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Abstract: The Liaodong Peninsula is an important mineral province in northern China. Elucidating its
lithospheric architecture and structural evolution is important for gold metallogenic research and
exploration in the region. In this study, Hf-Nd isotope maps from magmatic rocks are constructed
and compared to geological maps to correlate isotopic signatures with geological features. It is found
that gold deposits of different age periods in Liaodong are located in areas with specific εHf(t) and
εNd ranges (Triassic: from −8 to −4 and from −12 to −8, Jurassic: from −22 to −8 and from −14 to
−8, Cretaceous: from −12 to −10 and from −22 to −20), respectively. This may reflect that when the
Paleo-Pacific plate was subducted beneath the North China Craton, the magma was derived from
the juvenile lower crust and the ancient lower crust, and formed the low-to-moderate hydrothermal
Au-(Ag) and Pb-Zn deposits in the Triassic. In the Jurassic, continued subduction may have led to
lithospheric thickening. Subsequently, the magma from the ancient lower crust upwelled and formed
low-to-moderate hydrothermal Au deposits and porphyry Mo deposits. In the Cretaceous, crustal
delamination may have taken place. The magma from the ancient lower crust upwelled and formed
various low-to-moderate hydrothermal Au deposits.

Keywords: lithospheric architecture; metallogenesis; Hf-Nd isotopic mapping; Liaodong Peninsula;
North China Craton

1. Introduction

The North China Craton (NCC), containing the Liaodong and Jiaodong gold provinces, is the
top gold producer in northeast Asia [1–6]. The Liaodong Peninsula is located between the Yalujiang
and TanLu fault zones (Figure 1) [7–9] and represents an important mineral province in the NCC.
The peninsula has undergone complex magmato-tectonic modifications, during which many important
polymetallic (Pb-Zn, Au, Ag, and Mo) deposits have been formed (Figures 1 and 2) [10,11]. Most of
these deposits are interpreted to be genetically linked with granitoid in the peninsula [11]. Granitoid in
the Liaodong peninsula include the diorite and the granite that formed in the Paleoproterozoic,
Permian, Jurassic, and Cretaceous [7,12,13]. These many phases of magmatism provide a window into
the study of the lithospheric architecture and its control on metallogenesis.

Tectonic evolution and the characteristics of gold deposits in Liaodong and Jiaodong are
similar [14–18]; however, whether or not the lithospheric architecture played a role in controlling the
tectonic evolution and gold ore formation remains poorly understood.

The Hf and Nd isotopes are powerful tools to trace the nature of basement rocks and the age of
the continental crust [19–21], and Hf-Nd isotope mapping has been used to reveal the lithospheric
architecture and evolution, and their control on the distribution of mineral deposits [22–29].
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magmatic rocks, and the locations of major mineral deposits [30]. 
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bounded by the Yalujiang fault in the east and by the Tanlu fault in the north [31,32]. The 

Liaodong Peninsula can also be subdivided into the Longgang terrane in the north, the Liaoji 

orogenic belt in the middle, and the Langlin terrane in the south. This study only focuses on 

the Longgang terrane and the Liaoji orogenic belt. The Longgang terrane is composed of 

Archean to Paleoproterozoic basement rocks, and unmetamorphosed Mesoproterozoic to 

Cenozoic sedimentary and volcanic rocks [7]. The Liaoji orogenic belt consists mainly of 

Paleoproterozoic to Cretaceous magmatic rocks. In the Longgang terrane, the Paleoproterozoic 

sequences are missing, and the magmatic rocks are largely Triassic (Figure 3) [33]. 
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Figure 1. (a) Simplified tectonic map of the Liaodong Peninsula showing the major suture zones and
blocks. (b) Geological map of the Liaodong Peninsula showing the distribution of magmatic rocks,
and the locations of major mineral deposits [30].

In this study, we summarize the spatial distribution, age, and geochemical and isotopic data of
the Paleoproterozoic to Cretaceous magmatic rocks in the Liaodong Peninsula, and we use Hf-Nd
isotope mapping to reveal the crustal architecture and its controls on the regional mineralization.

2. Geological Setting

2.1. Regional Tectonics

The Liaodong Peninsula is located in the eastern margin of the NCC (Figure 1). It is bounded
by the Yalujiang fault in the east and by the Tanlu fault in the north [31,32]. The Liaodong Peninsula
can also be subdivided into the Longgang terrane in the north, the Liaoji orogenic belt in the middle,
and the Langlin terrane in the south. This study only focuses on the Longgang terrane and the Liaoji
orogenic belt. The Longgang terrane is composed of Archean to Paleoproterozoic basement rocks,
and unmetamorphosed Mesoproterozoic to Cenozoic sedimentary and volcanic rocks [7]. The Liaoji
orogenic belt consists mainly of Paleoproterozoic to Cretaceous magmatic rocks. In the Longgang
terrane, the Paleoproterozoic sequences are missing, and the magmatic rocks are largely Triassic
(Figure 3) [33].

2.2. Magmatism

The Liaodong Peninsula consists of Paleoproterozoic granite, Triassic granite and diorite, Jurassic
granite and diorite, and Cretaceous granite and diorite (Table 1 and Table S1) (Figures 4 and 5) [34–39].
During the Paleoproterozoic, the voluminous granitoid and the mafic intrusions in the peninsula were
emplaced (Figure 5) and then metamorphosed at 1.93 Ga [40], marking the cratonization of the NCC
eastern block. The Triassic magmatism is characterized by metaluminous mafic and felsic magmatic
rocks (Figure 5), which are also identified in the southern Liaodong Peninsula [7,30]. Late Mesozoic
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intrusive rocks include Jurassic (180–153 Ma) ductile-deformed, peraluminous/metaluminous granite
(Figure 5), and undeformed to slightly deformed early Cretaceous (131–120 Ma) metaluminous granite
and diorite (Figure 5) [7,41,42].

The Liaodong Peninsula consists of Paleoproterozoic granite, Triassic granite and diorite, 

Jurassic granite and diorite, and Cretaceous granite and diorite (Tables 1 and S1) (Figures 4 and 
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the peninsula were emplaced (Figure 5) and then metamorphosed at 1.93 Ga [40], marking the 

cratonization of the NCC eastern block. The Triassic magmatism is characterized by 
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Ma) ductile-deformed, peraluminous/metaluminous granite (Figure 5), and undeformed to 

slightly deformed early Cretaceous (131–120 Ma) metaluminous granite and diorite (Figure 5) 

[7,41,42]. 
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The Liaodong Peninsula contains Pb-Zn, Au, Ag, and Mo polymetallic deposits, which are 

mainly distributed in the Qingchengzi, Wulong, and Maoling orefields (Figure 1) (Table 2) 

[11,43,44]. The Qingchengzi orefield is in the northern part of the Liaodong Peninsula, which 
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Figure 2. Simplified geologic map of the Qingchengzi orefield showing the distribution of deposits [11].

2.3. Mineralization

The Liaodong Peninsula contains Pb-Zn, Au, Ag, and Mo polymetallic deposits, which are
mainly distributed in the Qingchengzi, Wulong, and Maoling orefields (Figure 1) (Table 2) [11,43,44].
The Qingchengzi orefield is in the northern part of the Liaodong Peninsula, which hosts a number
of magmatic-hydrothermal (low-to-moderate hydrothermal) Au-(Ag) and Pb-Zn deposits and
porphyry Mo deposits (Figure 2) [45,46]. The magmatic-hydrothermal Au-(Ag) deposits were
mainly formed in the Triassic (225–240 Ma), as exemplified by the Baiyun and Yangshu deposits
(Table 2). The mineralization of these deposits has been correlated to the granite and the diorite,
which are the result of lithospheric thinning associated with the Paleo-Pacific plate subduction [30,35].
The magmatic-hydrothermal Pb-Zn deposits (e.g., Xiquegou and Zhenzigou) were also formed in the
Triassic (221–232 Ma), whilst the Yaojiagou porphyry Mo deposit was formed in the Jurassic (168 Ma).
The mineralization of these Pb-Zn deposits has been correlated to the granite and the diorite, and that
of the Mo deposit has been correlated to the granite. The Pb-Zn and Mo deposits have been correlated
to large-scale delamination [7,35].
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to the granite. The Pb-Zn and Mo deposits have been correlated to large-scale delamination 

[7,35]. 

 

Figure 3. Stratigraphic columns showing the basement rocks, sedimentary cover, and 

magmatic history of the Longgang Terrane and the Liaoji orogenic belt.
Figure 3. Stratigraphic columns showing the basement rocks, sedimentary cover, and magmatic history
of the Longgang Terrane and the Liaoji orogenic belt.
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Table 1. Zircon U-Pb ages for the magmatic rocks from the Liaodong Peninsula.

Period No. Pluton Phase Age/Ma Sample Method References

Cretaceous

1 Wulongbei Quartz diorite 126–127 Zircon SHRIMP U-Pb [7]

2 Sanguliu Porphyritic granite 125 ± 3 Zircon SHRIMP U-Pb [7]

3

Yinmawanshan Gneissic granodiorite 122 ± 2 Zircon LA-ICP-MS U-Pb [7]

Yinmawanshan Monzogranite (dike) 124 ± 5 Zircon LA-ICP-MS U-Pb [7]

Yinmawanshan Monzogranite 122 ± 6 Zircon LA-ICP-MS U-Pb [7]

4 Qianshan Granite 126 ± 2 Zircon LA-ICP-MS U-Pb [32]

Jurassic

5 Xiaoheshan Granodiorite 173–174 ± 4 Zircon LA-ICP-MS U-Pb [7]

6 Hanjialing
Granodiorite 179 ± 3 Zircon LA-ICP-MS U-Pb [7]

Monzogranite 164 ± 4 Zircon LA-ICP-MS U-Pb [7]

7 Yutun Mylonitic granite 157 ± 3 Zircon LA-ICP-MS U-Pb [7]

8 Heigou Monzogranite 161 ± 6, 163 ± 7 Zircon LA-ICP-MS U-Pb [7]

9 Jiuliancheng Monzogranite 156 ± 3 Zircon LA-ICP-MS U-Pb [7]

10 Gaoliduntai Plagiogranite 156 ± 5 Zircon LA-ICP-MS U-Pb [7]

11 Baiyun gold mine Porphyritic dyke 168 ± 3 Zircon LA-ICP-MS U-Pb [7]

12 Huaziyu Lamprophyres 155 ± 4 Zircon LA-ICP-MS U-Pb [47]

13 Waling Monzonitic granite 162.4 ± 1.9 Zircon SHRIMP U-Pb [36]

14 Dandong Granite 157–167 Zircon LA-ICP-MS U-Pb [14]

Triassic

15 Shuangdinggou biotite monzogranite 224.2 ± 1.2 Zircon LA-ICP-MS U-Pb [9]

16 Xinling Granites 225.3 ± 1.8 Zircon SHRIMP U-Pb [8]

17 Xiuyan Monzogranite 210 ± 1 Zircon LA-ICP-MS U-Pb [30]

18 Nankouqian

Monzogranite 224 ± 2 Zircon SIMS [12]

Monzogranite 221 ± 2 Zircon LA-ICP-MS U-Pb [12]

Granite 224 ± 1 Zircon LA-ICP-MS U-Pb [48]
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Table 1. Cont.

Period No. Pluton Phase Age/Ma Sample Method References

Triassic

19 Mayihe

Pyroxene diorite 222 ± 2 Zircon SIMS [12]

Pyroxene syenodiorite 223 ± 2 Zircon SIMS [12]

Fine-grained diorite 222 ± 2 Zircon SIMS [12]

Biotite monzogranite 220 ± 2, 223 ± 3, 221 ± 2 Zircon LA-ICP-MS U-Pb [12]

20 Xidadingzi Monzogranite 220 ± 2, 221 ± 2 Zircon LA-ICP-MS U-Pb [12]

21 Chaxinzi

Monzogranite 222 ± 2, 219 ± 2 Zircon LA-ICP-MS U-Pb [12]

Diorite 219 ± 4 Zircon LA-ICP-MS U-Pb [12]

Monzodiorite 222 ± 2 Zircon LA-ICP-MS U-Pb [12]

Diorite 221 ± 2 Zircon SIMS [12]

Granodiorite 222 ± 1 Zircon SIMS [12]

22 Xiaoweishahe
Granodiorite 218 ± 2 Zircon LA-ICP-MS U-Pb [12]

Quartz diorite 220 ± 2, 219 ± 4 Zircon LA-ICP-MS U-Pb [12]

23 Longtou

Granodiorite 224 ± 2 Zircon SIMS [12]

Granodiorite 220 ± 2 Zircon LA-ICP-MS U-Pb [12]

Fine-grained granite 221 ± 2 Zircon LA-ICP-MS U-Pb [12]

24 Qingchengzi Lamprophyres 224–230 Zircon LA-ICP-MS U-Pb [9]

25 Saima
Syenite 222 ± 3.4 Zircon LA-ICP-MS U-Pb [49]

Syenite 221 ± 2.3 Zircon LA-ICP-MS U-Pb [49]

26 Bailinchuan Syenite 221 ± 2.3 Zircon LA-ICP-MS U-Pb [49]

Paleo-proterozoic

27 Jiguanshan Granite 2175 ± 13 Zircon SHRIMP U-Pb [38,50]

28 Laoheishan Granite 2166 ± 14 Zircon SHRIMP U-Pb [38,50]

29 Dadingzi Granite 1869 ± 16 Zircon SHRIMP U-Pb [39]

30 Wuleishan Granite 1830.5 ± 5.9 Zircon SHRIMP U-Pb [39]

31 Simenzi Granite 2157 ± 14 Zircon SHRIMP U-Pb [39]

32 Gujiapu Granite 2169 ± 11 Zircon SHRIMP U-Pb [39]
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Table 2. Summary of the geological characteristics of major ore deposits in the Liaodong Peninsula.

Number Deposits Orefield Type Metallic Comm. Tonnage (t) Grade Host Rock Age (Ma) Data Source

1 Zhenzigou Qingchengzi Magmatic hydrothermal Pb-Zn 0.37, 450 Marble, Amphibolite, Schist 221 [8,51]

2 Nanshan Qingchengzi Magmatic hydrothermal Pb-Zn 0.5, 153 227 [9,11]

3 Diannan Qingchengzi Magmatic hydrothermal Pb-Zn 0.08, 650 232 [11]

4 Xiquegou Qingchengzi Magmatic hydrothermal Pb-Zn 0.28, 250 225 [8,11]

5 Baiyun Qingchengzi Magmatic hydrothermal Au 31.7 2.85 g/t Metamorphic rock and
quartz veins 225 [10,11]

6 Xiaotongjiapuzi Qingchengzi Magmatic hydrothermal Au-Ag 20–50 0.07~2.92,
0.14~6.12 Marble 239 [11,43,52,53]

7 Gaojiapuzi Qingchengzi Magmatic hydrothermal Ag 312 Marble 240 [11,45,52,54]

8 Yangshu Qingchengzi Magmatic hydrothermal Au-Ag 3.72 1.61, 3.72 Metamorphic rock
and marble [11,55]

9 Taoyuan Qingchengzi Magmatic hydrothermal Au-Ag 0.005~0.06,
0.0025~0.1 Metamorphic rock [11,56]

10 Baiyundasandaogou Qingchengzi Magmatic hydrothermal Au-Ag 7.28, 1.28 [11,54]

11 Linjiasandaogou Qingchengzi Magmatic hydrothermal Au 0.031, 0.034 Metamorphic rock [11,56]

12 Yaojiagou Qingchengzi porphyry Mo 0.34 Metamorphic rock and skarn 168 [57,58]

13 Sidaogou Wulong Magmatic hydrothermal Au 20–50 Metamorphic rock [43]

14 Wulong Wulong Magmatic hydrothermal Au >40 Metamorphic rock and
quartz veins 122 [43,59]

15 Wangjiawaizi Maoling Magmatic hydrothermal Au-Ag >5 8.9, 16.9 Metamorphic rock, quartz
veins and Breccia [60]

16 Maoling Maoling Magmatic hydrothermal Au 25 3.2 g/t Metamorphic rock and
quartz veins 196 [44]

17 Fenshui Maoling Magmatic hydrothermal Au 1.8 3~5 Quartz veins 186 [61]
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Figure 4. (a) Histogram of geochronological dating of zircon U-Pb ages of magmatic rocks.
(b) Histogram of geochronological dating of mineralization.

The Wulong orefield contains the Wulong and Sidaogou magmatic-hydrothermal
(low-to-moderate hydrothermal) Au deposits. The largest Wulong deposit was formed at
122 Ma [62], whilst the Sidaogou deposit in southern Liaodong has no reliable mineralization age data.
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The Maoling orefield contains the Jurassic, Maoling, Fenshui, and Wangjiawaizi
magmatic-hydrothermal (low-to-moderate hydrothermal) Au deposits (186–189 Ma) [44,60,61].
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Figure 5. (a) Total alkali (Na2O + K2O) versus SiO2 diagram. (b) A/CNK (molecular Al2O3/(CaO + Na2O
+ K2O)) versus zircon U-Pb age diagram. Dates are in Table 1 and the Supplementary Material Table S1.

3. Methods

Published zircon U-Pb age and Hf isotope data (35 samples) and whole-rock Sr-Nd isotope
data (35 samples) from the Liaodong Peninsula have been compiled. Data compiled were from
Paleoproterozoic to Cretaceous rocks, including (porphyritic) granite, monzogranite, lamprophyre,
plagiogranite, (gneissic) granodiorite, (quartz) diorite, and syenodiorite. New data were also added
in this study via collecting and analyzing (for zircon Lu-Hf isotopes) samples from the Qingchengzi
orefield. The Zircon U-Pb age of the Miaonangou gabbro near the Baiyun gold deposit was in
1252 Ma [63], and the porphyrie (diorite, monzogranite) in the Baiyun deposit were emplaced in
229–222 Ma [63,64]. The Gujiapuzi granite porphyry in the Qingchengzi orefield was in 219 Ma [63].

Zircon Hf isotopes were analyzed using a 193-nm laser ablation (LA) system attached to a Neptune
multi-collector (MC)-ICP-MS (Laboratory of Isotope Geology, Tianjin Institute of Geology and Mineral
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Resources, China). A laser pulse (100 mJ energy, 10 Hz frequency, 50 µm beam size) was used for the
laser ablation [65]. Isobaric interference of 176Lu on 176Hf was corrected on the basis of the measured
175Lu value and the recommended 176Lu/175Lu ratio of 0.02655. Similarly, the 176Yb/172Yb value of
0.5887 and mean β Yb value obtained during Hf analysis on the same spot were used for interference
correction of 176Yb on 176Hf [66,67]. A 176Lu decay constant of 1.865 × 10−11-year−1 [68] and the
chondritic ratios of 176Hf/177Hf = 0.282785 and 176Lu/177Hf = 0.0336 [69] were used to calculate the
εHf(t) values [70–72].

The Hf-Nd contour maps were produced using the inverse distance weighted interpolation
method in the MapGIS 6.7 (Manufacturer is Zondy Cyber, Wuhan, China) program to contour the Hf
and Nd dataset, which accounts for the distance between sample points in the most representative
manner [73–75]. In order to produce the most robust spatial representation of the isotopic dataset, this
method used 12 nearest neighbors at a power of 2 following [24]. All isotope data were grouped by
the geometric interval method designated for class breaks. This ensured that each class range had
approximately the same number of values, and that the change between intervals was fairly consistent.
All point data shown in the contour maps represent the median for a range of Hf-Nd isotope values
from an individual sample, which helped to minimize data anomalies [23,28,76].

4. Results

4.1. Zircon Hf Isotope Features

Zircon εHf(t) values of the Longgang terrane vary from −18.9 to 5.8 (average −3.3), and the old
crustal Hf model ages (TDM

C) range from 994 to 2058 Ma (average 1349 Ma). Zircon εHf(t) values
of the Liaoji orogenic belt vary from −33 to 11.7 (average −11.4), and the TDM

C range from 763 to
2785 Ma (average 1449 Ma).

For the Paleoproterozoic rocks, the εHf(t) and TDM
C ranged from −17.4 to 7.9 (average −0.8)

and from 2036 to 3874 Ma (average 2948 Ma), respectively. For the Triassic rocks, the zircon εHf(t)
and TDM

C ranged from −18.9 to 5.2 (average −11.5) and from 763 to 2613 Ma (average 1422 Ma),
respectively. For the Jurassic rocks, the zircon εHf(t) and TDM

C range from −28.9 to −1.1 (average
−16.3) and from 1505 to 2785 Ma (average 2041 Ma), respectively (Table S2).

Contour maps of the zircon εHf(t) values for the Paleoproterozoic-Cretaceous Liaodong magmatic
rocks show four high εHf(t) domains and two low εHf(t) domains, among which two high εHf(t)
domains are in the Longgang terrane, and the other two are in the Liaoji orogenic belt (Figure 6).
There are two low εHf(t) domains in the Longgang terrane and the Liaoji orogenic belt, respectively
(Figure 6).

4.2. Whole-Rock Sr-Nd Isotope Features

The (87Sr/86Sr)i ratios of the Liaoji orogenic belt and the Longgang terrane range from 0.7044 to
0.7215 (average 0.7098) and from 0.7037 to 0.7306 (average 0.7085), respectively. The εNd values of the
Liaoji belt and the Longgang terrane range from −24.9 to −0.9 (average −14.1) and from −18.9 to 3.82
(average −5.1), respectively (Table S3).

For the Cretaceous rocks, the εNd and TDM values range from −19.3 to −11.9 (average −15.1) and
from 1388 to 2191 Ma (average 1831 Ma). For the Jurassic rocks, the (87Sr/86Sr)i, εNd, and TDM values
range from 0.7044 to 0.7215 (average 0.7104), −24.9 to −9.6 (average −11.2), and 1110 to 2826 Ma
(average 1888 Ma), respectively. For the Triassic rocks, the (87Sr/86Sr)i, εNd, and TDM values range
from 0.7037 to 0.7306 (average 0.7082), −18.9 to 3.82 (average −9.5), and 726 to 2290 Ma (average
1541 Ma), respectively. For the Paleoproterozoic rocks, the εNd and TDM values range from −16.2 to
−0.9 (average −5.8) and from 2480 to 2813 Ma (average 2279 Ma), respectively (Table S3).

The Contour maps of whole-rock Nd isotopes for the Paleoproterozoic-Cretaceous magmatic
rocks show three high εNd domains and four low εNd domains in the region. One high εNd and one
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low εNd domain are in the Longgang terrane, and the other two high εNd domains and three low
εNd domains are in the Liaoji belt (Figure 7).
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5. Discussion

5.1. Lithospheric Architecture of the Liaodong Peninsula

In the Longgang terrane, there are two domains characterized by high εHf values (Figure 6),
that are present in the area of the Triassic and Paleoproterozoic granite and diorite (Figure 1) and
indicate that the granite and the diorite of this area are derived from the mantle or juvenile lower crust.
There are also two domains characterized by low-εHf in the Longgang terrane (Figure 6), that indicate
the magmatic rocks of this area are derived from the lower crust. In the Liaoji orogenic belt, there
are two domains characterized by high-εHf (Figure 6), which are present in the area of Triassic and
Paleoproterozoic granite and diorite (Figure 1), and indicate that the rocks are derived from the mantle
or juvenile lower crust. There are also two low-εHf domains in the Liaoji orogenic belt (Figure 6) that
indicate the crustal origin of the magmatic rocks in this area.

There is one high εNd domain in the Longgang terrane, and there are two high εNd domains in
the Liaoji orogenic belt (Figure 7). However, the εNd values of the two domains in the Liaoji orogenic
belt are still below zero. Therefore, the magmatic rocks in the Liaoji orogenic belt are derived from the
lower crust. The high εNd domain in the Longgang terrane is present in the area of the Triassic granite
and the diorite (Figure 7). This also can indicate that the granite and the diorite are mostly derived
from the mantle or juvenile lower crust.

In the Longgang terrane, the area of the Triassic granite and the diorite with high-εHf and
high-εNd shows that the magmatic rocks are derived from the juvenile lower crust (Figure 8). The high
(87Sr/86Sr)i ratios also support this evidence (Figure 9). The area of Paleoproterozoic granite and diorite
with high-εHf in the Longgang terrane shows that the magmatic rocks are from juvenile lower crust
(Figure 8). In the Liaoji orogenic belt, the area of Triassic granite and diorite with high-εHf shows that
the magmatic rocks are from the juvenile lower crust (Figure 8). The area of Paleoproterozoic granite
and diorite with high-εHf shows that the magmatic rocks are from the depleted mantle (Figure 8).
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In the Paleoproterozoic, the Tanlu fault may have experienced dextral shear movement, and the
intense regional extension creating the Liaodong rift valley [77], although the actual timing and number
of stages (argued variably from four to six) of the rifting process remain controversial. The timing of
rifting is also variably attributed from 2.3 to 1.7 Ga or from 2.3 to 1.8 Ga [9,77]. The magmatic rocks in
the Longgang terrane are from the juvenile lower crust and the ancient lower crust, but the magmatic
rocks in the Liaoji orogenic belt are from the depleted mantle and the ancient lower crust (Figures 6–8).
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In the Mesozoic, the Liaodong Peninsula was likely in a post-collisional extensional setting [9,78,79],
and the Paleo-Pacific plate may have subducted beneath the NCC [6,9]. Zircon and monazite SHRIMP
U-Pb dating suggested that the continental collision took place in 220–240 Ma [80–82]. In the Triassic,
the collision between North China and Paleo-Pacific plate likely caused the lithospheric thickening in
the Liaoji rift [30,35,83]. The Triassic magmatic rocks are derived from the juvenile lower crust and the
ancient lower crust (Figures 6–9). The rocks have positive whole rock εNd(t) and zircon εHf(t) values,
indicating a juvenile lower crustal source. In addition, the Triassic magmatic rocks with high SiO2 contents
and low MgO concentrations have strong negative and variable whole rock εNd(t) and zircon εHf(t)
values, indicating that they were derived from partial melting of the ancient lower crustal materials with
involvement of mantle components [12]. In the Jurassic, the lithospheric thickening continued [1,84–88].
The sources of the magmatic rocks are from the ancient lower crust (Figures 6–9). The rocks with strong
negative and variable whole rock εNd(t) and zircon εHf(t) values indicate that they were derived from
partial melting of the Precambrian basement [7]. In the Cretaceous, large-scale delamination may have
taken place [35,89]. The magmatic rocks have the same characteristics of whole rock εNd(t) and zircon
εHf(t) values as those of Cretaceous magmatic rocks. Therefore, the sources of the magmatic rocks are also
derived from the ancient lower crust (Figures 6, 7 and 9).
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5.2. Regional Tectonic Evolution and Relation to Mineralization

The Triassic is the principal metallogenic epoch in Liaodong. Deposits formed in the Triassic
include the Zhenzigou, Nanshan, Diannan, and Xiquegou low-to-moderate hydrothermal Pb-Zn
deposits, the Baiyun and Xiaotongjiapuzi low-to-moderate hydrothermal Au-Ag deposits, and the
Gaojiapuzi low-to-moderate hydrothermal Ag deposits, that are all located in the Qingchengzi
orefield (Table 2). The mineralization ages (221–240 Ma) are consistent with the magmatic ages
(210–230 Ma), suggestive of a magmatic-hydrothermal genesis for these deposits [8]. The Sr and Pb
isotope characteristics of the deposits in the Qingchengzi orefield show that the ore-forming materials
were derived from the magma and metamorphosed sequences [8,64]. The deposits of the Qingchengzi
orefield are clustered in regions with high-εHf (Figures 6, 8 and 9). This infers that the deposits are
correlated to the magma, and that the magma is derived from the juvenile lower crust and the ancient
lower crust (Figure 10a).
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Figure 10. (a) Lithospheric architecture of the Liaodong Peninsula in the Triassic. (b) Lithospheric
architecture of the Liaodong Peninsula in the Jurassic. (c) Lithospheric architecture of the Liaodong
Peninsula in the Cretaceous.

In the Jurassic, the Maoling and Fenshui low-to-moderate hydrothermal Au deposits were formed
in the Maoling orefield, and the Yaojiagou porphyry Mo deposit was formed in the Qingchengzi orefield
(Table 2). Sulfur isotopes from the Miaoling deposit show typical magmatic sulfur characteristics [90].
The Pb isotope characteristics of the deposit show that the ore-forming materials came from the magma
and the metamorphic sequences [90]. The deposits are clustered in regions with low εHf and εNd
values (Figures 6–9). This infers that the deposits are correlated to the magma, which is derived from
the ancient lower crust (Figure 10b).

The Cretaceous is another important metallogenic epoch. The Wulong orefield contains Wulong
and Sidaogou low-to-moderate hydrothermal Au deposits. The characteristics of Sr and Pb isotopices
suggest that the rock- and ore-forming and diagenetic materials of the Sanguliu granite near the Wulong
orefield were derived from the magmatic rocks [62]. The H-O isotopes characteristics demonstrate that
the ore-forming fluid came from magmatic fluid [62]. The deposits are clustered in regions with low
εHf and εNd values (Figures 6–9). This infers that the deposits are correlated to the magma, which is
derived from the ancient lower crust (Figure 10c).

6. Conclusions

In the Triassic, the Paleo-Pacific plate subducted beneath the NCC and caused the lithospheric
thickening. The Triassic ore deposits are characterized by high εHf(t) values, and are correlated
to the magma, which is derived from the juvenile lower crust and the ancient lower crust. In the
Jurassic, the lithospheric thickening continued. The Jurassic ore deposits are characterized by low
εHf(t) and εNd values and are correlated to the magma derived from the ancient lower crust. In the
Cretaceous, large-scale delamination may have taken place in this period. The Cretaceous ore deposits
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are characterized by low εHf(t) and εNd values, and are correlated to the magma, which is derived
from the ancient lower crust.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/9/3/179/s1,
Table S1: Major elements datas, Table S2: Hf isotope, Table S3: Sr-Nd isotope.
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