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Abstract: The structures of histidine intercalated hydrotalcite–montmorillonite complex (His–LDHs–
MMT) were studied using the DMol3 code, GGA/PW91 function, and DND basis set of the density
functional theory (DFT). The geometries of His–LDHs–MMT were optimized, and their electronic
properties were calculated. The results showed that the structure of the complex can be seen as that
the quaternary ammonium group of histidine was adsorbed on the oxygen of MMT lamella, and its
oxygen on the carboxylic acid anion was combined with the hydrogen atoms of the LDHs lamella.
It was determined that the interaction mainly consisted in hydrogen bonding and electrostatic force.
The average binding energies per histidine of His–LDHs and His–MMT were about −65.89 and
−78.44 kcal/mol, respectively. The density of states of the complexes showed that the 2p orbitals
of oxygen were dominant, and the 1s orbit of hydrogen near the Fermi level indicate the formation
of hydrogen bonds in the complex. The charge density data displayed the density field of histidine
carboxylic acid anion overlapped with that of hydrotalcite layer, indicating that a strong hydrogen
bond interaction existed between histidine and hydrotalcite layer. The analysis of the electrostatic
potential of complex indicated that the electrostatic interaction between histidine and MMT is
obviously stronger than that of LDHs. The simulated XRD spectra showed the special diffraction
peaks of LDHs and MMT layer in the complex.

Keywords: hydrotalcite; montmorillonite; histidine; structure simulation; DFT; interaction

1. Introduction

Hydrotalcite and montmorillonite are anionic and cationic clay minerals that occur in nature,
respectively. Hydrotalcites (LDHs) [1] are mainly composed of metal dihydroxide lamellae and
interlayer anions, and are widely used in the fields of catalysis [2–4], pharmaceuticals [5,6],
functional materials [7–9], and environmental protection [10,11]. Montmorillonite (MMT) is one
of a kind of layered aluminosilicate and has the good properties of thermal insulation and gas-liquid
dielectric barrier. It is widely used in the pollution control [12–15], petrochemical industry [16–18],
and others [19]. The structure of the LDHs lamella is similar to that of brucite, in which the Mg2+ of
layer is partially replaced by Al3+ [20–22], so that the excess positive charge of the layer requires the
anion to balance. On the other hand, the MMT lamellae that may be considered as Al3+ is partially
replaced by Mg2+ ions in the aluminosilicate. The cations are needed to balance the electrical charges
of MMT lamellae. Both the LDHs and MMT lamellae of complexes need the opposite charged ion
to retain the electrical neutrality in one supermolecule. The amphoteric ion characteristics indicate
that amino acid zwitterion will be the best guest for linking the LDHs and the MMT host [23].
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Because the electrostatic attraction occurs between opposite electrical charges, according to the charged
nature of LDHs and MMT lamellae, the intercalated complex materials may be obtained using the
self-assembled intercalation method of zwitterions. This is one kind of new intercalated material with
an acid–base bifuctional structure. LDHs and MMT are layered materials that exist in nature and are
cheap and readily available, which is conducive to the full use of natural resources for sustainable
development of the environment. It is believed that this field will make great progress in the near
future. Histidine contained an imidazole ring that has been widely used as the catalyst for the Aldol
reaction [24,25] and the Baylis–Hillman reaction [26,27]. In addition, it is also used in the fields of
physiology, medicine [28–31], and chemical industry [32–34]. When the histidine is intercalated into
the layers of LDHs and MMT, it acts as a pillar support and the stability of the lamellae increases.
In addition, the unique properties of histidine can enhance the reactivity of the complex material as
a carrier or catalyst. Since the imidazole ring of histidine has high proton conductivity, it may be used
as an electrolyte in electrochemical materials [35,36]. Recent years, there has been much research about
amino acids intercalated-LDHs and MMT [37–43]. However, the studies about histidine-intercalated
LDHs–MMT complexes have not been seen in the literature to the best of our knowledge. In this article,
histidine as an amphiphilic ion is selected as the intercalated guest.

Aisawa et al. [37] used the co-precipitation method to synthesize some phenylalanine, glycine,
and oligopeptides-intercalated Zn–Al LDHs. The effects of different pH on the co-precipitation
were investigated, and the pH = 8–9 was the most suitable for preparing oligopeptide and
amino acids-intercalated LDHs. Infrared, Raman and XRD spectroscopy showed that amino acids
intercalated well between LDHs. Nakayama et al. [38] described some amino acids (leucine and
phenylalanine), and oligopeptides were intercalated into Mg–Al LDHs in the alkaline solution by
the calcination-rehydration method. The most appropriate intercalated amount of amino acid was
measured at about 2 mmol amino acids per 0.56 g LDHs. Whilton et al. [39] synthesized glutamic
acid, aspartic acid, and polyaspartic acid-intercalated Mg–Al LDHs using the co-precipitation method,
and the obtained interlayer spacing was about 1.5 nm. Fudala et al. [40] prepared the phenylalanine
and tyrosine intercalated Zn–Al LDHs and MMT using the ion exchange method, respectively.
According to XRD and infrared spectroscopy, it can be found that the interlayer spacing of the
material increased after the intercalation of amino acid, and an interaction existed between the
hydrotalcite host and guest. Yuan et al. [41] studied the preparation and pyrolysis of aspartate/Mg–Al
LDHs and phenylalanine/M2+–Al LDHs. The structure and composition of the intercalation material
were characterized by X-ray diffraction, inductively coupled plasma atomic emission spectrometry,
and elemental analysis. They determined that the amino acids were successfully intercalated into LDHs
layers, and the carboxylate anion of the amino acid forms a hydrogen bond with the LDHs lamella.

Norio et al. [42] studied the adsorption properties and the effects of different pH values of L-lysine
in MMT using ATR-IR. They showed that when pH = 4.9–9.7, the MMT surface can adsorb lysine
electrostatically. Mallakpour et al. [43] investigated the effects of L-Ala, L-Val, L-Leu, L-Ile, L-Phe,
and L-Met on the structure of Na MMT in aqueous solution and characterized the structure of products
by means of XRD, TGA, FT–IR, SEM, FESEM and TEM. They determined that many amino acid
molecules may be intercalated into the MMT layer well.

Fraser et al. [44] studied chiral differences in the effects of D- and L-histidine on the interlayer
spacing of vermiculite clays. The results demonstrated that the effect of different enantiomers
of an amino acid may alter physical and structural properties of clay systems at low amino acid
concentrations and over a long length-range. Songurtekin et al. [45] reported the characterization and
application of histidine-modified montmorillonite (His-MMT) in electrochemical biosensor fabrication.
MMT modifications were followed by X-ray diffraction, Fourier transform infrared spectroscopy,
zeta potential, and thermal gravimetry analysis. The experimental results showed that histidine was
used as a modifier to enhance the immobilization capability of Mt for the biomolecules and applied
successfully in both batch and FIA modes. The above references mainly described the preparation of
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different amino acid-intercalated hydrotalcite or montmorillonite materials, so that they supported the
basis for the theoretical study of the intercalated complex.

Our group had studied the structure of p-aminobenzene sulfonic acid-intercalated hydrotalcite–
montmorillonite complex [46] and tried to explain the interactions between interlayer guest and
the host lamella. The aim of this paper focuses on the interactions of interlayer guest and the
host of histidine-intercalated hydrotalcite–montmorillonite complex (His–LDHs–MMT) theoretically.
The structures and intercalation modes of His–LDHs–MMT complexes are calculated using the quantum
chemical method. The XRD spectrum, interlayer forces, and electron properties of His–LDHs–MMT
were analyzed.

2. Calculation Methods

All the structures of His–LDHs–MMT complexes are calculated using DMol3 code [47,48] of
Material Studios 8.0. The geometries are optimized with GGA/PW91 function and DND basis set of
the density functional theory (DFT) and using OBS method for DFT–D correction. The total DFT–D
energy is a combination of atomic energies, kinetic, electrostatic, exchange correlation, spin polarization,
and DFT–D correction. The SCF tolerance in the optimization is set as 1.0 × 10−5, the max force as
0.04 Ha/nm, and max displacement as 0.0005 nm. The unit cell of complex is constructed with the
LDHs–MMT layer (the ratio is 1:1) and histidine zwitterions. XRD of complex structure is simulated
according to the principle of electron diffraction. Density of states and charge density of the complex
are calculated with the optimized geometries.

The interaction between interlayer guests is calculated according to the Equations (1) and (2)
as follows:

∆E(His − His) = E(His1 − His2) − (E(His1) + E(His2)), (1)

∆E′(His − His) = ∆E(His1 − His2)/2 (2)

in which ∆E(His − His) is the interaction energy between the interlayer guest, and E(His1) and
E(His2) are the energy of histidines in a unit cell. ∆E′(His − His) is the average of each histidine
interaction energy.

The calculation formulas of binding energy of histidine-intercalated hydrotalcite or montmorillonite
and the average binding energy ∆E′ of each histidine of LDHS or MMT are shown in the following

∆E(His − Layer) = E(His − Layer) − (E(His) + E(Layer)) (3)

∆E′(His − Layer) = ∆E(His − Layer)/n(His) (4)

In Equation (3), ∆E(His − Layer) is the binding energy of histidine-intercalated LDHs, MMT,
or complex layer; E(His − Layer) is the total energy of histidine intercalated LDHs, MMT, or
LDHs–MMT; and E(His), E(Layer) are the energy of the histidine and LDHs, MMT, or LDHs–MMT
lamellae, respectively. In Equation (4), ∆E′(His− Layer) is the average binding energy of each histidine,
and n(His) is the number of histidines in the unit cell.

3. Results and Discussion

3.1. Structural Analysis of His–LDHs–MMT Complex

Three possible structures (M1, M2, and M3) of His–LDHs–MMT complex are found in the potential
energy surface. In the M1, M2, and M3 models, NH3–, COO– group, and heterocyclic-N atoms of
histidine combine with the H of LDHs and O atom of MMT, respectively. The optimized geometries
of His–LDHs–MMT are shown in Figure 1. The unit cell parameters and total DFT–D energy of
His–LDHs–MMT are listed in Table 1. In the LDHs lamellae, the Zn–O bond length is about 2.11 Å,
and the Al–O bond length about 1.89 Å. In the MMT layer, the Si–O bond length is about 1.60–1.65 Å,
the Al–O bond length about 1.97 Å, and the Mg–O bond length about 2.07 Å. These data are close to
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the un-intercalated layer data. It shows that the layers of LDHs and MMT present a relative isolated
and stable structure. The H–O or H–N interdistance of histidine intercalated LDHs are about 1.7–2.0 Å.
The O–H distance of histidine intercalated MMT is about 1.7–2.5 Å. It hints that there are strong
interactions between the host (LDHs and MMT) and guest (His). The H–O interdistance of the different
His zwitterions in the M1, M2 is about 1.7–2.1 Å. It also means that an interaction exists between the
interlayer guest, that is, His–His. It can be seen that both the interatomic distances of H with O and N
in the unit cell of M1 and M2 are in the hydrogen bond length range, respectively. The simulations of
the complex structures show that the oxygen on the carboxylate group is combined with the hydrogen
atoms of the LDHs lamella, and the quaternary ammonium ion group of histidine is adsorbed with
the oxygen of the MMT lamella. The flatting or upright arrangement modes of histidine between the
layers can be founded out by comparing these three geometries. Histidines in the layers of M1 and M2
are almost flatting. Between M1 and M2, there exists the interaction between the histidine heterocyclic
nitrogen atom and the LDHs in the M1, except for the hydrogen bond of the carboxylate oxygen of
the amino acid with the LDHs lamella, which makes the binding of His and M1 lamellae more firm
and stable than that of M2. The histidine of M3 is nearly upright between the lamellae, and there is
little interaction between the guests of M3 layers. According to the unit cell data, the layer spacing and
energy of M3 are higher than that of M1 and M2, which are regarded as not stable relative to the other
two structures. It can be seen from the previous analysis that the histidine is linked by hydrogen bond
between the layers of LDHs–MMT. M1 and M2 are the relatively stable structure of His–LDHs–MMT.
M1 has more hydrogen bonding of heterocyclic nitrogen with the LDHs lamellae than M2, which
makes the adsorption strong and the structure stable.
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Table 1. Lattice parameters and energy of M1, M2, and M3.

a (nm) c (nm) Energy/Ha

M1 0.53 2.27 −14,666.2078
M2 0.53 2.26 −14,666.1890
M3 0.53 2.98 −14,666.0605
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3.2. Interaction of Interlayer Guest of His–LDHs–MMT Complex

As is clear from Figure 1, some interactions may exist between the interlayer guests of M1 and
M2. In order to determine the interaction, M4 is constructed on the basis of M1 after removing the
LDH, MMT lamellae and fixing the unit cell parameters, as shown in Figure 2. By analyzing and
computing the complex structure and the unit cell data, the interaction between the His guests is shown
to exist in the same layer, so the guest interaction between different layers is neglected. The computed
energy of M4 is −1097.6171 Ha, and two kinds of His guests in the unit cell are −548.7712 and
−548.7501 Ha, respectively. The interaction energy of interlayer guests is −60.08 kcal/mol, calculated
by Equation (1). The computing result shows that the interactions between interlayer guests are very
strong. Two histidines in the unit cell both cause the interaction of interlayer guest, and the average
interaction energy for histidine is −30.04 kcal/mol computing by Equation (2). This interaction energy
is higher than that of the general hydrogen bonding, so it is thought that strong electrostatic interactions
maybe exist in the intercalated materials.
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Figure 2. Structural model of histidine guest molecules (a × 2b × c).

3.3. Interaction of His–LDHs and His–MMT

In order to study the host-guest interaction of His–LDHs–MMT complex, one first needs to know
the interaction between His–LDHs and His–MMT. The structural models of histidine-intercalated
LDHs and MMT are established on the basis of charged characteristics of intercalated materials,
respectively. By studying the interaction of histidine with LDHs and MMT, the combination strength
of the histidine and two lamellae is analyzed, and the stability of histidine in the LDHs–MMT complex
is further determined.

M5 shown in Figure 3a gives the structure of histidine-intercalated LDHs. There are two LDHs
lamellae and four histidine zwitterions. It can be seen that the LDHs layers are linked by the oxygen
atom of histidine carboxylate to the hydrogen of LDHs. The space group symmetry of M5 belongs to
P1. The unit cell parameters a and c are 0.62 and 2.76 nm, respectively. The interatomic distance of
H–O is about 1.64–1.87 Å, which belongs to the range of hydrogen bond length. When histidine is
intercalated into the LDHs, the carboxylate of each histidine is adsorbed on the Al–O–H site of the
Zn–Al LDHs lamella. M5-1 shown in Figure 3b is the fixed structure of pure LDHs lamellae after
removing histidine molecule and retaining the unit cell parameters of M5. There are two lamellae
in the unit cell. M5-2 shown in Figure 3c is the fixed structure of histidine after removing LDHs
lamellae and retaining the M5-1 unit cell parameters of M5. There are four histidine zwitterions
in the M5-2 unit cell. The energies of M5, M5-1, and M5-2 are about −26,949.2076, −24,753.4371,
and−2195.3537 Ha, respectively. Therefore, the binding energy of histidine-intercalated LDHs lamellas
is −261.54 kcal/mol, calculated using Equation (3). The average binding energy per amino acid is
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−65.38 kcal/mol, calculated using Equation (4). The interaction of histidine-intercalated LDHs lamellae
is so strong that the intercalation structure is very stable.
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Figure 3. Structural models of histidine intercalated LDHs; (a): histidine-intercalated LDHs structure;
(b): LDHs lamellas structure; (c): histidines structure in M5.

M6 shown in Figure 4a gives the structure of histidine-intercalated MMT. There is one MMT
lamella and two histidine zwitterions. It is obvious that the hydrogen of histidine quaternary
ammonium group is linked to the oxygen of MMT. The space group symmetry of M6 also belongs
to P1. Its unit cell parameters are a = 0.54 nm, c = 1.8 nm. The interatomic distance of H–O is about
2.1 Å, which belongs to the category of hydrogen bond. Under the premise of retaining M6 original
cell data, M6-1 shown in Figure 4b is the fixed structure of MMT lamellae after removing histidine
zwitterions. M6-2 shown in Figure 4c is the fixed histidine zwitterions after removing the MMT lamella
and retaining the unit cell parameters of M5 structure. The total energies of M6, M6-1 and M6-2 are
−11,202.9512, −10,105.4292, and −1097.2752 Ha, respectively. The binding energy of histidine and
MMT lamellas is −154.87 kcal/mol, according to Equation (3). The average energy of per histidine
intercalated montmorillonite is −77.43 kcal/mol, according to Equation (4). The interaction energy of
His intercalated MMT is so high that the intercalated structure should be stable.
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3.4. Interaction of His–LDHs–MMT Complex

The energy of M1 is the lowest in the three kinds of complex structures. The host structure of
M1 and M2 is almost same. The interlayer spacing of M3 is the largest, and its energy is the highest.
According to these analyses of the His–LDHs–MMT complex structure, the interaction of M1 structure
is selected to study the interaction of histidine with LDH, MMT, and complex. In order to determine
the interaction of His with LDHs and MMT lamellae, the structural models of LDHs–MMT(M1-1) and
His(M1-2) shown in Figure 5 are established on the base of M1 removing guest or host and retained
other atomic position, respectively. The energy of M1-1 and M1-2 is −13,568.0269 and −1097.6171 Ha,
respectively. The intercalation energy of His with LDHs–MMT complex is−353.84 kcal/mol calculated
by Equation (3), and the average energy of each histidine intercalated LDHs–MMT is−176.92 kcal/mol.
It can be seen from the above calculation data that the interaction of His–LDHs–MMT is strong,
and stable intercalation complexes can be formed theoretically.

The calculated binding energies of histidine with LDHs and MMT are much higher than the
energy of the general hydrogen bonds. The combination of histidine and MMT is mainly dominated
by electrostatic adsorption, whereas histidine and LDHs are mainly bounded by hydrogen bonding.
On the other hand, since the complex is a combination of charged groups, the rest of energy may come
from the electrostatic interaction. Analyzing the composition of interaction energy, it is thought that
the electrostatic interaction in LDHs and MMT should be a large component besides the hydrogen
bonding interaction between the guest and the host lamella. The host–guest interaction energy of
His–LDHs–MMT is about the sum of the interaction energies of His–LDHs and His–MMT. It is shown
that histidine has a strong interaction with both hydrotalcite and montmorillonite lamellae. Therefore,
histidine can be stably intercalated into the lamellae of LDHs–MMT.
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3.5. Electronic Structural Property of His–LDHs–MMT

The electronic properties of the complex, such as XRD, density of states, charge density,
and electrostatic potentials, can help us to understand the stability and internal structure of the complex.

The XRD patterns of complex model are simulated shown in Figure 6. The M1 strongest diffraction
peak (001) of MMT lamella appears at 2θ = 7.8◦; the (003) peak and (110) bimodal peak of LDHs lamella
occur at 2θ = 11.7◦, 60◦, respectively. Other peak types are basically a combination of peak shapes
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of MMT and LDHs. It is similar to the XRD spectra of p-aminobenzene sulfonic acid intercalated
LDHs–MMT complex in the literature [44]. The obtained characteristic peaks of the intercalation
complexes from the above XRD spectrum simulation may provide some theoretical references for the
experimental testing of material structure.
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In order to explain the interactions of the guests with hosts in the complexes, the partial density
of states (PDOS) of the O–H and N–H bonds bound to the zwitterions and layers are calculated for
M1 and M2, as shown in Figure 7. A clear orbital overlap can be found in the PDOS, indicating the
existence of certain interaction at this energy level. For M1 and M2, the results show that the lowest
orbital distribution at about −21.56 eV is mostly formed with the H 1s electrons, with a minor degree
of O 2p states. Near the Fermi level, the orbital contribution consists of p electrons of O atom and s
electrons of H atom, indicating a strong interaction (i.e., that a hydrogen bond function existed in the
complex).
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In the charge density diagram, histidine is combined with LDH and MMT lamellae using hydrogen
bonds with the different strengths, as shown in Figure 8. The density field of LDHs overlaps with
histidine, indicating that a strong interaction exists between histidine and LDHs. However, there is not
electron distribution overlap between histidine and the MMT lamella, which indicates that the bonding
effects are weaker than those of LDHs, and most of the interaction is electrostatic force. Meanwhile,
a strong interaction of the indole ring nitrogen atoms and the LDHs is formed in the M1 geometry.
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The electrostatic potential of molecule is suitable for analyzing the weak interactions dominated
by static electricity. As shown in Figure 9, the electrostatic potential of MMT lamella is higher than
that of LDHs. It is indicated that the electrostatic effect of MMT lamella is strong. In addition,
the carboxyl group of histidine also represents a certain electrostatic potential, so that there is some
electrostatic interaction between histidine and LDHs. It is shown that the electrostatic interaction
between histidine and MMT lamella is much stronger than that of LDHs. The above analysis confirms
the main combination modes of histidine with different lamellae are electrostatic adsorption of His
with MMT and hydrogen bonding of His with LDHs.
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4. Conclusions

A special type of intercalated structure with the histidine(His) zwitterions and alternating
hydrotalcite–montmorillonite lamellae was explored using the density functional theory (DFT)
of quantum chemistry. By analyzing complex structure, it is determined that the amphoteric
charged characteristics of host and guest adapt to the preparation of intercalated materials using
the self-assembly method. The simulations of complex (His–LDHs–MMT) structures show that
amino group of histidine is adsorbed with the oxygen of the MMT lamella, and the oxygen on the
carboxyl groups is combined with the hydrogen atoms of the LDHs lamella. The binding energy of
His–LDHs–MMT is −353.84 kcal/mol, and its average histidine binding energy is −176.92 kcal/mol.
The binding energy of per histidine intercalated LDHs and MMT is −65.89 and −78.44 kcal/mol,
respectively. These values include the electrostatic and hydrogen bond interactions. The calculated
results show that histidine may be stably intercalated between the LDHs and MMT by a supramolecular
interaction. The properties analysis of the complex structure can accurately reflect the distribution
of electrons. The PDOS shows that orbital contributions of H 1s and O 2p overlap near the Fermi
level, confirming the presence of hydrogen bonds in the complex. In the charge density, the bonding
effect of histidine with LDHs lamella is stronger than that with MMT lamella, as there is an overlap
of the density field of histidine with LDHs lamella but no overlap of that of MMT. According to the
electrostatic potential analysis of the complex, the electrostatic force of histidine with MMT lamella
is stronger than that of LDHs. The above analysis shows that the binding of histidine with MMT is
mainly dominated by electrostatic force, whereas that of histidine and LDHs is mainly produced by
the hydrogen bond. The computation results of the electronic properties and host-guest interactions
confirm that the intercalated complexes should be prepared experimentally.
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