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Abstract: A hydrocyclone is an instrument that can effectively separate multi-phase mixtures of
particles with different densities or sizes based on centrifugal sedimentation principles. However,
conventional hydrocyclones lead to two products only, resulting in an over-wide particle size range
that does not meet the requirements of subsequent operations. In this article, a two-stage series,
a four product hydrocyclone is proposed. The first stage hydrocyclone is designed to be a coaxial
double overflow pipe: under the effect of separation, fine particles are discharged from the internal
overflow pipe, while medium-size particles are discharged from external overflow pipe before
entering the second stage hydrocyclone for fine sedimentation. In other words, one-stage grading
leads to four products, including the first stage underflow, the first stage overflow, the second stage
underflow, and the second stage overflow. The effects of structural parameters and operational
parameters on flow field distribution in hydrocyclone were investigated via a study of flow field
distribution in multi-product hydrocyclones using numerical simulations. The application of four
product hydrocyclone in iron recovery shows that the grade and recovery of iron concentrate exceed
65.08% and 86.14%, respectively. This study provides references for understanding the flow field
distribution in hydrocyclones and development of multi-product grading instrument in terms of both
theory and industrial applications.

Keywords: four product hydrocyclone with double vortex finders; separation; numerical simulation;
experiments

1. Introduction

A hydrocyclone is an instrument that can effectively separate mixtures of particles with different
density or size based on centrifugal sedimentation principles [1–7]. Once pressurized into a
hydrocyclone, powders are separated by separation: coarse/dense particles shift to the sidewall
due to relatively large centrifugal forces, join the underflow via an outer swirl and leave via an
underflow outlet; fine/sparse particles shift to the core due to relatively small centrifugal forces, join
the overflow via an inner swirl and leave via an overflow pipe. One-stage grading by conventional
hydrocyclones leads to coarse particle underflow and fine particle overflow only [8–13]. As shown in
Figure 1, the size range is over-wide and fine grading has not been achieved, resulting in poor grading
efficiency and accuracy.
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Figure1. Traditional cyclone with two products. 

To obtain multiple products in narrow size ranges using hydrocyclones, overflow series 
systems are usually employed. In particular, the first stage overflow serves as a feedstock for the 
second stage hydrocyclone, thus the fine particles mesh is obtained. By repeating this process, the 
multiple products in narrow size ranges may be produced, as shown in Figure 2. 

 

Figure 2. Classification diagram of the three product cycolone. 

However, this technique is limited by a tedious process and costly equipment. Great efforts 
have been made to achieve multiple products in narrow size ranges by one-stage grading in 
hydrocyclones. For instance, a sieve hydrocyclone was proposed for grading of fine slurry particles 
(see Figure 3). Coarse particle underflow, fine particle overflow, and undersieve medium particle 
can be obtained. This approach, however, is limited by the mesh blocking issue. 
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Figure 1. Traditional cyclone with two products.

To obtain multiple products in narrow size ranges using hydrocyclones, overflow series systems
are usually employed. In particular, the first stage overflow serves as a feedstock for the second stage
hydrocyclone, thus the fine particles mesh is obtained. By repeating this process, the multiple products
in narrow size ranges may be produced, as shown in Figure 2.
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Ahmed et. al. proposed a hydrocyclone for three products (one overflow and two underflows) 
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three product hydrocyclone separates particles in sizes larger than the overflow fine particles, yet 
smaller than the underflow coarse particles. However, the size ranges of particles obtained by this 
process cannot be precisely controlled, thus so far it is not suitable for industrial applications. 
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Figure 2. Classification diagram of the three product cycolone.

However, this technique is limited by a tedious process and costly equipment. Great efforts have
been made to achieve multiple products in narrow size ranges by one-stage grading in hydrocyclones.
For instance, a sieve hydrocyclone was proposed for grading of fine slurry particles (see Figure 3).
Coarse particle underflow, fine particle overflow, and undersieve medium particle can be obtained.
This approach, however, is limited by the mesh blocking issue.
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Figure 3. Diagram of the hydrocyclone with screen.

Ahmed et al. proposed a hydrocyclone for three products (one overflow and two underflows) by
design of a tangential discharge outlet in a middle part of the cone section (see Figure 4) [14]. This three
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product hydrocyclone separates particles in sizes larger than the overflow fine particles, yet smaller
than the underflow coarse particles. However, the size ranges of particles obtained by this process
cannot be precisely controlled, thus so far it is not suitable for industrial applications.
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Figure 4. Three-product cyclone with double spigot.

A double overflow pipe three product hydrocyclone, with an insert of the other overflow pipe
into the conventional hydrocyclone overflow pipe, was proposed in references [15–18]. In this way,
the one-stage grading leads to an overflow containing fine particles, an overflow containing medium
particles, and an underflow containing coarse particles. Nevertheless, the size ranges of particles in
external overflow are still relatively wide and the diameter mismatch between internal and external
overflow pipes can be a severe issue. Meanwhile, the effect of the insertion depth of an internal
overflow pipe and effects of structural and functional parameters on the flow field performance have
not been well understood.

In summary, the expanding applications of hydrocyclones lead to higher requirements on their
grading accuracy and grading size. The one-stage grading by conventional hydrocyclones leads to
two products only and the particle size ranges are over-wide. In such a case incomplete separation is
inevitable, resulting in poor grading efficiency and accuracy and the phenomenon of “fine particle in
underflow, coarse particle in overflow”. In this study a two-stage series, a four product hydrocyclone
(see Figure 5) is proposed.Minerals 2018, 8, x FOR PEER REVIEW  4 of 18 
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Figure 5. Four product cyclone with double vortex finders.

The first section hydrocyclone is designed as a coaxial double overflow pipe. Once pressurized
into a hydrocyclone, matters are separated by separation: fine particles are discharged from the internal
overflow pipe while medium-size particles are discharged from the external overflow pipe and serve
as a feedstock to the second section hydrocyclone in which these particles are graded again. In this
way four products, namely the first stage underflow, first stage overflow, the second stage underflow
and the second stage overflow, can be obtained by one-stage grading. One-stage grading by the
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multi-product hydrocyclones leads to multiple products in narrow size ranges and is characterized by
reduced particle size, improved grading accuracy and reduced energy consumption. We investigated
flow field distributions in the proposed multi-product hydrocyclone by numerical simulation and
performed experimental tests to facilitate understanding effects of structural and functional parameters
on separation performance of hydrocyclone. This study provides references for understanding of
grading by hydrocyclones and development of multi-product grading instrument in terms of both
theory and industrial applications.

The remainder of this paper is organized as follows: Section 2 describes the mathematical model
of the hydrocyclone with double vortex finders. Section 3 presents the numerical simulation results.
Section 4 presents the tests results. The conclusions are summarized in Section 5.

2. Mathematical Model of Turbulent Flow Field of Hydrocyclones

The flow characteristics and flow motion inside the hydrocyclone are computed with continuity
equation and momentum equation. Because the cyclone is cylindrical, therefore, the flow motion
equation inside the cyclone is applied using cylindrical coordinates.

The continuity equation is expressed as follows:
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Reynolds proposed the theory of time-averaged flow field, which divides the instantaneous
motion parameters into two parts, namely, the time-averaged values and the fluctuating values [19].

Therefore, the equation of continuity and the Navier-Stokes equation are written as follows:
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3. Numerical Simulation

3.1. Modelling of Four Product Hydrocyclone

The first stage hydrocyclone is designed to be a 150 mm diameter double overflow pipe and
the second cyclone was a conventional column cone 75 mm in diameter. The overflow of the first
stage hydrocyclone was split into internal and external overflow paths. The external overflow, which
is separated from the internal overflow by the overflow cap, is further graded in the second stage
hydrocyclone. Figure 6 shows the structure model of the proposed hydrocyclone and Figure 7 shows
the mesh. Then the mesh grid which determines the accuracy and the converging efficiency of
numerical simulations that were developed for the model using meshing software ICEM. The fluid
zone is divided into various hexahedron or tetrahedron meshes. The fitting degree is directly related to
the mesh quantity. Mesh grids can be categorized as structural and non-structural grids. In structural
grids [19,20] the mesh of each node in a specific zone is consistent with that of its adjacent node
in this zone. These grids have advantages in boundary fitting, model accuracy, and data structure.
However, structural grids are not well applicable for complicated flow field models. On the contrary,
non-structural grids are applicable for any flow field model [21,22], although the calculation is usually
time consuming and the accuracy is limited. In flow field models of four product hydrocyclones,
the hexahedron structural grid was applied on a hydrocyclone column, while a non-structural grid
was applied for feeding inlets and boundaries.
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Figure 8 represents the quality of the grid. As shown in Figure 8, the mesh quality whose critical
level for simulations is 0.2, exceeds 0.35, indicating high quality of the mesh grid.
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3.2. Numerical Simulation

3.2.1. Selection of Turbulence Model and Multi-Phase Flow Model

In the Reynolds Stress equation Model (RSM) components of each stress are obtained by solving
the Reynolds Stress equation. The RSM was selected as the turbulence model in this study [23–29].

In the multi-phase flow model, the VOF (Volume of Fluid) model is a simplified Euler-Euler
model in which a momentum equation is solved and volume fraction of each fluid flowing through the
computational domain is processed. The VOF model was selected to capture the liquid/gas interface
in a hydrocyclone.

3.2.2. Boundary Condition and Calculation Scheme

Inlet boundary condition: the inlet velocity is defined as the inlet boundary condition.
With the inlet velocity to be 2.5 m/s the turbulent intensity and hydraulic diameter are 3.8% and
36 mm respectively.

Outlet boundary condition: the outlet pressure is defined as the outlet boundary condition.
For hydrocyclone, the outlet is exposed to atmosphere and the relative pressure is 0. Turbulence
intensities and hydraulic diameters obtained are summarized in Table 1.

Table 1. Turbulence intensities and hydraulic diameters.

Parameters I Underflow II Underflow Inner Overflow II Overflow

Turbulence intensities/% 4.3 4.7 4.5 4.3
hydraulic diameter/mm 20 8 25 20

Numerical simulation and discrete scheme: numerical simulation was performed using the
SIMPLE algorithm (pressure-velocity coupling). The discrete scheme for pressure was set to be
PRESTO!, the discrete terms in momentum equation was set to be in First Order Upwind scheme and
then turned into QUICK scheme after convergence. Discrete terms in all other functions were set to be
in the First Order Upwind scheme.

3.2.3. Simulation and Results Analysis

• Effects of the first section cone angle on the flow fields in the first section hydrocyclone

Figure 9 summarizes pressures in the first section hydrocyclone at cone angles of 60◦, 90◦, 120◦,
and 180◦.
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Figure 9. Pressure distribution of different cone angle hydrocyclone.

As observed, pressure in the hydrocyclone decreased from sidewall towards the core part and
was centrosymmetrically distributed. As a result, a negative pressure zone was observed in the core
part. The pressure in the first section hydrocyclone decreased as the first section cone angle increased.

As shown in Figure 10, the flow field velocity is affected by the cone angle: the tangential velocity
of flow fields in the hydrocyclone decreased as the cone angle increased. This can be attributed to
space increase in the hydrocyclone due to cone angle increase at fixed hydrocyclone height.
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Figure 10. Tangential velocity distribution of different cone angle cyclone.

• Effects of the first section internal overflow pipe diameter on flow fields in the first
section hydrocyclone

Figure 11 shows the internal pressure distributions in the first section internal overflow pipe in
diameters of 15 mm, 20 mm, 25 mm, and 30 mm. The pressure was maximized (feeding pressure
= 0.08~0.1 MPa) on the hydrocyclone sidewall and degraded along the radial direction. As a result,
a negative pressure zone was observed in the core part. The pressure decreased as the internal overflow
pipe diameter increased.
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Figure 11. Pressure distribution of hydrocyclone with different inner vortex finder.

As shown in Figure 12, four curves correspond to tangential velocities of flow fields in the first
section hydrocyclone at internal overflow pipe diameters of 15 mm, 20 mm, 25 mm, and 30 mm
respectively. The tangential velocities increase along with the overflow outlet diameter increase.
In addition, the location of the maximum tangential velocity shifted outwards along the radial direction
as the internal overflow pipe diameter increased. This can be attributed to the outward shift of trajectory
surface of maximum tangential velocity as a result of increase of the overflow pipe diameter.
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Figure 12. Velocity distribution of the hydrocyclone with a different inner vortex finder.

• Effects of the first section internal overflow pipe insertion depth on flow fields in the first
section hydrocyclone

The internal overflow pipe insertion depth refers to the relative location of internal overflow
pipe and external overflow pipe. The effects of insertion depth will be discussed in three situations.
In the first case the internal overflow pipe is shorter than the external one and the internal overflow
pipe outlet is located inside the external overflow pipe (insertion depth of internal overflow pipe =
−50 mm). In the second case the internal overflow pipe is aligned with the external overflow pipe and
the insertion depth of the internal overflow pipe is 0. In the third case the internal overflow pipe is
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longer than the external overflow pipe and the insertion depth of the external overflow pipe is either
50 mm or 100 mm, as shown in Figure 13.
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Figure 13. Insertion depth of inner vortex.

Figure 14 shows pressure distribution obtained by numerical simulation. Obviously, the effect of
overflow pipe insertion depth is insignificant if the values of pressure at four different overflow pipe
insertion depths are consistent.
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Figure 14. Pressure distribution inside cyclone with different insertion depth of inner vortex finder.

Figure 15 shows the tangential velocity of flow fields in the hydrocyclone vs. the insertion depth
of the internal overflow pipe. One can see that the tangential velocity is maximized at 0 insertion depth
from the sidewall towards the trajectory surface of the maximum tangential velocity. As this zone is
the main area of separation in the hydrocyclone, the separation efficiency is improved by an increase
of tangential velocity. The tangential velocity decreases from −50 mm and 50 mm and is minimized at
100 mm insertion depth. Also, the insertion depth affects axial velocity of flow fields and the secondary
vortex is observed.
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Figure 15. Tangential velocity inside cyclone with different insertion depth of inner vortex finder.

Figure 16 shows the distribution of axial velocities of flow fields in the first section hydrocyclone.
We found that the axial velocity of fluids greatly varied and the distributions of flow fields are
asymmetric. The axial velocity passed the zero point several times (changes of axial speed direction),
resulting in a secondary vortex which facilitates grading but also leads to issues like an energy
consumption gain and flow field instability.
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Figure 16. Axial velocity inside cyclone with different insertion depth of inner vortex finder.

• Effects of the first section underflow outlet diameter on flow fields in the first section hydrocyclone

Figure 17 shows pressure of flow field in the first section hydrocyclone vs. the first section
underflow outlet diameter (12 mm, 16 mm, 20 mm, and 24 mm) by numerical simulations. As one
can see, pressure decreases from the sidewall towards the core part along the radial direction and it
decreases with an increase of the first section underflow outlet diameter d.
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Figure 17. Pressure distribution inside cyclone with different I underflow pipe.

Figure 18 shows the tangential velocity of flow fields vs. the underflow outlet diameter.
The tangential velocity of flow fields increases from the sidewall towards the core part along the
radial direction. The maximum tangential velocity is observed at the interface between the inner and
the outer swirls and it decreases after that. The tangential velocity of flow fields decreases with an
increase of the underflow outlet diameter.
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Figure 18. Tangential velocity inside cyclone with different I underflow pipe.

• Effects of the second section underflow outlet diameter on the first section hydrocyclone

Figure 19 shows pressure of flow field in the first section hydrocyclone obtained by numerical
simulations vs. the second section underflow outlet diameter (6 mm, 8 mm, 10 mm, and 12 mm).
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Figure 19. Pressure distribution inside cyclone with different II underflow pipe.

Figures 20 and 21 show distributions of tangential and axial velocities, respectively. It is evident
that the second section underflow outlet diameter insignificantly affects distributions of pressure,
tangential and axial velocities of flow field in the first section hydrocyclone.
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Figure 20. Tangential velocity inside cyclone with different II underflow pipe.

Figure 22 shows the radial velocity distribution curve in the first section hydrocyclone as a
function of the second section underflow outlet diameter. In this case the radial velocity of the first
section hydrocyclone increases along with the second section underflow outlet diameter increase. On
one hand, radial velocity increase has a positive effect on grading efficiency; on the other hand, a radial
velocity increase results in a rise in energy consumption.
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Figure 21. Axial velocity inside cyclone with different II underflow pipe.
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Figure 22. Radial velocity inside cyclone with different II underflow pipe.

4. Experimental Tests and Results

4.1. Procedure Design

For iron ore grading raw ore is grinded by the ball mill first. Then the ore is graded by conventional
hydrocyclone: after monomer dissociation fine particles overflow goes to magnetic separator and iron
concentrate is obtained; coarse particle underflow goes back to ball mill and hydrocyclone again for
monomer dissociation. However, the conventional two product hydrocyclone provides fine particle
overflow and coarse particle underflow in over-wide particle size ranges. Fine particles after monomer
dissociation present in underflow, resulting in increased energy consumption and concentrate loss
caused by over-grinding. We designed a technique for grading and recovery of iron ore fine particles
using the proposed four product hydrocyclone, as shown in Figure 23.
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Figure 23. The process flow diagram of four-product cyclone.

After separation in the first stage hydrocyclone, the most coarse and dense ore particles joined in
the underflow, while the finest particles joined in the internal overflow. The medium-size particles
collect in the second stage hydrocyclone via the external overflow pipe and were further graded in
the second stage overflow and the second stage underflow. Then, the first stage underflow of the
hydrocyclone went to a high frequency oscillating screen. The mixture of under-sieve products from
the internal overflow, and the second stage overflow went to a magnetic separator and concentrate
was obtained.

4.2. Properties of Raw Ore

Table 2 summarizes properties of iron ore used in this study. As observed, particles under 38 µm
reached 50.2% and the iron grade increases as the particle size decreases.

Table 2. The properties of ore.

Particle
Size/mm Yield/% Cumulative

Yield/%
Iron

Grade/%
Iron

Content/%
Distribution

Rate/%

Cumulative
Distribution

Rate/%

+0.1 15.10 100 26.18 3.95 7.42 100
−0.1 + 0.076 10.72 84.90 37.93 4.07 7.65 92.58
−0.076 + 0.055 10.70 74.18 50.18 5.37 10.09 84.93
−0.055 + 0.043 13.28 63.48 58.51 7.77 14.60 74.84
−0.043 + 0.038 13.06 50.2 60.73 7.93 14.9 60.24
−0.038 + 0.030 6.53 37.14 61.07 3.99 7.50 45.34
−0.030 30.61 30.61 65.8 20.14 37.84 37.84

total 100.00 52.96 53.22 100.00

4.3. Hydrocyclone Design

According to the iron sample analysis, particles under 30 µm are essentially concentrate. Therefore,
the diameters of the first stage hydrocyclone and the second stage hydrocyclone are 50 mm and 25 mm,
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respectively. The structure is shown in Figure 6 and the structural parameters and operation parameters
are summarized in Table 3.

Table 3. The optimal parameter based on overflow fineness.

Mass
Concentration/% Pressure/MPa Angle of

Cone/◦
Diameter of
I Underflow

Pipe/mm

Diameter of II
Underflow
Pipe/mm

Diameter of
Outer

Overflow
Pipe/mm

Diameter of
Inner

Overflow
Pipe/mm

30 0.11 180 8 4 15 9

4.4. Result Analysis

The results of iron grading (Figure 24 shows the testing site of four product hydrocyclone)
obtained by the procedure mentioned above are summarized in Table 4. The iron grade of concentrate
obtained by the first section underflow is 66.24%. While combining the first stage internal overflow
and the second stage overflow, the iron grade of concentrate is 62.53%. The iron grade of concentrate
obtained from the second stage underflow is 61.14%. The iron grade of mixed concentrate was 65.08%
(meeting the requirement of 65% for concentrate grade) and the concentrate recovery is 86.14%.
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Table 4. Industries operating results.

Results Iron Grade/% Iron Recovery Rate/%

I underflow
Concentrates after

magnetic separation 66.24 49.22

Tailings after
magnetic separation 22.46

merged overflow
Concentrates after

magnetic separation 62.53 12.86

Tailings after
magnetic separation 28.71

II underflow
Concentrates after

magnetic separation 61.14 24.06

Tailings after
magnetic separation 24.42

composite result Concentrates after
magnetic separation 65.08 86.14

5. Conclusions

To avoid the over-wide particle size range and a poor separation accuracy that does not meet
requirements of the subsequent operations, a two-stage series, four product hydrocyclone is proposed.
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The first stage hydrocyclone is designed to be a coaxial double overflow pipe: fine particles were
obtained from the internal overflow and coarse particles were separated from the external overflow
via the second section hydrocyclone. In this way, issues like over-wide particle size range and poor
separation accuracy are avoided.

In experimental tests the proposed hydrocyclone was applied in iron recovery technology.
Together with magnetic separator, oscillating screen, and ball mill, the proposed hydrocyclone can
relieve the low iron concentrate recovery issue.
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