backfilling practices and adjacency patterns of primary,
secondary, and tertiary stopes [34,35]. This optimization framework aims to maximize
the NPV while managing the geological risk, by minimizing deviations from production
targets, which are related to mining and processing capacities, as well as the grade blending
requirements. An application at an operating copper mine with secondary elements shows
significant improvement in terms of the NPV when compared to a stochastic sequential
framework [33]. Nonetheless, an important aspect that has not been addressed in these
models is the presence of stockpiles, which are typically used in mining operations. It has
been shown that, for long-term open-pit mine planning and production scheduling, the
consideration of all components of a mining complex in the optimization process leads to
more realistic assumptions and forecasts [36–38].

In order to assess and manage the spatial uncertainty and variability of grades and ma-
terial types, a set of geostatistical simulations of the orebody is used as the main input to the
optimization of the stope design and production scheduling [26,30,31,39–43]. Geological
attributes, such as metal grades and material types, can be modeled through geostatistical
simulation methods that build upon the concept of spatial random fields [44–49]. The
sequential simulation paradigm allows for the assessment of an attribute at an unsampled
location, by its conditioning value to sample data and previously simulated values, via
Monte Carlo sampling of a probability distribution function [44]. As an example, the
sequential Gaussian simulation (SGS) [44,50] can be mentioned as a simulation method
that is conventionally employed. The SGS method, however, does not reproduce the con-
nectivity of high grades given that the Gaussian random function model has the character
of maximum entropy [51]. In addition, this traditional method relies on two-point spatial
statistics. Although second-order statistics can fully characterize Gaussian random func-
tions, they do not describe complex geological patterns in the presence of non-Gaussianity
and non-linearity [52–55].

Methods based on multiple-point statistics (MPS) are introduced to overcome the limi-
tations of the aforementioned traditional simulation methods [49,53–59]. These methods
infer the conditional probability distribution function (cpdf) by extracting multiple point
patterns from a training image (TI) or geological analog, without making any assumptions
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about it. These MPS-based simulation approaches tend to reproduce the spatial statistics
of the TI, while a consistent mathematical modeling approach should be driven by the
sample data [60]. Dimitrakopoulos et al. [52] introduce the use of high-order cumulants to
explicitly infer high-order statistics from the spatial data. Thus, the high-order simulation
(HOSIM) algorithm follows the sequential simulation framework and uses spatial cumu-
lants to derive the cpdf from available data, generating realizations that show the natural
connectivity of high grades and reproduce complex geometries [61–64].

The impact of using different simulation algorithms to generate the mineral deposit
models used as inputs for stochastic mine planning in open-pit mines has been studied by
de Carvalho and Dimitrakopoulos [65]. The related work compares the long-term open-pit
mine production schedules and forecasts when SGS and HOSIM [63] are used to generate
the simulated orebody models serving as inputs to a simultaneous stochastic optimization
framework [38,66–68]. The application shows that the long-term sequence of extraction of
mining blocks favors the high-grade continuity areas when simulations generated using the
HOSIM method are used. The comparison also shows different final pit limits. In addition,
more gold is produced at the end of the life-of-mine (LOM), leading to a higher expected
NPV, when the optimization uses simulations generated with the HOSIM method. Thus,
it is of interest to investigate how a HOSIM approach impacts the stochastic stope design
and mine production schedule, particularly given that underground mining methods make
assumptions in terms of the ore selectivity and spatial configuration of mineable volumes.

The current work presents the extension of the integrated stochastic optimization of
stope design and mine production scheduling proposed by Carelos Andrade et al. [33] by
adding long-term stockpiling and related material destination decisions to the previously
proposed SIP formulation. In addition, the sensitivity of the proposed scheduling model to
different methods used for the geostatistical simulations of the mineral deposit involved
is investigated in a case study at an operating underground copper mine. The case study
presents the practical aspects of the proposed mathematical programming model based
on simulated realizations of the copper deposit generated using a high-order sequential
simulation approach [61]. In addition, the extraction sequence and forecasts are compared
to those obtained when the deposit realizations are generated using sequential Gaussian
simulation. The following section presents a description of the underground mine planning
approach with the integration of a linear stockpile. A brief review of the sequential
simulation methods, as relevant to the present study, is presented. Subsequently, a case
study at an operating copper mine is presented, followed by conclusions and suggested
future work.

2. Methodology

The following subsection presents an extended stochastic integer programming (SIP)
formulation, which incorporates long-term stockpiling decisions into the integrated stochas-
tic optimization of stope design and mine production scheduling, is presented. The method
builds upon the work [33], on the optimization framework considering the sublevel long-
hole open stoping (SLOS) mining method with backfilling. The two stochastic simulation
approaches [44,61] used in the case study to generate orebody models quantifying geologi-
cal uncertainty, which are inputs to the optimization process are also summarized.

2.1. Mathematical Formulation of the Stochastic Long-Term Underground Mine Production
Scheduling with Stockpiling

An extended stochastic integer program (SIP) [32] that incorporates long-term stock-
piling decisions into the integrated stochastic optimization of stope design and mine
production scheduling is proposed herein. The proposed method follows the optimiza-
tion framework presented by Carelos Andrade et al. [33] for the sublevel longhole open
stoping (SLOS) mining method with backfilling, as per an operating copper mine. There-
fore, only the new aspects of this methodology are detailed herein. The method aims to
optimize jointly the extraction sequence of stopes j ∈ J and horizontal development costs
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of drifts d ∈ Dl and crosscuts c ∈ Cl that will lead to stope boundaries that respect the
stopes’ geometric parameters. The approach assumes the optimization of a mining zone
of a large orebody that defines a volume with unique geotechnical requirements. A set of
geostatistical simulations s ∈ S of the orebody describes the geological uncertainty. Initially,
the orebody is represented in terms of blocks i ∈ I that are, subsequently, grouped into
stopes j ∈ J.

Three data processing steps are needed to generate the inputs necessary to the pro-
posed two-stage SIP as shown in Figure 1, and summarized as follows. The first prepro-
cessing step generates different mining zone configurations b ∈ B by dividing the mining
zone into different mining fronts and sublevels l ∈ L according to allowable stope and
sublevel dimensions; that is, shapes that reflect operational and geotechnical parameters.
Crosscuts c are developed within each mining front, parallel to a defined mining direction.
Drifts d are developed perpendicularly to the cross-cuts. The approximated dimensions of
crosscuts δC

j,c,l,b and drifts δD
j,d,l,b, as well as the length δV

h,l,b from the surface to the access
point of a haulage system h and its respective mining zone configurations b ∈ Bh, for each
sublevel l ∈ Lb. In the second preprocessing step, shown in Figure 1, for each configuration
b, stope type options a ∈ Ab are generated. Each stope type option a defines a possible
ordering of primary, secondary, and tertiary stope types k ∈ K, as exemplified in Figure 2.
Each stope is identified by an indicator parameter πk,j,b,a, according to its type. Therefore,
the set of predecessors φ ∈ Φj,a of a stope j ∈ Jj,a can be defined following geotechnical
constraints. Along these steps, the stopes are assumed to fully occupy the space between
the sublevels. To manage dilution, in the third step, the profitability of having stopes
with heights γz that are smaller than the distance between sublevels and greater than the
minimum stope height is evaluated. Thus, for a given mining zone configuration b, a stope
type option a, a stope j, and elements ε ∈ E, the economic value of each stope vj,b,a,s(γ

z) is
calculated, as shown in Equation (1), for all its possible vertical dimensions γz and for each
simulated orebody scenario s. A probability of non-exceedance threshold (e.g., P50) is pre-
defined, and only the economic value that corresponds to that threshold (e.g., vP50

j,b,a(γ
z)) is

analyzed. The final stope heights are those that maximize the probabilistic economic value
of a stope ( vPj,b,a(γ

z)
)

, as in Equation (2), as follows:

vj,b,a,s(γ
z) = wj,b,s(γ

z)

(
∑

ε∈E
gj,b,ε,s(γ

z)RεPε −
(

CP + ∑
k∈K

πk,j,b,aCk
M
))

,

∀ j ∈ Jb, b ∈ B, a ∈ A, s ∈ S
(1)

argmax
γz

vPj,ba,(γ
z)

, ∀j ∈ Jb, b ∈ B, a ∈ A (2)

where wj,b,s(γ
z) and gj,b,ε,s(γ

z) are, respectively, the tonnage and grade of element ε within
stope j in mining zone b, in scenario s, as a function of the stope height γz, Rε is the
metal recovery of element ε and Pε is the related metal price, CP is the unitary processing
cost and Ck

M is the unitary mining cost for each stope type. The function argmax, in
Equation (2), returns the value of a stope height (γz) that maximizes the probabilistic
economic value of a stope (vPj,b,a(γ

z)).
Finally, the information generated in the three steps described above is used as input to

the proposed extended two-stage SIP, that defines the fourth step of the presented method.
The new SIP addresses the stope design and long-term production scheduling with the
complement of stockpiling decisions. The related decision variables, objective function,
and main constraints are described next. The mining zone configuration decision variables
zb,a ∈ {0, 1} control which mining zone configuration b ∈ B and respective stope type
option is selected a ∈ Ab. These decision variables directly impact the selections of stope
shapes and types. A mining zone is associated with one or more haulage systems h ∈ H.
Therefore, identical mining zone configuration options (b and b′), in terms of stope shapes
and sublevels, can exist but they will be associated with different available haulage systems
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(b ∈ Bh, and b′ ∈ Bh′). It is assumed that vertical accesses compatible with the haulage
systems are already developed, which enables the variable zb,a to be time-independent.
The stope selection decision variables yj,b,a,t ∈ {0, 1} determine if a stope j ∈ Jb in a mining
zone configuration b ∈ B, using stope type option a ∈ Ab is mined in period t ∈ T and
sent directly to the processor. A variable xj,b,a,t,t′ ∈ {0, 1} controls the extraction sequence
and posterior reclamation of stockpiled stopes by defining if a stope j ∈ Jb in a mining
zone configuration b ∈ B, using stope type option a ∈ Ab is mined and sent to a stockpile
in period t and rehandled at period t′ > t. Thus, it is assumed that a stockpile for each
time period t′ can exist, or that the selection of the material of stopes within a stockpile is
possible, in order to have a linear formulation [69].
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Two continuous decision variables ψd,l,b,t and ψc,l,b,t correspond to the developed
distance of a drift d or a cross-cut c, for a sublevel l, in a mining zone configuration b, in
period t. To account for the available structures developed in previous years, effective
development distances ψ∗

d,l,b,t and ψ∗
c,l,b,t are used in practice and they correspond to the

cumulative horizontal development distances. The remaining decision variables refer to
surplus deviations from haulage capacities for different haulage systems h

(
dH

h,t,s

)
, process-

ing capacity (dP
p,t,s) and stockpiling capacities (dS

t,s), and deviations from lower and upper
bounds for different elements ε ∈ E requirements, dεts

− and dεts
+, respectively. Additional

technical and economical parameters are presented in Table 1.



Minerals 2024, 14, 123 6 of 21

Table 1. List of technical and economic parameters.

Index Definition

wj,b,s
Tonnage of stope j, in mining zone configuration b, stope sequencing
option a, and in geological scenario s

gj,b,ε,s Grade of element ε within stope j in mining zone b, in scenario s

f EDR
t Economic discount factor for period t given an economic discount rate

CH
l,t

Discounted horizontal development discounted cost in sublevel l, at period
t in $/km

Ck,t
M Discounted mining cost for type k stopes at period t in $/t

CP Unitary processing cost $/t

CR
t Discounted rehandling cost at period t in $/t

CH
h,b,t

Discounted haulage cost at period t if h ∈ Hramp in $/(tons×km) and
if ∈ Hsha f t in $/t

Fbt Fixed discounted cost for keeping the mining zone configuration b

US
t Stockpiling capacity at period t (tons/year).

Once stockpiling decisions are considered, mining, rehandling, and processing costs
can be incurred in different periods for a given stope. Therefore, Equation (3) describes the
general profit of a stope at the period during which this stope is processed.

pj,b,a,s,t = f EDR
t wj,b,s

(
∑
ε∈E

gj,b,ε,sRεPε − CP

)
, ∀j ∈ Jb, b ∈ B, a ∈ A, s ∈ S (3)

Equation (4) presents the objective function in five parts. Part I aims to maximize the
discounted revenue from the stopes that are mined and processed at the same period. Part
II maximizes the revenue from the scheduled stopes that are stockpiled by applying the
discounted mining and rehandling costs according to the year in which they are incurred
in the production schedule. Haulage costs are managed in different ways depending on the
transportation systems available and chosen by the optimizer. If material is hauled through
a ramp, the distance from the sublevel to the surface ( δh,b,l) must be considered; otherwise,
if the material is hauled through a skip, the parameter δh,b,l is set as one. Part III of the
objective function minimizes the effective development costs and part IV minimizes a fixed
cost for keeping the mining zone in operation. Finally, part V manages the geological risk
by minimizing the deviations from the production targets related to mining, stockpiling,
and processing capacities as well as grade blending requirements. For that purpose, penalty
costs cH

h , cP, cSc+ε and c−ε are applied to correspond to the production requirements and
targets, as they are discounted by a geological risk discounting factor f GRD

t [70].
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max 1
|S| ∑

s∈S
∑
t∈T

∑
b∈B

∑
a∈Ab

∑
j∈Jb

(
pj,b,a,s,t − wj,b,s

(
∑
k∈K

πk,j,b,aCM
kt − ∑

h∈H
∑

l∈Lb

δh,b,l CH
h,b,t

))
yjbat︸ ︷︷ ︸

PartI

+
1
|S| ∑s∈S

|T−1|

∑
t

|T|

∑
t′=t+1

∑
b∈B

∑
a∈Ab

∑
j∈Jb

(
pj,b,a,s,t′ − wj,b,s

(
∑
k∈K

πk,j,b,a CM
k,t − ∑

h∈H
∑

l∈Lb

δh,b,l CH
h,b,t − CR

t′

))
xj,b,a,t,t′︸ ︷︷ ︸

PartI I

−∑
t∈T

∑
b∈B

∑
l∈Lb

CH
l,t

(
∑

d∈Dl

ψ∗
d,l,b,t + ∑

c∈Cl

ψ∗
c,l,b,t

)
︸ ︷︷ ︸

PartI I I
−∑

t∈T
∑
b∈B

∑
a∈Ab

Fbtzb,a︸ ︷︷ ︸
PartIV

1
|S| ∑s∈S

∑
t∈T

f GRD
t

(
cH

h dH
h,t,s + cPdP

t,s + cSdS
t,s ∑

ε∈E
c+ε dε,t,s

+
+ c−ε dε,t,s

−
)

︸ ︷︷ ︸
PartV

(4)

The objective function is subjected to reserve, adjacency, non-overlapping, and capacity
constraints. The addition of decision variables that control both the extraction sequence
and the stockpiling decisions requires a simple adaptation of the reserve, adjacency, and
capacity constraints proposed by Carelos Andrade et al. [33]. New constraints are included
to control the stockpiling capacity.

σt,s = ∑
b∈B

∑
a∈Ab

∑
j∈Jb

(
wj,b,s

|T|

∑
t′=2

xj,b,a,t,t′

)
∀t = 1, s ∈ S (5)

σt,s = ∑
b∈B

∑
a∈Ab

∑
j∈Jb

(
wjbs

( |T|

∑
t′>t

xj,b,a,t,t′ −
|T|

∑
t′=1

xj,b,a,t′ ,t

))
+ σt−1,s, ∀t > 1, s ∈ S (6)

σt,s − dS
t,s ≤ US

t , ∀t ∈ T, s ∈ S (7)

Equations (5) and (6) calculate the value of an auxiliary variable σt,s that defines the
tonnage left at the stockpiles at the end of period t for scenario s. This tonnage is constrained
by a maximum yearly capacity Usp

t that can be left stockpiled at the end of each period t, as
shown in Equation (7).

2.2. Mineral Deposit Modeling Using Sequential Simulations

Consider Z(ui) a stationary ergodic random field indexed in Rn, where ui, represents
the location of the points i = 1 . . . N of the grid to be simulated in a domain D ⊆ Rn. The
set dn = {z(uα), α = 1 . . . n} denotes the original sample data conventionally obtained by
the exploration data. A set Λi represents the conditioning data for each node index by
i. Therefore, Λ0 = {dn} is the conditioning data when the first point is simulated and
only sample data is available and Λi = {Λi−1 ∪ Z(ui)} is the conditioning data for the
subsequent points being simulated that includes the original sample data and previously
simulated points. Accordingly, the sequential simulation paradigm defines that the joint
probability density function (pdf) of the random field Z(ui) can be decomposed into the
product of conditional univariate distributions [44,50].

f (u1, . . . , uN ; z1, . . . , zN |dn) = f (u1, z1|dn)
N

∏
i=2

f (ui, zi|Λi−1). (8)



Minerals 2024, 14, 123 8 of 21

The conditional probability distribution function (cpdf) for any node ui can be written
according to the Bayes’ rule as

f (ui; zi|Λ0, Λi−1) =
f (ui; λ0, λi−1; z0, Λ0, Λi−1)∫

f (ui; λ0, λi−1; z0, Λ0, Λi−1)dui
, (9)

where λ0 and λi−1 are the locations of the points in the conditioning data sets Λ0 and Λi−1,
respectively, and f (ui; λ0, λi−1; z0, Λ0, Λi−1) is the joint pdf.

2.2.1. High-Order Simulation Using Legendre-like Orthogonal Splines

To generate geostatistical simulations accounting for high-order spatial
statistics [52,61,64], the method proposed by Minniakhmetov et al. [61], where the joint cpdf
is approximated using high-dimensional polynomials combined with high-order spatial
cumulants is used herein and summarized below.

f (ui; λ0, λi−1; z0, Λ0, Λi−1) =
ω0
∑

m0=0

ω1
∑

m1=0
. . .

ωn
∑

mn=0
Lm0,m1 ...mn φm0(z0)φm1(z1) . . . φmn(zn) , (10)

where Lk0,k1,...kn are coefficients of approximation and φm0(z0)φm1(z1) . . . φmn(zn) follows
the orthogonality property as ∫ b

a
φm φk(z)dz = δmk, (11)

where δmnkn =

{
1, m = k
0, m ̸= k

, ∀k = 0 . . . ω is the Kronecker delta.

The orthogonal functions considered herein are Legendre-like orthogonal splines [61]
and the Legendre coefficients Lk0,k1,...kn can be approximated experimentally by calculating

Lk0,k1,...kn ≈ E
[
φk0(z0)φk1(z1) . . . φkn(zn)

]
≈

1
Nh1,h2...hn

Nh1,h2...hn

∑
k=1

φk0

(
zk

0

)
φk1

(
zk

1

)
. . . φkn

(
zk

n

)
,

(12)

where zk
i , i = 0 . . . n are values taken from a training image (TI), or geologic analog, that

contains densely sampled geological information and represents complex geological struc-
tures.

The method relies on the definition of a spatial template formed by the central node
being simulated and neighboring values separated by lag vectors hi = ui − u0, i = 1 . . . n,
which are used to scan the TI, to calculate the Legendre coefficients. The high-order
sequential simulation algorithm follows:

1. Define a random path for visiting all unsampled nodes on the simulation grid.
2. For each node u0 in the path:

a. Find the closest neighbor nodes u1,u2, . . . un.
b. Obtain the spatial template configuration by calculating the lag vectors hi.
c. Scan the TI and find values zk

i , i = 0 . . . n given the spatial template configura-
tion.

d. Calculate the spatial Legendre coefficients Lk0,k1,...kn using Equation (5).
e. Build the cpdf f (ui; zi|Λ0, Λi−1) by calculating the joint probability density

function as in Equation (3) and normalizing it as shown in Equation (2).
f. Draw a uniform random value in [0, 1] to sample z0 from the cumulative cpdf

derived on the previous step.
g. Add z0 to the set of conditioning data Λi and move to the next node.

3. Repeat steps 1 and 2 to generate different realizations.
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2.2.2. Sequential Gaussian Simulation

The case study presented in Section 3 also uses sequential Gaussian simulation
(SGS) [44,50,71] as an input, so that the related schedules and the forecast are compared to
the ones obtained when the HOSIM is used. The method follows the sequential simula-
tion paradigm while assuming a Gaussian conditional probability distribution function
(cpdf) f (uI ; zi|Λ0, Λi−1) that can be parametrized by its mean and variance. Initially, the
original sample data is transformed to the Gaussian space, the experimental variogram is
calculated from the transformed data, and the variogram model is inferred. Then, at each
node, the Kriging system is used to obtain the conditional mean and variance, allowing the
definition of a normal cpdf from which the simulated values will be sampled.

3. Case Study at an Operating Copper Mine

The case study presented herein shows first an analysis of the simulations produced
by the high-order sequential simulation (HOSIM) method described in Section 2.2.1 and
a comparison to sequential Gaussian simulations (SGS) of a copper deposit related to an
operating underground copper mine. These simulations obtained through the HOSIM
method are used as an input to the proposed extended integrated stochastic optimization
of the underground mine design and production schedule with stockpiling, the extrac-
tion sequence, and the forecasts presented. A comparison between these outputs to the
ones obtained with the same optimization framework and technical parameters, but with
simulations generated with the SGS method, is subsequently shown.

3.1. High-Order Sequential Simulations of the Mineral Deposit, Results and Comparisons to
Sequential Gaussian Simulations

The realizations of the copper deposit using the high-order sequential simulation
(HOSIM) method are conducted in a grid size of 5 m × 5 m × 5 m with 466,560 nodes. In
order to generate the simulations, 1510 exploration drill holes with 5 m composites are
spatially distributed as fans, with centers at approximately every 30 m, which are used as the
sample data, as shown in Figure 3. In addition, a training image (TI) generated from densely
sampled blast hole data was used. A set of 20 high-order sequential simulations is generated
in point support and then goes through the previously described preprocessing steps to
generate the inputs to the proposed optimization method. From this set, 10 simulations
are used directly as an input to the optimization and the remaining 10 simulations are
further used for the risk analysis of the related forecasts. The number of simulations follows
previous studies that show that 10–12 simulations are sufficient to produce stable results
for mine planning optimization [37,67,72].
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Ten simulations of the copper deposit, using the same exploration data, are generated
based on the sequential Gaussian simulation (SGS) method, to be used as a means of
comparison to the ones obtained using HOSIM. Figure 4 shows the grade-tonnage curves
for the two sequential simulation frameworks being compared, considering the minimum
stope dimensions (i.e., 15 m × 30 m × 40 m). The blue and green curves in the graph
overlap each other for some of the simulated scenarios indicating that, for both methods, the
grade and tonnage proportions are similar. Thus, the simulation method does not directly
impact the metal quantities. Figure 5 shows cross-sections of simulations using high-order
and Gaussian sequential simulations. A visual inspection indicates that both realizations
reproduce the spatial distribution of copper grades of the exploration data. However, the
realization generated with the SGS shows a more dispersed behavior, representing the effect
of maximum entropy when the data is transformed into Gaussian space. The highlighted
high-grade areas show better connectivity for the realization generated with HOSIM, as
expected.
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The reproduction of spatial statistics of the simulations in terms of the exploration
data is evaluated. Figure 6 shows the histograms of the sample data, TI, and high-order
sequential simulation realizations. Similarly, Figures 7–10 show the variograms in x and
y directions, third- and fourth-order cumulant maps form the sample data, TI, and a
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realization produced by HOSIM and SGS methods. The areas with red circles highlight the
main differences among the cumulant maps. It is seen that both methods can reasonably
reproduce the histograms and variograms of the exploration data. For third- and fourth-
order cumulants, however, the realization obtained with the HOSIM method shows a
closer reproduction to the sample data, compared to what is shown for the realization
obtained with the SGS method. In addition, although the described HOSIM method uses
a TI to infer the conditional probability distribution function (cpdf), the simulated values
reproduce the low and high-order statistics of the exploration (i.e., sample) data. In fact,
the TI assumes an auxiliary part in the simulation procedure, while the initial sample data
serves as conditioning data and is also used to calculate the cpdf.
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3.2. Integrated Stope Design and Scheduling Optimization and Forecasting

The application of the proposed integrated stochastic stope design and production
scheduling with long-term stockpiling at a copper deposit is presented in this section. The
comparison of the stope design, extraction sequence, and related forecasts using high-order
and Gaussian sequential simulations presented in the previous section, are used as inputs
to the optimization approach, the result of which is then analyzed.

The present case study is developed for an operating underground copper mine.
Therefore, mine accesses (i.e., ramp and decline) and ventilation systems are given as
inputs. Figure 11 shows the available infrastructure in the mine and the defined mining
direction. In addition, geometrical parameters for the shapes of the stopes were provided
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by the mining company operating the mine. The maximum and minimum dimensions
of the stopes are considered, given geotechnical and drilling equipment requirements, as
shown in Table 2. These possible configurations account for the position of the access point
at each sublevel according to the available ramp design. Three option types are used as
input, meaning that all stopes will have the possibility of being primary, secondary, or
tertiary. In addition, the stopes are blasted and extracted bottom-up and are subsequently
backfilled with cemented aggregate fill (CAF), which is not considered a limiting feature
in mine production. Thus, a single mining cost is used for all stope types. A horizontal
development capacity is considered in terms of the maximum length that can be developed.
A single haulage system is available with its maximum capacity constraining the mining
capacity, and a processor with a smaller capacity controls the copper concentrate product
production. An annual stockpile capacity is considered in order to manage the grade
blending, while uncertainty in terms of copper grades is taken into consideration. Thus,
penalty costs for deviations from the minimum and maximum grades for this element’s
requirements are applied and are discounted throughout the years to manage the geologic
risk [70]. Table 3 displays the technical and economic parameters used in the optimization
of the copper mine. The proposed SIP model is programmed in the C++ language and
solved using the CPLEX v.12.8.0 software’s solver engine [73].
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Table 2. Stope geometrical parameters.

Parameter Value/Description

Minimum dimensions 15 m × 30 m × 30 m

Maximum dimensions 30 m × 30 m × 150 m

Figure 12 displays the extraction sequence and the optimum stope types when the
simulations generated with the HOSIM method are used. An operational extraction se-
quence that follows the mining direction and the bottom-up extraction approach, while
respecting the adjacencies given by the optimized stope types is produced. The output
results obtained with the high-order sequential simulations are compared to those obtained
when the simulations generated using the SGS method are the inputs. Similar to Figure 12,
Figure 13 displays the extraction sequence and the optimum stope types when the simula-
tions generated with the SGS method are used. It is observed that, although for both cases
the same parameters are considered, the extraction sequence displayed in Figures 12 and 13
are different, and relevant differences can be noticed on the final stope layout. Once the
simulated grades are averaged into possible stope volumes, the more connected the high
grades are, the higher the stope grades will be. When the simulations generated by the
HOSIM method are used as inputs, areas further to the access point can be mined, once
the profit generated from the metal content of this stope prevails over the cumulative
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horizontal development costs. On the other hand, when sequential Gaussian simulations
are used, it is observed that the stopes closer to the access points are preferred once they
incur lower development costs, as highlighted with the red circles Additionally, when the
realizations generated by HOSIM are used, smaller stope sizes are chosen, allowing more
selectivity in terms of high-grade stopes and less dilution.

Table 3. Technical and economic parameters are used as input in the optimization.

Parameter Value

Cu price 8500 $/t

Economic discount rate 10%

Geologic discount rate 10%

Processing recovery Cu 94%

Mining cost 50 $/t

Processing cost 13.5 $/t

Haulage cost 5 $/t×m

Rehandling cost 0.5 $/t

Drifts development cost 12,000 $/m

Density 3.2 t/m3

Haulage capacity 3 Mt/year

Processing capacity 2.5 Mt/year

Stockpiling capacity 400 kt/year

Drift development capacity 5000 m/year

Minimum copper mill head grade 1.8%

Penalty cost for deviations below minimum Cu
mill head grade 100 $/unit
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Figure 14 shows the risk profiles considering the decisions optimized using the differ-
ent inputs with 10 additional high-order sequential simulations. The results are presented
in terms of P10, P50, and P90, representing the 10th, 50th, and 90th percentiles of the
related performance indicators, respectively. Figure 14a shows that the produced copper
content is 4% higher when the realization generated with the HOSIM method is the related
input. This can be explained by the maximum entropy that the Gaussian-based approaches
generate with respect to the high grades. Thus, after the optimization process, it is observed
that the high-grade areas are a better target when a better representation of extreme grade
continuity is given as input. The copper production impacts directly on the NPV, which
is 6% higher for the HOSIM case compared to the SGS case, as shown in Figure 14b. Al-
though the mined tonnage is similar for both cases (Figure 14c), the cumulative stockpiled
tonnage is approximately 5% higher for the SGS case (Figure 14e), which means that the
use of the stockpile is necessary to achieve the grade blending requirements, incurring
higher rehandling costs. Figure 14d shows that grade blending requirements are overall
achieved for both cases, with probable deviations from the lower bound for the SGS case.
As previously inferred from the extraction sequences (Figures 12 and 13), in the SGS case,
the areas closer to the access points are privileged. In the graph displayed in Figure 15, the
horizontal development costs for the SGS case are, in fact, lower for early periods. However,
the total horizontal development cost is similar for both cases. Considering the ability of
the optimization process to decide whether to stockpile mined material or not and when
over the life of this mine, the analysis demonstrates that, in both scenarios, it is profitable
to direct material to stockpiles, given the associated rehandling costs. This strategic choice
results in an optimal NPV and minimum deviations from the required lower bound of
copper grade. Figure 16 shows the number of active stockpiles and tonnage left at the
stockpiles for each period and for each case, assuming that multiple stockpiles can be used
to assist in the selection of the stockpiled material to be processed. The maximum yearly
stockpiling capacity of 400,000 tons is respected and a maximum of three active stockpiles
are needed for both cases. This finding underscores the significant role of stockpiling
decisions in long-term mine planning, as they can conform to operational considerations
and requirements.
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4. Conclusions

The paper proposes an extension of previous work on the integrated stochastic opti-
mization of stope design and mine production scheduling, through a two-stage stochastic
integer programming (SIP) linear formulation that accounts for long-term stockpiling deci-
sions for the sublevel open stoping (SLOS) mining method. The operational aspects and
impacts on the mine production scheduling with this additional component are evaluated.
The objective function of the proposed SIP aims to maximize the net present value (NPV)
of the project while managing the geological uncertainty, by minimizing deviations from
production targets, subjected to operational constraints are presented. Additionally, the
effects of using the high-order sequential simulation (HOSIM) method to generate the
realizations of a copper deposit to be used as inputs for the proposed stochastic optimiza-
tion formulation are also presented. This simulation method infers high-order spatial
statistics from available data, enabling the reproduction of complex geological patterns of
natural phenomena. The optimized stope design and production schedule along with the
related forecasts are compared against a case where the conventional sequential Gaussian
simulations are the main inputs for the optimization formulation. It is observed that these
simulation methods can be fairly compared against each other once they produce similar
grade-tonnage proportions and reproduce related statistics, that is, histograms and vari-
ograms of the available sample data. It is seen, however, that, due to the maximum entropy
property of the Gaussian-based methods, the extremely high grades are more spatially
dispersed, showing a misrepresentation of the spatial connectivity of the high grades. It is
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also verified that the realizations obtained with the HOSIM method reproduce the sample
data high-order spatial statistics despite the utilization of a training image (TI).

The application of the proposed method shows that long-term stockpiles can be
operationally implemented. Under the assumption of having multiple active stockpiles, to
facilitate operational mining aspects, it is seen that a maximum of three active stockpiles are
needed and the stockpile tonnage after each production year does not reach the maximum
capacity of 400,000 tones in both the HOSIM and SGS input cases. In addition, it is
observed that the optimization process takes advantage of the more connected high-grade
representations of the copper deposit to generate the stope designs production schedules.
Notable differences are observed on the final stope boundaries and extraction sequences
comparing the two cases. The HOSIM case tends to target the high-grade continuity areas
to produce a 6% higher NPV, while the SGS case initially mines areas that incur a smaller
horizontal development cost. This outcome is observed once the simulated values are
averaged into large stope volumes; thereafter, the realizations with better connected high
grades generate higher-grade possible stopes. As a result, the higher the stope grade,
the lower the impact of the horizontal development cost on its profit. The HOSIM case
produces a 4% higher copper content at the end of 12 years of production, which directly
impacts on the cumulative cash flow. In addition, the HOSIM case is able to produce
ore material that follows the grade-blending requirement of the mill by sending 5% less
material to the stockpile.

A case study that accounts for high-order sequential simulations of multiple elements
is a topic for future research, once secondary and deleterious elements also play an impor-
tant role in decision-making for mine planning activities. In addition, the simultaneous
optimization of a mining complex that assumes the existence of multiple mines, stockpiles,
and processing streams is an extension for future work. Also, this simultaneous opti-
mization approach should generalize to different types of underground mining methods,
while further facilitating the interaction between underground and open-pit mining opera-
tions. Furthermore, as more components are included in the mathematical programming
formulation, the development of alternative solvers, rather than the ones commercially
available, is proposed for future contribution. The proposed method addresses long-term
underground stope design, mine planning, and production scheduling. However, it is
recognized that intricate operational considerations, such as the scheduling of individual
activities, prediction of technical parameters, and updates on geotechnical parameters, are
important for short-term planning. Future developments related to short-term planning
could consider integrating these aspects as well as enabling the interaction between short
and long-term planning.
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