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Abstract: Karst bauxite deposits are currently investigated as a new resource for rare earth elements
(REE) in order to avoid present and future supply shortfalls of these critical metals. The present work
focuses on the geochemistry and mineralogy of the REE in karst bauxite deposits of the Catalan
Coastal Range (CCR), NE-Spain. It is revealed that the studied bauxitic ores have a dominant breccia
and local ooido-pisoidic and pelitomorphic texture. The bauxitic ores are mostly composed of kaolinite
and hematite, as well as of lesser amounts of boehmite, diaspore, rutile and calcite. The mineralogy
and major element composition indicate incomplete bauxitization of an argillaceous precursor
material possibly derived from the erosion of the Mesozoic Ebro massif paleo-high. The studied
bauxites are characterized by )} REE (including Sc, Y) between 286 and 820 ppm (av. 483 ppm)
and light REE to heavy REE (LREE/HREE) ratios up to 10.6. REE are mainly concentrated in
phosphate minerals, identified as monazite-(Ce) and xenotime-(Y) of detrital origin and unidentified
REE-phosphates of a possible authigenic origin. REE remobilization presumably took place under
acidic conditions, whereas REE entrapment in the form of precipitation of authigenic rare earth
minerals from percolating solutions was related to neutral to slightly alkaline conditions. During the
bauxitization process no significant REE fractionation took place and the REE distribution pattern of
the bauxitic ores was governed by the REE budget of the precursor material. Finally, adsorption as
a main REE scavenging mechanism in the studied CCR bauxite deposits should not be considered,
since the presented data did not reveal significant REE contents in Fe-and Mn-oxyhydroxides and
clay minerals.

Keywords: karst bauxite; rare earth elements; monazite; xenotime; geochemistry; mineralogy;
Catalonia; Spain
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1. Introduction

According to the International Union of Pure and Applied Chemistry (IUPAC) REE are a group of
17 elements with a similar geochemical behavior comprising the lanthanides, yttrium (Y) and scandium
(Sc) [1]. Most earth scientists, however, traditionally exclude Sc or both Sc and Y and group REE into
LREE (La-Eu) and HREE (Gd-Lu) based on their atomic weight [2] and their continuously decreasing
atomic radii from La to Lu, a phenomenon called lanthanide contraction [3].

Technological developments have dramatically increased the use of REE in the defense, aerospace,
medical and automotive industries. Among others, they are essential components of catalysts,
high-strength magnets (mainly NdFeB), super-alloys, display technology and lasers [1,4-7]. Achieving
an undistorted and sustainable access to REE is of increasing concern not only in Europe, but also
across the globe. The European Commission has indeed categorized these elements as critical raw
materials, because of their high economic importance coupled to possible supply shortfalls [8] partly
caused by a monopolization of the supply chain by China [4].

REE concentration has been proven to occur in a wide range of geological settings [2,9], including the
formation of residual deposits, such as karst bauxites (i.e., bauxites overlying carbonate rocks) [10-13].
Bauxite ore is the primary source of aluminum. Its beneficiation (Al extraction by means of the
Bayer process) results in the production of Al and waste material (i.e., bauxite metallurgical residue,
the so-called “red mud” [14]). In fact, Deady et al. [15] emphasized that karst bauxite ores are the ideal
source material for REE-enriched red mud as the conditions during formation of the bauxite allow for
the retention of REE (see also [16-18]).

During laterization and bauxitization processes, intense weathering and the limited mobility of
REE in the weathering profiles cause the enrichment of these elements in residual ores, including
bauxite, relative to their parent rocks in the form of: (i) concentration of primary (magmatic) refractory
REE phases, (ii) precipitation of secondary authigenic/ diagenetic REE phases, (iii) LREE-actinide
oxides sorbed in supergene/ epigenetic Fe-oxides and (iv) ion-adsorption clays [13,15,19-21].

In karst bauxites, the most common REE-bearing minerals include fluorocarbonates (bastnasite-
group), phosphates (e.g., monazite-, xenotime-, apatite-groups) and REE-oxides (e.g., cerianite)
(e.g., [13,21-25]).

In spite of the growing interest in karst bauxite deposits as potential non-conventional REE
resources, data for European karst bauxite deposits, with the exception of Greece [21,26-28], generally
are scarce (e.g., Italy [29-33], Turkey [34], Hungary [22] or Montenegro [20,35]). Karst bauxite deposits
in Spain belong to the Mediterranean bauxite belt and are located in four bauxite regions: (i) The
Subbetic Zone in the Betic Cordillera, (ii) the Linking Zone (LZ) between the CCR and the Iberian Range,
(iii) the CCR and (iv) the Pyrenean System [36]. Salas et al. [37] used REE distribution patterns to infer
on the parental material of karst bauxite deposits of the LZ and the CCR. They concluded that bauxites
were probably derived from lower Barremian laterized clays of the Cantaperdius formation situated
some 12 to 15 km to the N. Ordoriez et al. [38] studied the geochemistry of karst bauxite deposits of the
LZ, the CCR and the southern Pyrenees, describing ) 'REE of up to 689.7 ppm. These authors stressed
that }_REE values did not correlate with the major element contents. More recently, Yuste et al. [39,40]
published data on the geochemistry of the Fuentespalda karst bauxite deposit (Teruel) in the LZ,
reporting }_REE values of up to 815.75 ppm. However, accurate data on REE-bearing mineral phases
in Spanish karst bauxite deposits are scarce so far. Therefore, we aim to provide new data on the
REE geochemistry and mineralogy of bauxite ores of the CCR, NE-Spain by means of a thorough
petrographic and geochemical characterization, including the investigation of bauxite heavy mineral
concentrates. These results, along with mineralogical and geochemical data are used to constrain the
origin of the bauxite ores in the study area. It should be highlighted that, to our best knowledge,
no detailed mineralogical description of REE-phases in Spanish bauxites exists. Moreover, this work is
the first in which hydroseparation techniques have been applied for the study of Spanish bauxites.
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2. Geological Setting

Three mountain chains associated with the Alpine Orogeny dominate the NE part of the Iberian
Peninsula: The Pyrenees, the Iberian Chain (IC) and the CCR. During the Cenozoic, the Ebro Basin
developed as the foreland basin of the afore-mentioned mountain chains (Figure 1). Dominant
tectonic structures trend NW-SE in the IC, whereas they trend NE-SW in the CCR. The LZ, which is
characterized by dominant E-W trending tectonic structures, is located between the IC and the
CCR [41].
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Figure 1. (A) Simplified geological map of the Catalan Coastal Range (CCR) modified from [42] and
detailed geological maps of the studied bauxitic deposits in (B) the Plana de Casals area, (C) El Miracle
mine and (D) the road-cutting near La Pineda de Santa Cristina modified from [43]. The location
of the sampled outcrops is shown in (B-D). Note that the Barremian bauxite-filled analyzed karstic
pockets are laterally limited in extent, occur on Triassic rocks and are overlain by Palaeocene and
Eocene deposits. For an overview of the crustal structure of the CCR along cross-sections 1, 2 and 3 the
reader is referred to [42].
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The CCR represents the structural connection between the IC and the Pyrenees [44]. It is
characterized by three thrust sheets: (1) Valles-Penedes (VPU), (2) Camp (CU) and (3) Priorat (PU)
which are situated on NE-verging thrusts. These thrusts, which are usually tens of kilometers in
length, include the Hercynian basement and form a right-stepping, en-echelon array [41]. The strongest
deformation is located in narrow bands along or near faults and associated monoclinal folds with
strongly vergent or overturned limbs, whereas the internal parts of the thrust sheets are only slightly
deformed [41].

The sedimentary record of the CCR comprises rocks of the Palaeozoic (Hercynian) basement
which are restricted to outcrops on the NW margin of the CCR and Mesozoic to Cenozoic strata of
the Alpine sedimentary cycle [45]. The onset of post-Hercynian sedimentation marks the initiation of
the pre-orogenic stage during the Alpine sedimentary cycle. Deposition of fluvial red beds of Permo-
Triassic age was followed by evaporite accumulations and carbonate deposition in an extensional
tectonic setting that persisted until the Upper Jurassic. The associated complex tectono-sedimentary
setting gave rise to a variety of marine sediments, such as carbonate-dolomitic breccia (related to
an Early Liassic break-up platform due to rifting of the Atlantic Ocean), shallow marine platform
carbonates, coastal deposits or basinal limestones and marls. The Late Jurassic-Early Cretaceous rifting
cycle [46] resulted in a strong extensional regime with fragmentation, compartmentation and intense
tilting of basement blocks, which led to prolonged periods of emergence of the NW sectors and the
development of abundant lateritic horizons, as well as bauxite-filled karstic pockets in the Lower
Barremian [47]. The main contractional stage during the Alpine orogeny started in the Late Eocene
and continued until the Late Oligocene [42]. Deformation started in the NE and progressively moved
to the SW, being related to the successive movement of the major NE-SW trending basement faults [45].
Many of the contractional structures in the CCR also contain a sinistral component, indicating that
they most likely formed in a transpressive regime [45,48]. Paleogene sediments are mostly constrained
to the southern margin of the Ebro basin [45]. The post-orogenic stage in the CCR is marked by
Neogene extension related to the opening of the western Mediterranean Sea that started in the Lower
Miocene and that persists until today [42,45]. The Neogene sedimentary record comprises a series of
continental, lacustrine and lagoonal deposits with occasional marine transgressions which are limited
to the Neogene troughs [45].

3. Sampling and Methodology

A total of eight samples from three different sampling sites in the CCR were collected (Figure 2),
including four samples from an abandoned mine on the Plana de Casals (Figure 2A(j, ii)), three samples
from the abandoned El Miracle mine near Les Pobles (Figure 2B(j, ii)) and one sample from a road
cutting in La Pineda de Santa Cristina (LPSC) (Figure 2C(j, ii)) (Table 1).

Eleven thin sections (Table 1) covering the entire textural spectrum of every sampling site were
produced. In addition, the samples were crushed and homogenized in order to obtain whole rock
chemical and powder X-ray diffraction (XRD) analyses. Major, minor and trace elements (including
REE) of the samples (approx. 10.5 g per sample) were determined at ActLabs Laboratories, Ontario,
Canada, using fusion inductively coupled plasma emission spectroscopy (ICP-ES) and inductively
coupled plasma mass spectrometry (ICP-MS).

The bulk mineralogical composition of the samples was studied by means of XRD in a
PANalytical X'Pert Pro MPD Alphal powder diffractometer (PANalytical, Almelo, The Netherlands)
in Bragg-Brentano 0/26 geometry with a radius of 240 mm at the Centres Cientifics i Tecnologics,
University of Barcelona (CCiT-UB), Spain. The ground samples were pressed into cylindrical standard
sample holders (16 mm x 2.5 mm in size) using a glass plate to obtain a flat surface. Samples were
scanned in increments of 0.017° from 4° to 80° using Cu K«1 radiation (A = 1.5406 A) at a voltage
of 45 kV-40 mA and 150 s per scanning step. During the analysis, samples spun at two revolutions
per second, while a variable automatic divergence slit maintained an illuminated length of 10 mm.
The beam length was restricted to 12 mm in axial direction by a mask. An X’Celerator detector with an
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active length of 2.122° was used. The software X'Pert HighScore® (Version 2.0.1, PANalytical, Almelo,
The Netherlands) was used to subtract the background of the obtained patterns, to detect the peaks and
to assign mineral phases to each peak, as well as to determine semi-quantitatively the mineral phases
present in the powder samples. It has to be noted that results of semi-quantitative measurements may
not be accurate for low concentrations (<5%) and therefore will be reported as traces.

Figure 2. Field photographs of the sampled outcrops (i) and close-ups (ii) in the CCR: A(i, ii)
Abandoned mine on the Plana de Casals, B(i, ii) abandoned mine El Miracle near Les Pobles, C(i, ii)
road cutting close to La Pineda de Santa Cristina.

Table 1. Coordinates of the sampled sites in the CCR. All positions correspond to WGS84 UTM 31N.

Sample Easting (m) Northing (m) Location Thin Section
MM-1 378,151 4,595,059 MM-1
MM-2 378,342 4,595,064 MM-2
MM-3 378,342 4,595,064 Plana de Casals MM-3
MM-4 378,291 4,595,024 MM-4 and MM4B
MI-0 369,239 4,579,639 Les Pobles (El MI-0 and MI-0B
MI-1 (A, B) 369,239 4,579,639 Miracle Mine) MI-1A, MI-1Arep, MI-1B
MI-2 369,691 4,570,698 MI-2
RU-1 369,691 4,570,698 LPSC -

One bauxitic sample (MM-4) was selected for the production of heavy mineral concentrates at
the hydroseparation laboratory of the University of Barcelona [49]. To this end, the sample was dry-
and wet-sieved using mesh sizes of 125 pum, 75 ym and 30 pum and a target fraction of 30-75 pm
was selected. The 30-75 um fraction was further separated according to its magnetic properties by
FRANTZ L-1 and LB-1 magnetic separators using working amperages of 0.4 A, 0.5 A, 0.8 A, 1.0 A
and 1.65 A which resulted in six fractions. The six fractions (magnetic at 0.4, 0.5, 0.8, 1.0, 1.65 and
non-magnetic at 1.65 A) were further treated using the computer-controlled hydroseparation (HS)
device CNT HS-11 [50] applying the methodology for soft rock described in [51]. In contrast to these
authors, HS was carried out after the magnetic separation. The densest grains separated by means of
HS were embedded in cylindrical (d = 2.5 cm) resin mounts forming a thin “layer” (hereafter called
monolayer) which was polished for further analysis.

The mineralogy and the textural features of the bauxitic samples were studied by means of
transmitted and reflected light optical microscopy. The morphological and textural features, as well
as the semi-quantitative composition of minerals in the selected samples (both monolayers and thin
sections) were examined at CCiT-UB by means of scanning electron microscopy (SEM), using an
environmental SEM Quanta 200 FEI, XTE 325/D8395 (Thermo Fisher Scientific, Waltham, MA, USA)
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equipped with an energy dispersive spectrometer (EDS). The operating conditions were an accelerating
voltage of 20 kV and a beam current of 1 nA. Additional electron micrographs and semi-quantitative
analyses were obtained with a field emission scanning electron microscope (FE-SEM) Jeol JSM-7100
(JEOL, Ltd., Tokyo, Japan) at CCiT-UB. Quantitative chemical analyses were performed at the CCiT-UB
using a JEOL JXA-8230 (JEOL, Ltd., Tokyo, Japan) electron probe micro analyzer (EPMA) operated
in wavelength-dispersive spectroscopy (WDS) mode, with an accelerating voltage of 20 kV, 15 nA
beam current and a varying beam diameter of ~1 to 5 um depending on grain size and mineralogy.
The analytical standards and lines used for the analyses were: wollastonite (Si, Kx), rutile (Ti, K«),
corundum (Al, Kx), Fe;O3 (Fe, Kx), thodonite (Mn, K«), apatite (Ca, Kx; P, Kx; F, Kx), barite (Ba, Ko),
celestine (Sr, Kx), UO, (U, MB), ThO, (Th, M«x), GaAs (Ga, L), metallic Co (Co, Kx), YAG (Y, L),
LaB¢ (La, Lx), CeO, (Ce, Lx), REE-1 (Pr, Lj3; Ex, Loy Dy, L), REE-2 (Ho, L3; Tm, L&; Eu, Lot), REE-3
(Yb, Lo; Sm, LB), Gd3GasO12 (Gd, L) and REE-4 (Lu, Lx; Tb, La; Nd, LB). Micro-Raman spectra
of the rare earth minerals and other minerals identified in the monolayers and thin sections were
obtained with a HORIBA Jobin Yvon LabRam HR 800 dispersive spectrometer (Horiba, Ltd., Kyoto,
Japan) equipped with an Olympus BXFM optical microscope (Olympus Corporation, Tokyo, Japan) at
the CCiT-UB. Non-polarized Raman spectra were obtained in confocal geometry by applying a 532
and a 785 nm laser, using a 100 x objective (beam size around 2 pm), with five measurement repetitions
for 10 s each. In cases where the use of the 532 nm laser produced high fluorescence, the 785 nm laser
was used. The instrument was calibrated by checking the position of the metallic Si band at ~520 cm 1.
The micro-Raman spectra were processed using the LabSpec® software (Version 5.33.14, Horiba, Ltd.,
Kyoto, Japan).

4. Results

4.1. Major and Trace Element Geochemistry and Geochemical Classification

Whole rock major, minor and trace element contents of the analyzed bauxitic samples are
summarized in Table 2. Among the major element oxides, Al,O3, SiO;, Fe;O3 and TiO; are those
with the highest contents, which on the other hand show great variation. The average SiO; content is
31 wt % but contents vary between 15 wt % (MM-1) and 38 wt % (MM-4). Al,O3 behaves similarly,
with contents varying between 27 wt % (MM-3) and 49 wt % (MM-1) (av. = 34.4 wt %). The Fe;Os
contents also vary from 13 wt % to 29 wt % but are generally below 20 wt %. In contrast, TiO, contents
are rather constant in all samples ranging from 1.4 wt % to 2.3 wt %. MgO, Na;O, K,O and CaO
contents are below 1 wt % for all samples except for sample RU-1 in which the CaO concentration is
2.5 wt % CaO.

Bauxitic samples yield contents higher than 100 ppm for elements such as V, Cr, Ni, Sr, and Zr,
whereas the contents of other trace elements (Sc, Co, Ga, As, Nb, Mo, Ba, Pb, Hf, Th, U or Ga) are in
the range of a few to tens of ppm (Table 2). The contents of Zn, Rb, Cs and T1 are generally close to or
below their respective detection limits and are only relatively elevated in sample RU-1 (Table 2).

The TiO, and Al,O3 contents show a strong positive correlation (Figure 3B), suggesting that
both Al and Ti behaved as relatively immobile elements during the bauxitization process. In contrast,
the negative correlation observed between SiO, and Al,O3 (Figure 3A) points to retention of Al in the
weathering profile as Si was leached. No correlation has been found for Fe;O3; and Al,O3 contents
(Figure 3C) which indicates that Fe was mobile during the bauxitization process. Among the trace
elements, the high field strength elements (HFSE, namely Nb, Ta, Zr, Th and U) show a correlation
with TiO, and Al,O3, with correlation coefficients close to or above 0.8 (Figure 3D-G). This indicates
that these elements were rather immobile during the bauxitization process. In contrast, correlation
between TiO, and Al,O3 with other elements, such as Ba, Pb, Sc, Y, V or Ni is poor or absent.

The studied bauxitic samples exhibit strongly varying REE contents with }_REE in the range of
190 to 637 ppm, (av. = 372 ppm) (Table 2). LREE (XLREE = 156-541 ppm, av. = 329 ppm) are relatively
enriched compared to HREE (XHREE = 23-96 ppm, av. = 44 ppm). The Y and Sc contents are in the
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range of 35 to 148 ppm (av. = 64 ppm) and 29 to 64 ppm (av. = 45 ppm), respectively. Sc contents in the
studied bauxitic samples are comparable to those of other Mediterranean karst bauxites (e.g., [21,52]).
However, no correlation has been found for Sc and Fe;O3 (Figure 3H), as has been described for karst
bauxites of Parnassos-Ghiona [21]. The correlation between the contents of individual REE and XREE
with those of S5iO,, Al,O3, TiO, and MnO is poor, whereas the correlation between the contents of
individual REE and ) REE and the contents of Fe;O3 and P,O5 shows slightly negative and positive
correlation, respectively (Figure 31 ]). The positive correlation between P,Os5 with ) REE might indicate
that phosphate phases are the main hosts of REE in the studied bauxitic ores. The samples yield
heterogeneous LREE/HREE ratios between 4.6 and 10.6.
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Figure 3. Selected Harker-type diagrams for major, minor and trace elements in the analyzed bauxitic
samples. (A) Al,O3 vs. SiO;, (B) Al,O3 vs. TiO,, (C) Al,O3 vs. Fe;O3, (D) Al,O3 vs. Th, (E) Al,O3 vs. U,
(F) TiO, vs. Nb, (G) TiO; vs. Ta, (H) Fe;O3 vs. Sc, (I) Y_REE vs. Fe;O3, (J) YREE vs. P,0s.

The Ce/ Cen* and Eu/Eun* ratios were calculated from Equations (1) and (2) [53], and are
reported in Table 2:

Ce/Cen* = Cen/(0.5Lay + 0.5Pry)

)

where Cen* is a background concentration, whereas Layn and Pry are chondrite-normalized La and Pr
concentrations, respectively. The same equation structure was used for Eu/Eun* (Equation (2)):

Eu/EuN* = EuN/(0.5SmN + 0.5GdN)

)
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Applying these equations reveals broadly constant, negative Eu-anomalies (Eu/Eun®* = 0.67-0.75)
and slightly negative, even though erratic Ce-anomalies (0.56-1.07). The chondrite-normalized REE plot
in Figure 4 reveals broadly similar distribution patterns for all samples, with negative slopes for LREE
and fairly horizontal HREE segments. The overall negative slope geometry results from the relative
enrichment of LREE to MREE (2.21 < Lay/Smy < 6.14) and HREE (4.19 < Lay/Yby < 10.76), and of
MREE to HREE (1.89 < Smy/Yby < 2.50). Eu/Eun* consistently show negative anomalies (<0.8),
whereas Ce-anomalies are more erratic, but generally do not show anomalies (with the exception
of a strong negative anomaly in sample MM-2). Furthermore, the overall enrichment in REE (and
especially HREE) in sample MM-4 compared to the other bauxitic samples has to be highlighted
(Table 2, Figure 4). The comparison of average chondrite-normalized REE contents of karst bauxite
areas or deposits of the Mediterranean bauxite belt [20,21,34,40,52] with data from this study (Figure 4B)
reveals broadly similar REE distribution patterns. They are characterized by negative slopes for LREE,
relatively flat HREE patterns, pronounced negative Eu-anomalies and no Ce-anomalies. The major
difference between displayed karst bauxites seems to be their overall REE content. Data for the Zagrad
karst bauxite deposit, Montenegro [20] indicate much higher REE contents compared to the other
karst bauxites. In contrast, REE contents in bauxites and bauxitic clays of Teruel, NE-Spain [40] are
significantly lower. Interestingly, karst bauxites of the Parnassos-Ghiona deposits, Greece [21] show a
positive Ce-anomaly which sets them apart from all other karst bauxites. The REE distribution pattern
of the studied bauxitic samples is very similar to the average Italian bauxite REE distribution pattern
(calculated from data for deposits in the Apulia, Campia and Abruzzi regions and Sardinia [52]).

Table 2. Major-, minor- and trace-element (including REE) concentrations of the studied bauxitic

samples from the CCR.
Plana de Casals El Miracle Mine LPSC
Sample Number

MM-1 MM-2 MM-3 MM-41 MI-01 MI-2 RU-11

SiO; [wt %] 15.12 34.17 31.03 38.31 24.62 38.39 35.08
AL, O3 48.98 29.55 26.73 32.57 39.43 34.18 29.45
Fe,O3(T) 19.57 22.71 28.66 13.33 19.95 12.56 14.97

MnO 0.01 0.02 0.03 0.03 0.02 0.01 0.05

MgO 0.03 0.04 0.04 0.08 0.07 0.05 0.45

CaO 0.08 0.12 0.11 0.13 0.14 0.20 2.53

Na,O 0.02 0.02 0.02 0.03 0.03 0.04 0.06

K,O 0.02 0.03 0.02 0.14 0.13 0.06 0.49

TiO, 2.34 1.59 1.43 1.96 2.21 1.74 1.86

P,05 0.09 0.05 0.04 0.10 0.14 0.10 0.07
LOI 12.77 11.55 10.67 12.78 12.36 12.96 14.77
Total 99.03 99.85 98.78 99.43 99.07 100.30 99.73

Ag [ppm] 1.50 1.10 0.90 1.50 2.00 1.30 1.40
As 29.00 32.00 45.00 28.00 38.50 18.00 13.00

Ba 32.00 19.00 12.00 41.50 39.00 23.00 78.50

Be 2.00 4.00 7.00 10.00 4.00 8.00 4.00

Bi 1.00 0.70 0.80 0.50 0.85 0.70 0.60

Co 6.00 6.00 15.00 16.00 21.50 18.00 13.00
Cr 400.00 230.00 270.00 155.00 280.00 220.00 145.00

Cs <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 8.35
Cu 20.00 20.00 30.00 20.00 30.00 50.00 40.00
Ga 63.00 30.00 39.00 32.00 52.00 39.00 33.00

Ge 2.00 2.00 2.00 2.00 2.00 1.00 2.00

Hf 12.60 8.20 8.10 10.80 14.00 11.80 9.90

In 0.30 0.20 0.20 <0.2 0.25 0.20 <0.2

Mo 19.00 5.00 6.00 7.00 17.00 8.00 3.00
Nb 44.00 29.00 25.00 38.00 4450 33.00 36.50
Ni 70.00 70.00 90.00 90.00 125.00 130.00 135.00

Pb 29.00 43.00 41.00 58.50 55.00 41.00 35.50

Rb <2 <2 <2 5.00 5.00 3.00 41.50

Sb 2.90 2.80 3.20 1.80 2.60 1.90 2.20

Sn 8.00 6.00 6.00 6.00 7.50 6.00 6.00
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Table 2. Cont.

Plana de Casals El Miracle Mine LPSC
Sample Number
MM-1 MM-2 MM-3 MM-41 MI-01 MI-2 RU-11
Sr 402.00 72.00 35.00 175.50 318.00 315.00 93.50
Ta 3.90 2.70 2.40 3.05 3.50 3.30 3.00
Th 44.90 28.00 30.80 25.00 37.80 34.30 25.70
Tl 0.10 0.10 0.30 0.10 <0.1 <0.1 1.25
U 22.30 6.20 6.70 8.70 8.00 3.90 3.70
v 531.00 360.00 471.00 244.50 393.50 303.00 238.00
W 4.00 3.00 3.00 4.00 450 3.00 5.50
Zn <30 <30 <30 <30 65.00 40.00 170.00
Zr 508.00 332.00 317.00 434.50 556.00 466.00 397.00
Sc 64.00 38.00 57.00 35.00 50.00 42.00 28.50
Y 35.00 37.00 39.00 148.00 77.50 47.00 66.00
La 62.90 74.40 35.80 129.00 118.00 79.50 92.15
Ce 128.00 83.60 64.30 215.50 196.00 151.00 167.00
Pr 10.70 14.80 8.19 32.70 22.35 16.80 17.45
Nd 36.40 50.40 34.80 127.00 85.80 63.50 64.75
Sm 6.40 9.50 10.10 29.40 17.10 11.20 12.35
Eu 1.32 1.99 2.38 7.00 3.67 242 2.63
Gd 5.30 7.20 8.90 28.30 14.05 9.20 10.75
Tb 0.90 1.20 1.60 435 2.10 1.40 1.80
Dy 6.10 7.90 9.20 25.90 12.50 8.70 11.35
Ho 1.30 1.60 1.70 5.05 2.50 1.70 2.30
Er 4.00 4.70 5.30 14.70 7.45 5.20 6.80
Tm 0.61 0.72 0.82 211 1.10 0.77 1.01
Yb 4.40 5.00 5.80 13.90 7.45 5.30 6.60
Lu 0.67 0.73 0.84 2.10 1.15 0.84 0.99
Y'REE 2 269.00 263.74 189.73 637.01 491.22 357.53 397.92
YLREE 3 245.72 234.69 155.57 540.60 44292 324.42 356.33
YHREE 4 23.28 29.05 34.16 96.41 48.30 33.11 41.59
Y REE+[Sc+Y] 368.00 338.74 285.73 820.01 618.72 446.53 49242
LREE/HREE 10.55 8.08 455 5.61 9.17 9.80 8.57
Lan/Yby 5 9.71 10.11 4.19 6.30 10.76 10.19 9.48
Layn/Smy © 6.14 4.89 221 2.74 431 443 4.66
Smy/Yby 7 1.58 2.07 1.89 2.30 2.50 2.30 2.04
Ce/Cen*8 1.07 0.56 0.85 0.76 0.84 0.93 0.92
Eu/Eun*? 0.67 0.70 0.75 0.73 0.70 0.71 0.68

1 MM-4, MI-0 and RU-1 = average of two measurements, 2 YREE = Y(La-Lu), 3 YLREE = Y(La-Eu),
4 YHREE = Y(Gd-Lu), ® Lan/Yby = (La/Lay)/(Yb/Yby), ¢ Lan/Smy = (La/Lay)/(Sm/Smy), 7 Smy/Yby
= (Sm/Smy)/(Yb/Yby), 8 Ce/Cen* and ? Eu/Eun* after [53], Fe,03(T) = total iron, LOI = loss on ignition.

10,000 A 10,000 B avg. CCR
P (this study)
5 avg. Zagrad,
é Montenegro
1000 VM- °
o MM-1 [ == avg. Italia
= ——MM-2 || %
2 3 avg. Teruel
s ——MM-3 (| 8 9. '
5 © Spain
S —a—MM-4* || 2 Jai
= " g = avg. Jajce,
% —#=MI-0 g Bosnia
ot —=MI|-2 - avg. Halimba,
8 —4—RU-1* § 10 Hungary
10 e avg. Parnassos-
2 Ghiona, Greece
B
= —o-. avg. Bolkardagi,
Turkey
1 1
La Ce Pr Nd SmEu Gd Tb Dy Ho Er TmYb Lu La Ce Pr Nd SmEu Gd Tb Dy Ho Er Tm Yb Lu

Figure 4. (A) Chondrite-normalized REE plot for whole rock data of the studied bauxitic samples of
the CCR, MM-4*, MI-0*, RU-1* = average of two measurements. (B) Chondrite-normalized average
REE contents of several karst-type bauxite areas or deposits within the Mediterranean bauxite belt (this
study and literature for comparison [20,21,34,40,52]). Normalization values are from [54].
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In the SiO,-Fe;03-Al,03+TiO; classification diagram after [22], in Figure 5, most of the studied
bauxitic samples plot in the clayey or iron-rich bauxite fields, whereas the samples with the highest
Fe,; O3 contents (MM-2, MM-3) fall in the bauxitic iron ore field.

SiO»

bauxitic clay

50
clayey bauxite | bauxitic clayey
- iron ore
= 25
o~ @
S ’ S |
A
Sy F /5§ F bauxitic iron ore
N & /S mg
~0 N
Al»O3+TiO» FeyO3

M Plana de Casals M Les Pobles M La Pineda de Santa Cristina

Figure 5. Whole rock SiO,-Fe;O3-Al,O3+TiO, ternary plot of the studied bauxitic samples; bauxite
classification fields are after [22].

4.2. Mineralogy

4.2.1. Mineralogical and Textural Characteristics and Classification of CCR Bauxites

Powder-XRD analysis revealed that the studied bauxitic samples are mainly composed of
phyllosilicates, Fe-oxides, Al-oxyhydroxides, Ti-oxides, as well as calcite in certain quantities (Table 3).
The most abundant mineral is kaolinite (38-96 wt %). Hematite is the only mineral of the Fe-oxide and
Fe-hydroxide-groups detected and is present in all samples (traces to 27 wt %), as are the Ti-oxides
anatase (traces) and rutile (traces to 5 wt %). Moreover, two samples (namely MM-1 and MI-0) contain
significant amounts of boehmite [y-AlIO(OH)] (23-33 wt %) and diaspore [a-AIO(OH)] (6-8 wt %).
It is worth noting the absence of gibbsite in all the analyzed samples. In samples MI-1B, MI-2 and
RU-1, calcite has been detected (traces to 26 wt %). Furthermore, sample RU-1 also contains 32 wt %
of nacrite.

Table 3. Semi-quantitative mineral composition obtained by XRD-analysis (wt %) of the studied
bauxitic samples from the CCR.

Sample No.  Kin Nac Hem Bhm  Dsp Rt Ant Cal

MM-1 38 - 16 33 6 tr tr -
MM-2 73 - 19 - - tr tr -
MM-3 74 - 18 - - 5 tr -
MM-4 76 - 16 - - tr tr -

MI-0 45 - 17 23 8 tr tr -
MI-1A 1 9 - tr - - - - -
MI-1B 2 45 - 27 - - - tr 26

MI-2 75 - 14 - - 5 tr tr

RU-1 37 32 13 - - tr tr 10

1 MI-1A = red, soft sample fragment, 2 MI-1B = dark red, oxide-rich sample fragment; Kln = kaolinite, Nac = nacrite,
Hem = hematite, Bhm = boehmite, Dsp = diaspore, Rt = rutile, Ant = anatase, Cal = calcite, tr = traces. Mineral
abbreviations from [55].
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In the clay mineral-Fe mineral-Al + Ti mineral classification diagram from [22] in Figure 6,
the studied bauxitic samples plot in the bauxitic clay and clayey bauxite fields. Samples are thus
characterized by relatively low aluminium and high silica contents, respectively. Several of the analyzed
samples actually are no bauxites sensu stricto (even though the geochemical classification after [22]
in Figure 5 suggests this), but correspond to bauxitic clays. Therefore, the most appropriate term to
describe the studied samples would be “bauxitic ore”. It is important to highlight that the classification
scheme of [22] (which is broadly used in literature) in its original sense was actually conceived for
semi-quantitative XRD data. From the comparison of Figures 5 and 6 it is evident that the use of whole
rock geochemical data for bauxite classification might be misleading at times, since Figure 5 indicates
that studied bauxitic ores mainly correspond to iron-rich bauxite or bauxitic iron ore and clayey bauxite
even though the majority of the studied samples are lacking in Al-oxyhydroxides (Table 3).

Clay minerals

bauxitic clay

bauxitic clayey

clayey bauxite | iron ore
25

bauxitic iron ore

Al+Ti Fe minerals
minerals

M Plana de Casals M Les Pobles [l La Pineda de Santa Cristina

Figure 6. Ternary clay mineral-Fe mineral-Al+Ti mineral plot of the studied bauxitic samples based on
results of semi-quantitative X-ray diffraction; bauxite classification fields after [22].

Bauxitic ores from the CCR exhibit a great variety of textures which are illustrated in Figure 7;
such textural features are shared by all the studied deposits. Most of the studied samples show
a breccia texture characterized by bauxite clasts and pebbles that vary considerably in size (up to
100 mm) and that are embedded in a pelitomorphic matrix dominated by kaolinite and small-sized
clastic particles (Figure 7A). Fractures and cavities are typically filled with kaolinite and locally
calcite. Samples with a breccia texture show abundant mm-sized bauxite clasts/ roundgrains with a
pelitomorphic matrix containing micro-ooids (Figure 7B), even though some are homogenous inside in
which case they are typically made up almost exclusively of kaolinite (Figure 7C). The brownish-red
color of the matrix surrounding the bauxite clasts and pebbles indicates iron impregnations (Figure 7C).
Locally, ooido-pisoidic textures have also been observed (Figure 7D) (sensu [22]). Fe-rich ooids and
pisoids are dominantly dark red to reddish brown in color and appear opaque in transmitted light
(Figure 7E). These ooids and pisoids show equivalent concentric structures as Al-rich ooids (Figure 7F).
The image in Figure 7G illustrates a texturally complex mm-sized pisoid made up of fine-grained clastic
fragments of Fe-oxides, surrounded by a layer of ooidic texture with Fe-rich ooids within a matrix
of Al-oxyhydroxides; towards the boundaries of the pisoid concentric alternating layers of Al- and
Fe-oxyhydroxides occur. In one sample, fractures across the matrix are filled with a highly reflective
material (Figure 7H) and its texture resembles features typical of plant cells. This potential plant debris
is strongly fragmented and might be attributed to macerals (probably fusinite and inertodetrinite
of the inertinite group). However, SEM-EDS and micro-Raman analysis proved that this material is
composed of hematite instead of organic-rich compounds.
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Figure 7. Transmitted, plane polarized (A-E) and reflected (F-H) light microphotographs of

components and textures of the bauxite deposits from the CCR. (A) Bauxite roundgrains with local
micro-ooids (<100 pm). (B) Detail of bauxite roundgrains. (C) Close-up of a bauxite clast made up of
kaolinite and surrounded by a brown, aphanitic matrix. (D) Ooidic texture in which the whitish matrix
is made up of kaolinite and the ooids are made up of Fe- and Al-oxyhydroxides. (E,F) Close-up of a
Fe-rich ooid in transmitted (E) and reflected (F) light. (G) Complex concentric outer rim of a mm-sized
pisoid. Note the similarity to Fe-rich ooids. (H) Reflected light view of detritus that resemble textures
developed by plant cells corresponding to hematite mineralization.

4.2.2. REE Mineralogy

Thirty-six REE-bearing mineral grains were found in heavy mineral concentrates (4 grains) and
in thin sections (32 grains). The REE mineralogy in the bauxitic ores is dominated by two types of
phosphate minerals: monazite-(Ce) and xenotime-(Y). Two grains recovered from heavy mineral
concentrates are >50 um in size (Figure 8A,B). Grain sizes in thin sections are typically <10 pm with
the largest grains being ~20 um across. Most REE-phosphates occur embedded in the aphanitic matrix
composed of kaolin minerals (Figure 8C,D,F,G). However, some grains are observed in contact with
Fe-oxides (Figure 8E) or Fe-impregnated parts of the kaolin mineral-rich matrix. REE phosphate
grains show evidence for both detrital and authigenic origin. Whereas euhedral to subhedral crystals
(Figure 8B), rounded grain edges and oval to elongated grain shapes (Figure 8D) point to a detrital
origin, concentric growth textures (Figure 8F), intergrowth of grains with the kaolin mineral-rich
matrix (Figure 8F) or irregular grain morphologies are indicative of an authigenic origin. A slightly
brighter aureole around a xenotime grain of triangular shape is interpreted as an alteration rim of a
detrital grain (Figure 8G). Figure 8C illustrates a common textural relationship between rare earth
minerals, the matrix and other components of the bauxitic samples in-situ. Here, a monazite-(Ce) grain
embedded in the kaolin mineral-rich matrix is associated with anatase and zircon grains.

Representative Raman spectra of REE-phosphates using a 532 nm wavelength laser are given in
Figure 9. The comparison of a Raman spectrum obtained in a monazite-(Ce) grain with a reference
spectrum [56] of this mineral reveals a good correlation between bands at ~969 and ~1057 cm L.
The comparison of a Raman spectrum obtained in a xenotime-(Y) grain with a reference spectrum [56]
of this mineral yields a good correlation between bands at ~997, ~1022 and ~1053 cm~*, as well as
in the range from 300 to 700 cm~!. The Raman bands at ~1000 cm ™! correspond to the characteristic
POy-stretching vibrations [57].
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Figure 8. Backscattered-electron (BSE) images of REE-phosphates found in bauxitic ores from the
CCR. (A,B) Monazite-(Ce) and xenotime-(Y) grains recovered from heavy mineral concentrates.
The monazite-(Ce) crystal shows a sharp, irregular outline and abundant scratches. The xenotime-(Y)
crystal is subhedral and shows slightly rounded and locally embayed outlines and pyramidal
termination; it contains a small-sized zircon grain. (C-G) Monazite-(Ce) and xenotime-(Y) grains
discovered in thin sections. (C) Textural relationships between an anhedral monazite-(Ce) grain floating
in the kaolin mineral-rich matrix along with a zircon and several anatase grains. (D) Minute anhedral
monazite-(Ce) grain embedded in the kaolin mineral-rich matrix. (E) Minute xenotime-(Y) grain
hosted by porous hematite. (F) REE-phosphate with a concentric texture and intergrowth with the
kaolin mineral-rich matrix. (G) Anhedral xenotime grain with an alteration rim. Mnz = monazite-(Ce),
Xtm = xenotime-(Y), Zrn = zircon, Ant = anatase, Hem = hematite.
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Figure 9. Representative Raman spectra of monazite-(Ce) and xenotime-(Y) grains recovered from
heavy mineral concentrates of bauxitic ores of the CCR. (A) Monazite spectrum obtained with a 532 nm
wavelength laser. (B) Xenotime-(Y) spectrum obtained with a 532 nm wavelength laser. Reference
spectra for comparison in (A) and (B) were taken from [56]. a.u. = arbitrary units.

The studied monazite-(Ce) and xenotime-(Y) grains have relatively low ThO; (av. =1.07 wt %;
0.014 atoms per formula unit, a.p.f.u., Th, normalized to 4 oxygens), UO; (av. =0.33 wt %, 0.003 a.p.f.u.)
and CaO (av. =0.26 wt %) (Table 4) contents. Monazite-(Ce) shows systematically higher ThO, than
xenotime-(Y) in which ThO; contents commonly lie below the detection limit (d.1.) for EPMA. MnO,
BaO and SrO generally are below detection limit. SiO;, Al,O3, TiO, and FeO contents are mostly
below 1 wt % and may, at least partially, be attributed to measurement errors due to the small grain
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sizes of the rare earth minerals. Ce (av. =0.43 a.p.f.u.) is the dominant REE in monazite grains along
with less abundant La (av. = 0.2 a.p.f.u.), Nd (av. =0.19 a.p.fu.), Gd (av. = 0.04 a.p.f.u.) and Sm
(av. = 0.03 a.p.f.u.). The dominant REE in xenotime-(Y) is Y (av. = 0.69 a.p.f.u.) along with minor Dy
(av. =0.06 a.p.f.u.), Er, Yb (both av. =0.04 a.p.f.u.) and Gd (av. = 0.03 a.p.f.u.). Most EPMA analyses
showed analytical totals ~100%, and approach near ideal stoichiometry (total A site cations equal
~0.93 and ~0.96 a.p.f.u. in monazite and xenotime, respectively and total B site cations equal ~1.16 and
~1.14 a.p.f.u.in monazite and xenotime, respectively).

Table 4. Representative EPMA analyses of monazite-(Ce) (left) and xenotime-(Y) (right) grains in heavy
mineral concentrates and thin sections of the bauxitic samples of the CCR.

MM-4  MM-4 0.4 A mag. 0.4Amag. MM-4 MM-2 0.4 A mag. 0.4 A mag.

No. pl p6 FC* p10 FC* p13 p13 p22 FC p1 FC p6
P05 (Wt%) 2819 2842 28.44 27.12 3541 3441 34.94 35.12
SiO, dl. 1.64 0.04 dl. dl. 1.25 0.04 dl.
TiO, 0.20 0.25 dl. dl. 0.02 0.39 0.04 dl.
ALO5 048 273 dl 0.01 0.16 0.36 dl dl.
FeO 0.14 0.17 0.30 0.20 0.61 0.84 0.84 0.87
MnO dl. dl dl dl 0.00 0.00 0.00 dl
CoO 0.03 0.02 0.02 0.01 045 0.28 0.40 038
BaO dl. dl. dl. dl dl 0.00 0.04 0.02
SrO 0.02 dl. 0.03 0.03 dl. 0.11 dl. dl.
CaO 1.16 0.24 0.25 027 0.07 0.19 0.12 0.08
Gay 05 031 0.06 0.18 0.24 0.24 0.04 0.25 0.11
Y,05 1.03 0.36 0.42 041 4183 41.03 39.02 39.77
ThO, 455 0.80 1.89 1.82 dl. 1.00 0.03 0.00
U0, 0.19 0.05 0.26 0.18 0.29 0.02 0.43 0.69
La,Os 1270 676 15.79 16.74 0.04 0.00 0.09 0.11
Cey05 2755  29.49 31.76 31.29 0.12 0.00 0.07 0.13
Pr,05 296 3.89 2.83 311 0.05 0.02 0.02 dl
Nd,03 1317 1874 12.40 12.56 0.63 0.15 0.80 0.64
Sm, 05 1.76 1.96 2.02 2.09 0.56 0.54 1.06 0.94
Euy03 0.99 1.25 0.98 0.96 0.12 0.37 dl. 0.05
Gd,03 2.86 246 327 315 2.09 351 3.26 298
Tb,05 dl dl dl dl. 0.4 0.78 0.93 0.74
Dy,03 043 0.32 0.27 0.4 495 5.98 6.57 6.33
Ho,03 0.04 dl dl dl. 111 1.09 0.90 091
Er,03 0.02 dl dl dl. 442 338 3.87 4.06
Tm, 03 026 0.18 0.16 0.24 0.73 0.34 0.66 0.72
Yb,05 dl. dl. dl. dl. 441 217 3.89 427
Lu,03 0.02 dl. dl. 0.00 0.78 0.4 0.69 0.73
F 1.01 0.87 0.91 1.05 1.85 1.82 1.86 1.89
SUM 10007 100.66 102.22 101.92 101.38 10051 100.82 101.54
Papfu)l 093 0.89 0.94 091 0.96 0.93 0.96 0.96
Si - 0.06 0.00 - - 0.04 0.00 -
SUM A 0.93 0.95 0.94 091 0.96 0.97 0.96 0.96
Ti 0.01 0.01 - - 0.00 0.01 0.00 -
Al 0.02 0.12 - 0.00 0.01 0.01 - -
Fe 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02
Mn - - - - 0.00 - 0.00 -
Co 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01
Ba - - - - - - 0.00 0.00
Sr 0.00 - 0.00 0.00 - 0.00 - -
Ca 0.05 0.01 0.01 0.01 0.00 0.01 0.00 0.00
Ga 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.00
Th 0.04 0.01 0.02 0.02 - 0.01 0.00 0.00
U 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
Y 0.02 0.01 0.01 0.01 0.71 0.69 0.67 0.68
La 0.18 0.09 0.23 0.24 0.00 0.00 0.00 0.00
Ce 0.39 0.40 0.45 045 0.00 - 0.00 0.00
Pr 0.04 0.05 0.04 0.05 0.00 0.00 0.00 -
Nd 0.18 0.25 0.17 0.18 0.01 0.00 0.01 0.01
Sm 0.02 0.03 0.03 0.03 0.01 0.01 0.01 0.01

Eu 0.01 0.02 0.01 0.01 0.00 0.00 - 0.00
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Table 4. Cont.

No MM-4  MM-4 0.4 A mag. 0.4Amag. MM-4 MM-2 0.4 A mag. 0.4 A mag.

pl p6 FC* p10 FC* p13 p13 p22 FCp1 FC p6

Gd 0.04 0.03 0.04 0.04 0.02 0.04 0.04 0.03
Tb - - - - 0.01 0.01 0.01 0.01
Dy 0.01 0.00 0.00 0.01 0.05 0.06 0.07 0.07
Ho 0.00 - - - 0.01 0.01 0.01 0.01
Er 0.00 - - - 0.04 0.03 0.04 0.04
Tm 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01
Yb - - - - 0.04 0.02 0.04 0.04
Lu 0.00 - - 0.00 0.01 0.00 0.01 0.01
F 0.12 0.10 0.11 0.13 0.19 0.18 0.19 0.19
SUM B 1.16 1.13 1.14 1.20 1.15 1.14 1.15 1.15

d.l. = below detection limit, ! a.p.f.u. = atoms per formula unit, cations normalized to 4 oxygens.

Ternary Y-La-Ce, LREE-HREE-MREE and LREE-HREE+Y-MREE plots in Figure 10 reveal the
distribution of LREE, MREE and HREE in the analyzed monazite-(Ce) and xenotime-(Y) grains.
They show that monazite-(Ce) is enriched in LREE, whereas xenotime-(Y) is enriched in MREE and HREE.

A Y B LREE C LREE
90 90 90
80 80 80
70 70 70

L % A% A%

40

/NN
Lﬂ.l \/.J..,.\/ 1L

La MREE HREE MREE HREE+Y

Figure 10. Ternary (A) Y-La-Ce, (B) LREE-HREE-MREE, (C) LREE-HREE+Y-MREE plots of the REE
compositions of analyzed monazite (red triangles) and xenotime (green squares) grains in bauxitic
samples of the CCR. Note that the REE composition in xenotime is considerably more varied than in
monazite (B). LREE = )} La-Pm, MREE = ) Sm-Dy, HREE = }_Ho-Lu.

4.2.3. Other Mineral Phases in Heavy Mineral Concentrates

Apart from REE-phases, heavy mineral concentrates also contain hematite, sulfides (pyrite and an
unidentified NiFe-sulfide), Ti-oxides (rutile, anatase), baddeleyite and zircon. Hematite and sulfides
are dominant in concentrates separated at 0.4 and 0.5 A. In contrast, zircon and Ti-oxides are more
abundant in non-magnetic concentrates at higher amperages along with a few baddeleyite grains.
Sulfide grains are usually anhedral crystals that often show triangular breakout on the polished
surfaces and rounded edges. Hematite and Ti-oxide grains are mostly of irregular shape with smooth
or flaky appearance and variable porosity. In contrast, zircon typically occurs as euhedral to subhedral,
elongated to equidimensional prismatic crystals that locally show pyramidal terminations and are
usually larger than 50 um across. Zircon crystals exhibit aspect ratios between 1 and 3.4 (av. = 1.7).
Some zircon crystals occur as inclusions within xenotime-(Y) (Figure 8B). Baddeleyite crystals are
largely <20 um across. These crystals have sharp edges and a rectangular appearance.

5. Discussion

5.1. Bauxite Ore Formation

Unlike lateritic bauxites, which are usually directly related to their underlying precursor rocks [23],
the parental material of karst bauxites often remains ambiguous [22,30]. Many different types of
source rocks have been proposed, including argillite components of the underlying limestone [58],
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volcanic ash [59], basement rock debris [22], lateritic clays [39], wind-borne material [60], slates [34] or
argillaceous material [26].

Although it is proven that fractionation of major, minor and trace elements does occur during
bauxitization [26,29,58,61], it is widely accepted that the study of immobile elements is a powerful
tool to unravel the parental material and the genetic history of karst bauxites [30]. Therefore,
the identification of mobile and immobile elements during the bauxitization process is of vital
importance. In this study, the observed positive correlation between TiO; and Al,O5 (Figure 3B)
might be attributed to the fact that Al-oxyhydroxides have been found to contain Ti-nanominerals,
as was demonstrated for karst bauxite deposits of Parnassos-Ghiona, Greece [62]. Trace elements, such
as Nb, Ta, Zr, Th or U show a good correlation with TiO, and Al,O3, meaning that they also behaved
rather immobile during bauxitization. In the case of Th and U, the correlation with Al,O3 might be
attributed to adsorption of these elements to clay minerals. Hence, both Th and U are thought to be
mainly hosted in the kaolin mineral-rich matrix and not in Al-oxyhydroxide phases. Furthermore,
it has been shown that Ti-oxides in bauxite can accumulate substantial amounts of Nb, Ta, Th and U [63].
The good correlation between Nb and Ta with TiO might indicate that in the studied bauxitic samples
these elements are hosted in Ti-oxide phases (Figure 3EG). In literature, the Al;O3/TiO; ratio has been
used to identify bauxite protoliths (e.g., [30,40,64]). However, it needs to be stressed that this ratio only
reflects the protolith values if both Al and Ti behave conservatively. This is the case, among others,
in bauxite ores from the Nurra district in Sardinia [30] and in bauxites from Teruel, Linking Zone,
NE-Spain [38,40]. Eu-anomalies also represent an index of chemical differentiation that is retained
even during intense weathering [65]. As such, it may also be used to identify the precursor material of
bauxites. Recently, Sm/Nd plotted vs. Eu/Eun* has also been successfully applied to identify parental
material of bauxite rocks [32]. Ozlii [66] used Zr/Cr/Ga ratios to constrain the precursor material of
karst bauxites, where Zr represents a characteristic element for acidic rocks, whereas Ga and Cr are
representative for intermediate and ultrabasic rocks, respectively.

The correlation between Al,O3 and TiO; contents in the studied samples yields a correlation
coefficient (R?) of ~0.8 (Figure 3B). Since R? is >0.8 [67], we assume that the proportions between
these two elements were mostly unaffected during the bauxitization process and hence, that the
analyzed TiO, /Al O3 ratio is representative of the parent rock. The Eu/Eun*-TiO,/Al,O3 systematics
of CCR bauxites plot close to the average composition of the upper continental crust (UCC) and lie
halfway between Eu/Eun*-TiO; / Al,O3 compositions of felsic volcanic and basaltic rocks (Figure 11A).
A similar trend is observed using the Sm/Nd vs. Eu/Eun* plot (Figure 11B) after [32]. In the Zr-Cr-Ga
ternary plot after [66] bauxite compositions also plot close to the composition of the UCC and lie in the
field of intermediate magmatic or argillaceous (with Zr-Cr between basic and acidic compositions)
parent rocks. Some analyses approximate the field of acidic precursor materials (Figure 11C).
Geochemical data suggest that the precursor material of the studied bauxitic ores was of argillaceous
sedimentary composition, possibly derived from intermediate igneous rocks.

This constraint is indeed in good agreement with the occurrence of accessory detrital minerals,
such as zircon, baddeleyite, monazite-(Ce) and xenotime-(Y) (i.e., mineral species highly resistant to
weathering that are more common in intermediate to acidic rocks). Their presence points to a possible
contribution of weathered alumosilicate rocks of igneous origin to the precursor material. Whether
this contribution is of direct or indirect nature (i.e., eroded from lateritized igneous rocks vs. eroded
from lateritized sedimentary rocks) is difficult to determine with the available data.

Abundant hematite further constrains bauxite formation conditions since it is generally associated
with a vadose, highly oxidizing environment [68], with hematite formation at a maximum at
neutral to slightly alkaline conditions (pH 7-8). Moreover, its presence implies epigenetic processes
during bauxitization, including Fe-mobilization, Fe-reprecipitation as amorphous Fe-hydroxides and
subsequent recrystallization to hematite during diagenesis. In this context hematite was shown to
form contemporaneously to Al-oxyhydroxides [62].
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Bauxite deposits of the CCR rest on Lower Jurassic [47] or Middle Triassic [36] footwall carbonates
and are covered by Paleogene (Paleocene or Eocene) siliciclastic deposits of the Ebro basin. Despite
the large depositional gap of >120 Ma, Combes [47] suggests a Late/Post-Barremian age for bauxite
formation on the basis of a reasonable genetic correlation between bauxite deposits and lateritic
clays at Roca Vidal which formed on emerged coastal areas of the Ebro massif during the Lower
Cretaceous. In this context, bauxites would have formed on coastal plains via the bauxitization of
terrigenous sediments supplied from the Ebro massif to the N and the pristine bauxite horizons would
subsequently be eroded, reworked and redeposited in their present positions. In fact, observed breccia
textures in conjunction with abundant roundgrains and mm- to cm-sized clastic bauxite fragments with
highly variable internal textures strongly support an allochthonous origin relative to the karstified area.

Therefore, results of parental rock indices are in line with the observed textural and sedimentary
structures, as well as mineralogical observations in the bauxitic samples and the bauxite genesis
hypothesis of [47]. They point to an argillaceous sedimentary precursor material supplied by the
erosion of igneous rocks of intermediate composition from the now-eroded Ebro massif (paleo-high
coinciding with the present-day Ebro basin, source area mainly consisting of Palaeozoic rocks, active
from Early Mesozoic until Eocene [69,70]) to the N of the studied bauxite deposits.
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Figure 11. (A) TiO, /Al,O3 vs. Eu/Eun* diagram after [30]. (B) Sm/Nd vs. Eu/Eun* diagram after [32].
Note that bauxitic samples from the CCR plot close to values for the Upper Continental Crust (UCC;
A,B) and close to values for cratonic sandstone and shale (B). (C) Ternary Zr-Cr-Ga plot after [66]. The
samples show acidic to intermediate magmatic/ argillaceous parental affinities.

5.2. Mobilization and Fractionation of REE

In spite of the widespread view that REE do not fractionate in supracrustal processes [71-73],
some authors suggest that mobilization and fractionation of REE can occur during surface alteration of
rocks [61,65,74]. According to Aubert et al. [75] the abundance and leaching behavior of rock-forming
and accessory minerals that act as scavengers for REE may be key factors governing the mobilization
and fractionation of the REE. Maksimovi¢ and Panto [27] suggest that elements such as the REE, Ni, Co,
Mn and Zn in Mediterranean-type karst bauxites can be concentrated in authigenic minerals occurring
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in the lowermost part of the deposit, close to the footwall carbonates, where carbonate dissolution
creates a buffer system at neutral to slightly alkaline conditions [76,77]. Under these conditions
carbonate complexes prevail [78,79]. The resulting alkaline pH barrier is assumed responsible for the
precipitation of authigenic minerals from the percolating solutions that infiltrate through the bauxite
precursor material during bauxitization [26]. Atlow pH, REE are readily removed from the weathering
profiles, whereas they are fixed by scavengers under neutral or alkaline conditions [61], making the pH
one of the key factors controlling the mobilization of REE. During weathering, HREE are preferentially
leached since they form aqueous complexes more easily than LREE [80]. The stability of these aqueous
complexes increases with increasing atomic number, resulting in a preferential formation of HREE
carbonate complexes that are retained in solution, whereas LREE may get adsorbed onto minerals,
leading to a LREE enrichment relative to HREE [81,82].

In this study LREE/HREE, as well as Lan/Yby, Lan/Smy and Smy/Yby ratios are used to
decipher fractionation between LREE, MREE and HREE. LREE/HREE ratios vary between 4.6 and
10.6 (av. = 8.0), indicating an enrichment of LREE relative to HREE. The highest fractionation tends to
occur in the samples with the lowest SiO; contents (Table 2). However, there are notable exceptions
(samples MI-2, MM-3 and MM-4) so that virtually no predictions regarding the relationship of the
degree of REE fractionation and SiO; contents can be made.

Lan /Yby ratios vary between 4.19 and 10.76 (av. = 8.68) but generally oscillate around 10 (Table 2).
Layn /Smy ratios vary between 2.21 and 6.14 (av. = 4.2) which indicates that the enrichment of LREE
relative to the MREE is less pronounced than the enrichment of LREE relative to HREE. Smy;/ Yby
ratios oscillate between 1.58 and 2.5 (av. = 2.1) which shows only slight fractionation between MREE
and HREE. Lay /Ybyn and LREE/HREE indicate enrichment of LREE relative to HREE by a factor of
~9-10. Enrichment of LREE to MREE is less pronounced with a factor of ~5, as is the enrichment of
MREE relative to HREE (by factor ~2). Samples MM-3 and MM-4 show significantly lower values for
Lan/Yby, Lan/Smy and Smy;/Yby meaning that less fractionation took place during bauxitization.
Using chondrite-normalized Lay/Yby- (~10), Lan/Smy- (~4) and Smy/Ybn- (~2.5) ratios of the
Post-Archean Australian Shale (PAAS) as a proxy for the composition of the UCC, it is evident that they
are very similar to those observed in the analyzed bauxitic samples. In contrast to karst bauxites of the
Parnassos-Ghiona deposits in Greece, the studied bauxitic samples of the CCR do not show positive
Ce-anomalies. Gamaletsos et al. [21] showed that the positive Ce-anomalies at Parnassos-Ghiona
are high in the uppermost Fe-depleted bauxite domain, but rather low in the lowermost Fe-rich
domain. They interpreted these observations as oxidation of Ce3* «» Ce** and remobilization of LREE
during diagenetic or supergene/epigenetic processes coupled with a generally downward movement
of REE in the bauxite profiles. Positive Ce-anomalies in the uppermost parts of bauxite deposits
in the Spinazzola area, Italy, are attributed to Ce oxidation and precipitation of cerianite, whereas
negative Ce-anomalies prevail in the lower parts of the deposits and close to the footwall carbonates,
due to REE scavenging of Ce-depleted percolating solutions by Fe-oxide and precipitation of Ce3*
as fluorocarbonate minerals, respectively [29]. However, in most of the bauxite deposits displayed
in Figure 4B there are no Ce-anomalies visible, as is the case for the studied bauxites of the CCR.
The lack of positive Ce-anomalies in these bauxites indicates that Ce oxidation did not take place
during bauxitization. In contrast to bauxite deposits of Parnassos-Ghiona [21], Ce-anomalies cannot be
used as tracers for diagenetic or supergene/ epigenetic processes in our study case.

However, observed Lay/Yby variations might indicate pH fluctuations of the percolating waters
over time and between different sampling sites. The sustained presence of hematite implies neutral
to slightly alkaline conditions in a later stage of bauxite formation. The presence of REE-bearing
phosphate minerals likewise suggests near-neutral to slightly alkaline formation conditions and
[CO327/PO437] < 20 [83]. Provided that the pH dropped significantly, weathering of primary
phosphates (e.g., apatite-, monazite- and allanite-group minerals) may release significant amounts of
REE that have the potential to largely dominate REE signatures and budgets of soils, even if initial
contents are low [84]. If phosphate ions prevail, they may have the potential to trap dissolved REE
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in secondary phosphates (e.g., florencite-, rhabdophane- and xenotime-group). However, secondary
phosphate minerals tend to disappear in highly weathered material, meaning that control of the REE
distribution by phosphates is constrained to early stages of weathering of precursor materials with
elevated phosphate contents [84]. In the light of the present study, this implies that the bauxite precursor
material probably had an important sedimentary component and contained elevated initial phosphorus
contents. Moreover, the presence of both primary and secondary phosphate minerals suggests that
bauxitization stopped before all these mineral grains were leached and totally removed. This would
also explain the elevated SiO; contents and eventually point to an incomplete bauxitization. Similar
values of chondrite-normalized Lay /Yby;, Lan/Smy and Smy;/ Ybyy ratios of the PAAS [85] and the
analyzed bauxitic samples indicate that bauxite formation did not lead to significant REE fractionation.
Rather, the REE distribution pattern of the CCR bauxites was governed by the REE budget of the bauxite
precursor material. Still, this does not foreclose REE remobilization and precipitation of authigenic
REE-phases during bauxitization. REE remobilization, as shown by the presence of authigenic REE
phases, required acidic conditions, whereas REE entrapment took place under near-neutral to alkaline
conditions. The latter is supported by the presence of calcite and hematite in the bauxitic samples.

5.3. Minerals Controlling REE Distribution

According to Laveuf and Cornu [84], some secondary minerals, such as Fe- and Mn-oxides or
hydroxides, phosphates, clay minerals, as well as certain rock-forming mineral relicts, such as zircon,
garnet or titanite are the main sinks of REE. Moreover, important scavengers, preferentially fixing
mobile REE, such as Fe-hydroxides (e.g., goethite) forming ooids, have been reported in Italian karst
bauxites [29-31]. Apart from the afore-mentioned minerals the contents of REE and their corresponding
fractionation might equally be controlled by the presence of rare earth minerals [29,30]. In order to
identify mineral phases that control the distribution of REE attempts have been made to correlate
REE contents with selected major element oxides, minor and trace elements. No correlation exists
between YREE and Al,O3, SiO,, TiO, or MnO (R? < 0.2), indicating that REE are unlikely to be
bound/adsorbed to clay minerals, Al-oxyhydroxides, Ti-oxides or Mn-oxyhydroxides. Comparison
of ZREE with Fe,O; reveals a fair negative correlation (R? ~ 0.5), suggesting that Fe-oxides formed
via processes incompatible with the enrichment of REE. Therefore, scavenging effects of Fe- and
Mn-oxides or hydroxides, as observed in Italian karst bauxite deposits, are not confirmed for the
bauxitic ores of the CCR. The lack of correlation between >REE and Al,O3 and SiO; is reflected in the
fact that EPMA analysis did not reveal elevated REE contents in the kaolin mineral-rich matrix. Hence,
REE enrichment via the adsorption on clay mineral surfaces is ruled out for bauxites from the CCR at
this stage of investigation.

In contrast, the observed positive correlation between XREE with P,Os (RZ ~ 0.4) (Figure 3J)
supports the mineralogical observations described here since only REE-bearing phosphates, namely
monazite-(Ce) and xenotime-(Y), (and no carbonates) of mostly detrital origin have been detected in
the studied bauxitic samples. Hence, it is assumed that REE are predominantly concentrated in detrital
phosphate minerals. Textural evidence (e.g., irregular grain morphologies, concentric growth textures,
intergrowth of grains with the kaolin mineral-rich matrix, alteration rim of a detrital xenotime-grain)
of unidentified REE-phosphate phases in thin section might indicate that a small fraction of the REE
budget of the sampled bauxites is hosted by authigenic phosphate phases.

Both monazite and xenotime are known to incorporate the penalty elements Th and U up to
several wt %. Maximum contents of ThO, and UO; can be as high as 27 wt % and 0.8 wt % in
monazite and 8.4 wt % and 5.8 wt % in xenotime [2]. Maksimovi¢ and Panto [27] presented ThO,
contents < 0.8 wt % for authigenic monazite-(La) from the Liverovici bauxite deposit, Montenegro,
whereas [20] reported ThO; < 3.6 wt % for residual monazite-(Ce) from the Zagrad bauxite deposit,
Montenegro. Average ThO, contents in monazite and xenotime from bauxitic samples of the CCR are
2.33 wt % and 0.18 wt %, respectively. Average UO; contents for monazite and xenotime are 0.09 wt %
and 0.49 wt %, respectively. In the light of these data average ThO, and UO, contents of monazite
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and xenotime from bauxitic samples of the CCR lie well within the established limits. The average
ThO, content of monazite is also comparable to ThO, contents of detrital monazite-(Ce) of the Zagrad
bauxite deposit in Montenegro.

Although several authors cite REE-bearing fluorocarbonates of the bastnasite group as the
most common authigenic rare earth minerals in karst bauxites [27,29,32,86,87], Gamaletsos et al. [21]
described a much more varied REE mineralogy for bauxite deposits of the Parnassos-Ghiona area in
Greece. These authors reported authigenic LREE®* fluorocarbonates (bastnisite/ parisite-group) as
the most abundant REE-phases along with minor LREE oxides, florencite, rhabdophane, xenotime,
churchite, monazite, cerianite, as well as kaolinite-associated authigenic REE-phases. Furthermore,
there are known examples of karst bauxites with a phosphate-dominated REE mineralogy, e.g.,
karst bauxites in the Sierra de Bahoruco, Dominican Republic [88] or the Zagrad deposit, Niksi¢
area, Montenegro [20]. Moreover, Maksimovi¢ and Pant6 [27] described authigenic monazite-(La) and
monazite-(Nd) in the Marmara deposit, Greece and the Liverovici deposit, Montenegro. Based on
their phosphate-dominated REE mineralogy karst bauxites from the CCR might be grouped into the
latter category.

6. Conclusions

On the basis of the application of mineralogical and geochemical analytical methods to bauxitic
samples from the Catalan Coastal Range, NE-Spain, we conclude that:

e  The most likely precursor material of the bauxitic rocks were argillaceous sediments, possibly
derived from igneous rocks of intermediate composition during the erosion of the Ebro
massif paleo-high.

e The main REE-minerals are monazite-(Ce) and xenotime-(Y) of detrital origin. Unidentified
REE-phosphate grains show textural evidence that may point to an authigenic origin.

e  Leaching of the REE probably took place under acidic conditions, whereas the crystallization of
rare earth minerals required near neutral to alkaline (pH 6~10) and overall oxidizing conditions
during an incomplete bauxitization process.

e Adsorption on Fe- and Mn-oxyhydroxides and clay minerals can be ruled out as a REE scavenging
mechanism in the bauxitic ores of the CCR.

e The absence of REE-bearing carbonates and the presence of phosphates as the only
REE-bearing mineral phases indicates distinctly different formation conditions than in other
Mediterranean-type karst bauxites and suggests relatively high initial phosphorus contents.
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