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Abstract: Water–rock interaction in surface and subsurface environments occurs in complex
multicomponent systems and involves several reactions, including element transfer. Such kinetic
information is obtained by fitting a forward model into the temporal evolution of solution chemistry
or the spatial pattern recorded in the rock samples, although geochemical and petrological data
are essentially sparse and noisy. Therefore, the optimization of kinetic parameters sometimes fails
to converge toward the global minimum due to being trapped in a local minimum. In this study,
we simultaneously present a novel framework to estimate multiple reaction-rate constants and
the diffusivity of aqueous species from the mineral distribution pattern in a rock by using the
reactive transport model coupled with the exchange Monte Carlo method. Our approach can
estimate both the maximum likelihood and error of each parameter. We applied the method to the
synthetic data, which were produced using a model for silica metasomatism and hydration in the
olivine–quartz–H2O system. We tested the robustness and accuracy of our method over a wide range
of noise intensities. This methodology can be widely applied to kinetic analyses of various kinds of
water–rock interactions.

Keywords: reaction rate; reaction kinetics; reactive transport modeling; data-driven approach;
optimization; Markov chain Monte Carlo; exchange Monte Carlo method; geochemical inverse problem

1. Introduction

The reactive transport model is an essential tool to understand the changes in physical, chemical,
and hydrological properties of surface and subsurface environments during water–rock interaction,
including weathering, hydrothermal alteration, and metasomatism [1–3]. The model also plays
important roles in predicting the evolution of the system in applications to geothermal exploration,
disposal of nuclear waste, and carbon capture and storage [4–7]. The validity and prediction
performance of the reactive transport model highly depend on the accuracy of kinetic parameters,
such as the dissolution/precipitation rate constants of minerals and the diffusivity of aqueous species,
as well as reactive surface areas of the minerals.

Many laboratory experiments were conducted to estimate the dissolution- and precipitation-rate
constants of major rock-forming minerals and the diffusivity of aqueous species [8–17]. Nevertheless,
the available data of such kinetic parameters are still limited compared to those on the solubility
of minerals and equilibrium constants for the dissociation/association of aqueous species [18,19].
Water–rock interaction in nature commonly involves several kinds of minerals, and numerous reactions
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happen simultaneously. Even for monomineralic systems, such as feldspar–water or olivine–water
systems in batch experiments, coupled reactions could occur, marked by the dissolution of the primary
mineral and the formation of a secondary mineral [9,20–23]. Accordingly, an effective methodology is
required to simultaneously estimate the reaction-rate constants of several minerals and/or diffusivity
of elements from complex water–rock systems.

However, multiple parameterizations from a coupled transport and reaction system, pertaining
to the dissolution and precipitation of many minerals and the transport of aqueous species (ions and
complexes), raise a difficult geochemical inverse problem due to computational difficulties. This is
especially true when multiple parameters are to be estimated; estimation sometimes fails to converge
to the global minima due to convergence to the local minima through error minimization [24,25].
Moreover, the data used for parameterization may be “noisy” due to analytical uncertainties, and
therefore, the fitted parameters would also contain errors. Such errors on rate constants are typically
ignored to avoid the complex computations required to handle error propagation. Therefore, it would
be ideal to develop a versatile method that can extract multiple kinetic parameters and associated
errors from noisy laboratory datasets without becoming trapped in local minima.

In this study, we present a novel method to estimate not only multiple reaction-rate constants,
but also the diffusivity of aqueous species using only the dataset of spatial mineral distribution, and
by combining the reactive transport model and the exchange Monte Carlo (EMC) method [26–28].
The latter is well-known as an improvement on Markov chain Monte Carlo (MCMC) methods [29].
The EMC method is able to estimate a probability distribution on each parameter, which could be
used for estimating the uncertainty associated with the parameters more efficiently than the MCMC
methods [30], without becoming trapped in local minima [31]. In the field of Earth science, the EMC
method has been applied to problems pertaining to geophysics [30,32] and rheology [33], and, to the
authors’ best knowledge, this is the first time that the EMC method has been coupled to equations
of a geochemical kinetic model in order to estimate kinetic parameters. The proposed method was
tested by examining multiple parameterizations of a synthetized serpentinization system. Using our
kinetics-based and data-driven approach, we derived several rate constants for surface reactions,
and the diffusivity of aqueous species of primary and secondary minerals was estimated from noisy,
observed abundance data.

2. Methodology

2.1. General Framework

The mass-conservation equation for a chemical species i in solution, and in a reactive transport
process within a fluid-saturated porous medium, is generally written as follows [34]:

∂(ϕCi)

∂t
= –∇·Ji + ϕRchem (1)

where ϕ, Ci, Ji, and Rchem are the porosity (-), concentration of i (mol/cm3 solution), total transport flux
of aqueous species i, and the rate of gain or loss of chemical species i by surface reactions (mol/cm3

solution/s), respectively.
We consider a situation wherein either spatial variations in minerals or ionic concentrations are

observable from experiments or natural settings, and the values of kinetic parameters (such as rate
constants of surface reactions) are unknown. Here, a set of N unknown kinetic parameters (Θ) is
expressed as Θ = {P1, P2, . . . , PN}. By running the reactive transport model with Θ, spatial variations
in minerals and ionic concentrations can be forward-calculated. Given that the pressure–temperature
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(P–T) condition and timescales are constrained, Θ is inversely determined from maximum-likelihood
estimation by minimizing the difference between the calculated and observable data (E(Θ)) as follows:

E(Θ) =
1

M × Nobs

M

∑
i

1
σ2

i

Nobs

∑
j

(
yi, j–yi,j(Θ)

)2 (2)

i denotes each of the M different dependent variables. yi,j, yi,j(Θ), and σi are the abundance of i at the
j-th distance obtained from observable data, the abundance of i at the j-th distance calculated from Θ,
and the standard deviation of the observable data for i, respectively. Nobs is the number of observations
in each dataset. Therefore, the value of E(Θ) denotes the average weighted square error per data point.

Finding a global minimum for E(Θ) and not becoming trapped in a local minimum is the objective
of maximum-likelihood estimation. Becoming trapped in a local minimum is a common problem for
traditional nonlinear optimization algorithms [24,25], preventing determination of the parameters.
In this study, the EMC method [26–28,35,36], which is also called parallel tempering [37], is used as an
iterative minimization routine to overcome this problem.

As stated previously, the EMC approach is a Markov chain Monte Carlo method [29] and provides
more advantages over other approaches as it is able to: (1) obtain samples much more effectively,
(2) overcome the trapping problem, and (3) estimate each conditional probability density functions for
unknown parameters, which allows the determination of uncertainties that arise from measurement
errors in datasets.

The flowchart for estimating Θ using the EMC method is shown in Figure 1. Firstly, candidate
values for the new parameters were obtained by adding a random number (nr = [-1,1]) to one of the
unknown parameters, and by using log10(Pi,can) = log10(Pi) + nr, where Pi and Pi,can are the current
unknown parameter and the candidate unknown parameter, respectively. Therefore, the candidate
parameter vector is Θcan = {P1,can, P2, . . . , PN} (Figure 1a). E(Θcan) is then calculated from the candidate
values for the parameters, and ∆E is obtained from ∆E = E(Θ) − E(Θcan), where E(Θ) and E(Θcan) are
the values of E calculated from Θ (={P1, P2, . . . , PN}) and Θcan (={P1,can, P2, . . . , PN}), respectively.
The candidate vector is accepted if the probability is min(1, exp(–∆Eβn)). βn is the “inverse temperature”
on replica n, which controls the acceptance or rejection updates of the candidate values. At low βn,
the candidate value is easily updated when ∆E > 0, but this is not the case at high βn. The parameter
vector after this candidate update attempt is {P1,new, P2, . . . , PN}, where P1,new = P1,can when the
candidate value is accepted. However, P1,new = P1 is when the candidate value is rejected. After one
local update, the next unknown parameter is changed in a similar way.

One Monte Carlo step (MCS) is defined as N trials (i.e., candidate values for N unknown
parameters were examined) of this local update (Figure 1b). At the end of each MCS, replicates of the
system, which were simultaneously and independently simulated at different βn, were exchanged with
probability min(1, exp(–∆E∆βn)) (Figure 1b). This allows the local minima to be overcome, because a
system at low βn can provide new local optimizers for a system at high βn, thereby allowing tunneling
between the local minima and improving convergence to a global optimum.

When we implement the EMC method, the settings of the value of ∆βn and number of replicas
are important since these values have a close relation to the exchange ratio (i.e., the acceptance ratio
of the exchange process) [38], which are directly related to the efficiency and computational cost of
parameter search. Since a large ∆βn (i.e., a small number of replicas) would result in a low average
exchange ratio, ∆βn should not be too large. On the other hand, in order to make the average exchange
ratio high, ∆βn has to be small (i.e., a large number of replicas is required), although the associated
computational cost is huge. The number of replicas to be used in the EMC method is unclear and
completely problem-dependent; they are chosen by trial and error. In a verification of the method
described later, we used 20 replicas since >20 replicas are typically used [39,40]. The range of β was set
from 20 to 350, and ∆βn between each replica was constructed as a geometrical progression, as it would
improve sampling efficiency [28]. As discussed later, we show that the EMC method can find the true
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values, given the setting of ∆βn and number of replicas, as described above. Note that the exchange
between the replicas occurred frequently during optimization, and the EMC method provided the true
answer of multiple unknown parameters.
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Figure 1. Schematic flow chart of the exchange Monte Carlo method for four replicate systems. (a) Flow
chart of local update. (b) The local update was repeated after the exchange process. See Section 2.1 for
details. MCS: Monte Carlo step.

3. Synthetic Data: Silica Metasomatism in an Olivine–Quartz–H2O System

3.1. Model System

As an example for the application of the proposed methodology, we consider here a coupled
diffusion and reaction in the olivine–quartz–H2O system (Figure 2). This system was chosen for
the following reasons: (1) The diffusional metasomatic zoning of talc and serpentine zones between
quartz and olivine was classically modeled [41,42]. This system is relatively simple, but it involves
the dissolution/precipitation processes of several minerals as well as element diffusion; accordingly,
it serves as a good example of reactive transport processes in water–rock interactions. (2) The progress
of the metasomatic reaction in the olivine–quartz–H2O system was experimentally investigated [43],
which is a useful when considering a realistic model. (3) The reaction rate is critical to understanding the
various processes in subduction zones, including metamorphism, earthquakes, and volcanism [44,45].

The model considers silica metasomatism involving the dissolution–precipitation of talc,
serpentine (lizardite), and brucite after olivine in hydrothermal batch experiments. This scenario
is modeled as a coupled process involving the diffusion of an aqueous species and surface reactions
at 300 ◦C at a vapor-saturated pressure (Psat) of 8.58 MPa in a porous medium. The porous medium
was initially composed of 63 vol.% olivine (forsterite) grains and 37 vol.% fluid-saturated porosity
(Figure 1). Porosity was relatively higher than that of metamorphic rocks, although the high porosity
used in this study could be found at surface and subsurface water–rock hydrothermal environments,
as well as in hydrothermal experiments with mineral powder. At distance (x) = 0, a source of aqueous
silica (i.e., quartz) was present, and the aqueous silica in the solution was transported by diffusion into
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the porous olivine zone (Figure 2). Therefore, silica concentration changed in time and space due to
diffusion and surface reactions. In response to the local silica concentration, several surface reactions
could take place simultaneously.Minerals 2018, 8, x FOR PEER REVIEW  5 of 15 
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3.2. Kinetic Forward Model

The surface reactions in the olivine zone are characterized by the coupled dissolution of olivine
and the precipitation of secondary minerals (i.e., talc, lizardite, and brucite). Three aqueous species (i.e.,
SiO2(aq), Mg2+, and H+) are expected to be involved in surface reactions in the system. Of course, these
species could be implemented in the reactive transport model and they would normally be considered.
However, several numerical models suggest that the serpentinization system could be modeled with
an Mg-fixed frame [46,47]. Therefore, in this study, we simplified the reactions and assumed that the
surface reactions in the olivine zone could be expressed by the following overall reactions:

3Mg2SiO4 + 5SiO2(aq) + 2 H2O→ 2Mg3Si4O10(OH)2 (R1)
Forsterite Talc

3Mg2SiO4 + SiO2(aq) + 4H2O→ 2Mg3Si2O5(OH)4 (R2)
Forsterite Lizardite

Mg3Si2O5(OH)4 + 2SiO2(aq) ↔Mg3Si4O10(OH)2 + H2O (R3)
Lizardite Talc

Mg2SiO4 + 2H2O↔ 2Mg(OH)2 + SiO2(aq) (R4)
Forsterite Brucite

3Mg(OH)2 + 2SiO2(aq) ↔Mg3Si2O5(OH)4 + H2O (R5)
Brucite Lizardite

For the overall reactions involving olivine (i.e., R1, R2, and R4), only the forward reaction was
considered since olivine would not be stable under the given P–T conditions. For the overall reactions
between secondary minerals (i.e., R3 and R5), both forward and backward reactions were considered.
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When the activities of the minerals and water were unity, we considered the first-order equations
for the olivine-hosted region to be as follows [34,48]:

Rchem = ∑ kn
Ai
ϕ

(
1−

CSiO2(aq)

Cn
SiO2(aq),eq

)
(3)

where kn, Ai, and Cn
SiO2(aq),eq are the reaction-rate constant (mol SiO2(aq)/cm2 mineral/s) for the

overall reaction n, the bulk surface area (cm2 mineral/cm3 rock) of mineral i, and the equilibrium silica
concentration (mol SiO2(aq)/cm3 solution) for reaction n, respectively. For the reactions where both the
forward and backward reactions were considered (i.e., R3 and R5), the rate constant for reaction n was
expressed as kn+ for the forward reaction and kn– for the backward reaction (Figure 2). The Cn

SiO2(aq),eq
values for R1–R5 were obtained as follows: (1) the equilibrium silica molarities (mol/kg solution)
for the overall reactions R1–R5 are calculated from logK obtained from SUPCRTBL [49], assuming
that the activities of water and minerals were one; and (2) the molarities are converted to volumetric
concentrations (mol SiO2(aq)/cm3 solution) by extrapolation of the partial molar volume of SiO2(aq)
(–9.1 cm3/mol at 300 ◦C and Psat; [50]), as in Watson et al. [16]. Log K and Cn

SiO2(aq),eq values obtained
for R1–R5 are summarized in Table 1.

Table 1. Equilibrium constants of the overall reaction considered in the reactive transport model.

Reaction Number Log K § Cn
SiO2(aq),eq

ξ (mol/cm3 Solution)

R1 17.148 2.649 × 10–7

R2 6.263 3.887 × 10–10

R3 5.442 1.354 × 10–6

R4 –4.395 2.868 × 10–8

R5 9.724 9.789 × 10–9

§ Value at 300 ◦C and Psat obtained from SUPCRTBL [49]. ξ Calculated from log K at 300 ◦C and Psat (see main text
for details).

Given that the overall reactions involve elementary reactions for dissolution and precipitation, Ai
represents the surface area of the reactant or product for each overall reaction. In the present study, we
introduce effective rate constant k′n [34]:

k′n =
kn

Cn
SiO2(aq),eq

Ai
ϕ

(4)

Therefore, k′n has the unit of s–1, and k′n values for R1–R5 (k′R1, k′R2, k′R3+, k′R3–, k′R4, k′R5+, and
k′R5–) are the fitting parameters in these calculations.

Porosity is updated after calculation at each time step, and it is calculated from the sum of the
mineral volume fractions as follows:

ϕ = 1–
Ni

∑
i=1

miVi (5)

where mi and Vi indicate the amount of mineral (mol/cm3 rock) and the molar volume of minerals
(cm3 mineral/mol), respectively, which are sourced from Reference [51]. Ni is the number of minerals
in the model. In our calculations, forsterite, talc, lizardite, and brucite were considered; thus, Ni = 4.

Given that the model considers an Mg-fixed system, the reactive transport model can be written
as follows:

∂
(

ϕCSiO2(aq)

)
∂t

= −∇·JSiO2(aq)
+ ϕ ∑ k′n

(
Cn

SiO2(aq),eq − CSiO2(aq)

)
(6)
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The diffusional transport flux of SiO2(aq) in a porous medium is given as follows [48,52]:

JSiO2(aq)
= –

DSiO2(aq)

F
∇CSiO2(aq)

(7)

where DSiO2(aq) is the diffusion coefficient of SiO2(aq) in pure solution. Formation factor (F) is defined
as in Reference [52], where

F = ϕ–m (8)

based on Archie’s law [53], where m is the cementation exponent that typically ranges between 1.3 and
2.5 [52]. m is one of the fitting parameters in our calculations. Moreover, given that DSiO2(aq) has only
been determined for limited P–T conditions [16,54–56], and not for the P–T conditions of the present
experiment, DSiO2(aq) is also one of the fitting parameters in our calculations.

Consequently, we considered a one-dimensional model for SiO2(aq) involving diffusion and
surface reactions in the olivine region, as follows:

∂
(

ϕCSiO2(aq)

)
∂t

=
∂

∂x

(
DSiO2(aq)

ϕm
∂CSiO2(aq)

∂x

)
+ ϕ ∑ k′n

(
Cn

SiO2(aq),eq–CSiO2(aq)

)
(9)

This reaction–diffusion equation is solved numerically using the implicit-difference method from
x = 0 to 7.0 mm, and the matrix equations are solved using the Thomas algorithm [34]. The value
of CSiO2(aq) at t = 0 (initial conditions) was uniformly set to 7.12 × 10–8 mol/cm3, similar to the
value of CSiO2(aq) obtained after a 24 h run in hydrothermal serpentinization experiments on olivine
and NaCl–NaHCO3 fluid [20]. The value of CSiO2(aq) at x = 0 (boundary conditions) was set to
7.41 × 10–6 mol/cm3, which is a quartz-saturated SiO2(aq) concentration at 300 ◦C and vapor-saturated
pressure. Given that our model does not consider the nucleation of secondary minerals, we added a
small amount (1.0 × 10–7 vol.%) of seed lizardite, talc, and brucite at t = 0.

3.3. Synthetic Datasets

The value of Θ estimated by fitting of the reactive transport model contains the following nine
parameters (N = 9):

Θ =
{

DSiO2(aq)
, k′R1, k′R2, k′R3+, k′R3−, k′R4, k′R5+, k′R5−, m

}
(10)

To verify our approach, we applied our method to noisy synthetic mineral-abundance datasets.
We considered a situation in which data on the number of primary (Forsterite; Figure 3a) and secondary
minerals (talc, lizardite, and brucite; Figure 3b–d), and porosity (Figure 3e), as a function of distance,
were available (M = 5). Each dataset contained 70 data points (Nobs = 70), and the distributions were
obtained from the reactive transport model (Equation (9)) after 180 h of reaction time when using
the following randomly generated parameters: log10(DSiO2(aq)) = –3.0; log10(k′R1) = –4.0; log10(k′R2)
= –3.0; log10(k′R3+) = –6.0; log10(k′R3−) = –8.0; log10(k′R4) = –1.0; log10(k′R5+) = –2.0; log10(k′R5–) = –3.0;
and log10(m) = –0.47. To improve the efficiency of the parameter sampling using the EMC method,
the parameter search range was limited from 0 to –10 (in log units) for DSiO2(aq) and k′n, and 0 to 0.7
(log units) for m. The observation noise of σy = 10–1.5, which equates to a 6.3% relative deviation of
the maximum amount of each mineral, was added to the mineral and porosity data (Figure 3a–e).
The noisy datasets (i.e., red data points in Figure 3a–e) were then analyzed using our method to
observe its effectiveness in extracting the known reaction-rate constants.
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Figure 3. Synthetic datasets with a noise level of σy = 10–1.5 used in the accuracy tests. (a–e) Plots
with gray lines show true values predicted using the reactive transport model (Equation (9), with the
parameters given in Section 3) for (a) forsterite, (b) talc, (c) lizardite, (d) brucite, and (e) pores. Red
data points are synthetic noisy data.

4. Results and Discussion

4.1. Extraction of Reaction Kinetic Parameters from Noisy Datasets with the Reactive Transport Model

Figure 4 shows probability-distribution histograms for the fitting parameters as the average ±
one standard deviation (1σ) of the sampled parameters obtained using the EMC method. To compare
each parameter, the bin ranges for DSiO2(aq) and k′n were uniformly set to 0.05 log units, whereas the
ranges for m were set to 0.01 log units.
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Figure 4. Histograms showing estimated candidate values sampled using the exchange Monte Carlo
method from the noisy datasets (σy = 10–1.5; Figure 3a–e). Each gray region represents the average ±
one standard deviation of the parameters sampled using the EMC method. Dotted red lines show the
true values of each parameter described in Section 3. To allow comparison of each parameter, the bin
ranges for DSiO2(aq) and k′n were uniformly set to 0.05 log units, whereas the range for m was set to 0.01
log units.

For all estimated parameters, each true value was within the average value (±1σ) of the
sampled parameters (Figure 4). However, the histogram shapes were different for some parameters.
The histograms of the sampled parameters for DSiO2(aq), k′R1, k′R2, k′R4, k′R5+, and m appeared to be
normally distributed, whereas the histograms of the other parameters (k′R3+, k′R3–, and k′R5–) had a
uniform distribution with single peaks at around −10 and/or 0 (Figure 4). These single peaks would
be an artificial effect due to a boundary condition of the parameter search ranges, which were limited
to 0 to −10 in log units.

For normally distributed parameters (DSiO2(aq), k′R1, k′R2, k′R4, and k′R5+; Figure 4), each true value
was within the average value (±1σ) of the sampled parameters, indicating that the true parameters
were successfully estimated despite errors from the noisy datasets. In particular, the reaction rate
constant for R2 (k′R2), which controls the amount of lizardite (Figure 1), is estimated with low error
(log10(k′2) = –2.99 ± 0.05; Figure 4). This is due to the fact that lizardite (0–10 mmol/cm3 rock;
Figure 3c) was the most abundant secondary mineral (cf. 0–0.15 mmol/cm3 rock for talc (Figure 3b);
0.013 mmol/cm3 rock for brucite (Figure 3d)) and that this reaction also controlled the amount of
observed olivine and porosity (Figure 3a,e). This suggests that the main reaction controlling the
observed mineral distribution can be qualitatively constrained using its estimated parameter errors.
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In contrast, for parameters with uniform distributions (k′R3+, k′R3–, and k′R5–; Figure 4),
the proposed method was unable to estimate the true values. This is because the parameters have a
broad minimum, and therefore, any value could result in a good fit. This reflects the fact that these
reactions (i.e., forward and backward reactions for R3, and backward reaction for R5) do not affect
the amounts of different minerals present, and these reactions could be excluded from the model
for simplicity. In fact, the backward reaction of R5 with a reaction-rate constant of k′R5– only occurs
when CSiO2(aq) < CR5

SiO2(aq),eq, which was never the case in our calculations (Figure 5). Therefore,
the proposed method could also exclude this reaction path (i.e., k′R3+, k′R3–, and k′R5– could be set to
zero), as it is not important in reconstructing the observed mineral distributions.
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Figure 5. Spatiotemporal evolution of silica activity (aSiO2(aq)) predicted using the reactive transport
model (Equation (9), with the parameters given in Section 3). aSiO2(aq) (and thus CSiO2(aq)) is always
larger than CR5

SiO2(aq),eq.

The reaction paths identified as not being important are typically ignored in other studies, such
as those using the forward-modeling data approach. However, such arbitrary exclusion of reactions
may be based on subjective and/or erroneous assumptions. In contrast, our proposed method can
objectively identify and exclude these unimportant reaction paths by producing a distribution of the
most probable values for each parameter.

4.2. Dependence of Estimation Accuracy on Observation Noise

To investigate how observation noise affects the estimation performance of our proposed method,
we examined the estimation accuracy for fitted data with different noise levels of σy = 10–2.0 and 10–1.2,
which corresponded to 2.0% and 12.6% deviations, respectively, relative to the maximum amount of
each mineral. The fitted noisy datasets are shown in Supplementary Figure S1.

Figure 6 shows the noise dependency of the estimated values. Parameters were successfully
estimated even when the observed data had noise levels of σy = 10–1.2. The errors were low when the
observable noise was low. For example, log10(DSiO2(aq)) values were estimated to be –2.96 ± 0.06 at
σy = 10–2.0, –2.96 ± 0.24 at σy = 10–1.5, and –2.80 ± 0.26 at σy = 10–1.2 (Figure 6).

From these results, it is evident that our proposed method is robust to noise, with the parameter
accuracy for several reaction-rate constants and silica diffusivity being excellent over a wide range
of noise intensities. Moreover, our method identified and excluded noneffective parameters from
the model.
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5. Summary and Outlook

We developed a probabilistic parameter-estimation method based on the reactive transport model
using the EMC method. Accuracy tests on synthetic datasets demonstrated that the method can
successfully estimate reaction rate constants and silica diffusivity as a probability distribution, rather
than a single value, even when the fitted dataset is noisy. The proposed method has the following
advantages: (1) multiple rate constants can be estimated from noisy datasets; (2) the uncertainties of
rate constants can be determined; and (3) the main reaction paths controlling the observed mineral
abundances can be identified, and unimportant reaction paths can be objectively identified and
excluded, rather than being arbitrarily ignored.

In the present study, small seeds of lizardite, talc, and brucite were added at t = 0, since our model
did not consider the nucleation of secondary minerals. When therate constants from a real dataset to
be estimated, the seed volume would affect the model estimates. Therefore, it is required to estimate
the seed volume of each mineral or consider the nucleation theory in the reactive transport model.
If some unknown parameters appear in the model (e.g., mean surface energy of secondary mineral),
parameters could be also estimated by the EMC method. In such cases, an accuracy test must be done
with synthetic datasets to ensure the EMC method could find true answers.

When the number of observable data points (Nobs) decreases, the error on parameters estimated
by the proposed methodology would increase, as suggested by previous studies on parameter
estimation [57,58]. Although the effects of sparseness in the dataset on the estimation error were
not tested, in this study’s example at least, the effect of the amount of data was not large since the
spatial patterns of individual minerals are rather smooth.
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The result of parameter fitting may be poor despite the application of the EMC method for one
of the two following reasons: trapping in local minima or an unrealistic forward model. One of the
strongest advantages of using the proposed method is that it can overcome local minima problems.
Therefore, in this case, we conclude that the latter caused bad fitting, and other forward models should
be similarly tested. Thus, it would be necessary to conduct iteration tests on many forward models
and check the fitting results to objectively identify the most realistic one. This method is called model
selection in the field of information science [59], and it will likely be a useful concept to objectively
evaluate forward models.

To date, many reaction-rate constants of mineral dissolution and precipitation have been estimated
from laboratory experiments and natural settings. However, even in simple dissolution reactions
involving pure phases, many discrepancies are observed among datasets collected under similar
conditions. Recently, Fischer et al. [60] suggested that a probabilistic approach must be incorporated in
the mineral dissolution process for quantitative analysis of the reactivity of the materials. Probabilistic
components causing spatial–temporal heterogeneity in the dissolution rate are potentially present
in the dissolution process (e.g., the complex interaction of the areal distributions and concentrations
of reactive sites, defects, and grain boundaries [60–62]). When the rate of the overall reaction is to
be estimated, potential probabilistic components would increase since the overall reaction involves
complex and dynamically interacting processes. Therefore, we suggest that it is more reasonable to
estimate each rate constant in the overall reaction as a probability distribution, and the EMC used in this
study could be a strong tool for estimating the probability distribution of multiple kinetic parameters

We applied the reactive transport and the EMC method to an artificial system of silica
metasomatism and serpentinization. Typically, the datasets that could be used for kinetic inversion
from the reactive transport system relate to (1) spatial variation in minerals or (2) spatial variation in
solution chemistry. We showed that multiple parameters could be estimated from spatial variation in
minerals. Maher et al. [10] applied the reactive transport model to U isotopes and pore-fluid chemistry
in marine sediments, and successfully estimated the dissolution rate of plagioclase by fitting a model to
noisy natural chemical datasets. Given that our method can extract multiple independent variables as
a probability distribution from natural datasets, it could facilitate modeling of more complex reactive
transport systems. Thus, improved prediction of a variety of geological phenomena and physical and
chemical responses during water–rock interaction in various settings, such as weathering processes,
geothermal exploration, disposal of nuclear waste, and carbon capture and storage, is possible over a
wide range of spatial and temporal scales.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/8/12/579/
s1. Figure S1: S Synthetic datasets with noise levels of (a) σy = 10–2.0 and (b) σy = 10–1.2 used in the accuracy
tests. Gray lines show the values predicted using the reactive transport model (Equation (9), with the parameters
described in Section 3) and the red data points are the noisy data.
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