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Abstract: The Shuiyindong Gold Mine hosts one of the largest and highest-grade, strata-bound
Carlin-type gold deposits discovered to date in Southwestern China. The outcrop stratigraphy and
drill core data of the deposit reveal Middle–Upper Permian and Lower Triassic formations. The
ore is mainly hosted in Upper Permian bioclastic limestone near the axis of an anticline. The gold
is mainly hosted in arsenian pyrite and arsenopyrite, mainly existing in the form of crystal lattice
gold, submicroscopic particles and nanoparticles. Fluorite commonly occurs at the vicinity of an
unconformity between the Middle–Upper Permian formations, which is proposed to be the structural
conduit that fed the ore fluids. Calcite commonly fills fractures at the periphery of decarbonated
rocks, which contain high grade orebodies. This study aimed to verify the occurrence of two distinct
hydrothermal events at the Shuiyindong, based on Sm–Nd isotope dating of the fluorite and calcite.
For this purpose, rare-earth element (REE) concentrations, Sm/Nd isotope ratios, and Sm–Nd isochron
ages of the fluorite and calcite were determined. The fluorite and calcite contain relatively high
total concentrations of REE (12.3–25.6 µg/g and 5.71–31.7 µg/g, respectively), exhibit variable Sm/Nd
ratios (0.52–1.03 and 0.57–1.71, respectively), and yield Sm–Nd isochron ages of 200.1 ± 8.6 Ma and
150.2 ± 2.2 Ma, with slightly different initial εNd(t) values of −4.4 and −1.1, respectively. These two
groups of Sm–Nd isochron ages suggest two episodes of hydrothermal events at the Shuiyindong
gold deposit. The age of the calcite probably represents the late stage of the gold mineralization
period. The initial εNd(t) values of the fluorite and calcite indicate that the Nd was probably derived
from mixtures of basaltic volcanic tuff and bioclastic limestone from the Permian formations.

Keywords: Sm–Nd dating; Shuiyindong; Carlin-type gold deposit; Southwestern China

1. Introduction

The Dian-Qian-Gui “Golden Triangle”, located at the junction of Yunnan, Guizhou, and Guangxi
Provinces in Southwestern China (Figure 1), is famous for hosting clusters of Carlin-type gold
deposits [1–4]. More than 200 Carlin-type gold deposits and occurrences have been identified in the
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“Golden Triangle”, with a total proven gold reserve of more than 800 tons [3,5]. It is the second-largest
Carlin-type gold mineralized area in the world, after the largest in Nevada, USA [3,5].
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obtained a 40Ar–39Ar plateau age of 194.6 ± 2 Ma, using sericite in quartz veins from the Lannigou 
gold deposit. Chen et al. [8] reported ages of 204 ± 19 Ma, 206 ± 22 Ma, and 235 ± 33 Ma based on Re–
Os isotopes of arsenopyrite from the Lannigou, Jinya, and Shuiyindong deposits, respectively. Pi et 
al. [9] dated hydrothermal rutile and sericite from the Zhesang gold deposit and obtained an in situ 
U–Pb isochron age of 213.6 ± 4.6 Ma for rutile and a 40Ar–39Ar plateau age of 215.3 ± 1.9 Ma for sericite. 
In addition, Sm–Nd isochron ages of 134 ± 3 Ma and 136 ± 3 Ma have been reported for calcite from 
the Shuiyindong gold deposit [10]. Wang [11] reported another Sm–Nd isochron age of 148.4 ± 4.8 
Ma of calcite from the Zimudang gold deposit. Chen et al. [12] obtained weighted-mean secondary 
ion mass spectrometry (SIMS) Th–Pb age of 141 ± 3 Ma for apatite from the Nibao gold deposit. These 
ages can be mainly classified into two groups—ca. 130–150 Ma and 200–230 Ma. Nevertheless, further 
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Direct dating of hydrothermal deposits is critical for properly evaluating their relationships to
tectonic, magmatic, and metamorphic events. However, despite previous detailed investigations,
the ages of Carlin-type gold deposits in Southwestern China are poorly constrained. Chen et al. [7]
obtained a 40Ar–39Ar plateau age of 194.6 ± 2 Ma, using sericite in quartz veins from the Lannigou gold
deposit. Chen et al. [8] reported ages of 204 ± 19 Ma, 206 ± 22 Ma, and 235 ± 33 Ma based on Re–Os
isotopes of arsenopyrite from the Lannigou, Jinya, and Shuiyindong deposits, respectively. Pi et al. [9]
dated hydrothermal rutile and sericite from the Zhesang gold deposit and obtained an in situ U–Pb
isochron age of 213.6 ± 4.6 Ma for rutile and a 40Ar–39Ar plateau age of 215.3 ± 1.9 Ma for sericite. In
addition, Sm–Nd isochron ages of 134 ± 3 Ma and 136 ± 3 Ma have been reported for calcite from the
Shuiyindong gold deposit [10]. Wang [11] reported another Sm–Nd isochron age of 148.4 ± 4.8 Ma
of calcite from the Zimudang gold deposit. Chen et al. [12] obtained weighted-mean secondary ion
mass spectrometry (SIMS) Th–Pb age of 141 ± 3 Ma for apatite from the Nibao gold deposit. These
ages can be mainly classified into two groups—ca. 130–150 Ma and 200–230 Ma. Nevertheless, further
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research is required on whether there were two episodes of hydrothermal or metallogenesis events
during the formation of the Carlin-type gold deposits in the Dian-Qian-Gui “Golden Triangle” area in
Southwestern China.

Sm and Nd have similar chemical characteristics. Therefore, the daughter 143Nd decayed from the
parent 147Sm is often preserved in the mineral lattice, i.e., the Sm–Nd isotope system has high likelihood
of being closed and capable of resisting weathering and alteration to some degree [13]. Therefore,
Sm–Nd isotope dating is an effective method for precisely determining the time of hydrothermal
events [14–16], even for relatively young mineralization [17]. It has been successfully used for dating
hydrothermal Ca-bearing minerals, such as calcite [18–20], scheelite [15,21,22], fluorite [23–25], and
tourmaline [15,21].

The ideal method for determining the age of gold deposits is to analyze minerals that are
known to have formed coevally with the gold. Fluorite and calcite are common gangue minerals
in Carlin-type gold deposits in Southwestern China. Previous research indicated that the rare-earth
element (REE) patterns of fluorite and calcite are unique, characterized by middle rare-earth element
(MREE) enrichment and relatively variable Sm/Nd ratios [10,26], which is favorable for Sm–Nd isotope
dating. The Shuiyindong gold deposit is the largest gold deposit reported thus far in Southwestern
China, with a total gold reserve of over 260 tons [27,28]. In this study, we selected the Shuiyindong
gold deposit as a case study, and explore whether there were two distinct hydrothermal events based
on Sm–Nd isotope dating of fluorite and calcite.

2. Geological Setting

Carlin-type gold deposits in the Dian–Qian–Gui area are restricted to the Youjiang Basin (Figure 1).
The basin is bound to the northwest and northeast by the Mile–Shizong fault and Ziyun–Du’an
fault, respectively, separating the basin from the Yangtze Craton [5,8]. The southwestern and
southeastern margins of the basin are separated from the Simao and Cathaysia blocks by the Honghe
and Pingxiang–Nanning faults, respectively [8,29].

The Shuiyindong deposit, located in the northern part of the Youjiang Basin, lies approximately
20 km northwest of Zhenfeng in Guizhou Province (Figure 1). The mining area has been divided into
four ore blocks, Shuiyindong, Xionghuangyan, Bojitian, and Nayang (Figure 2). Detailed geological
descriptions of the deposit are available in Su et al. [30] and Tan et al. [28,31].
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The outcrop stratigraphy and drill core data in the Shuiyindong mining area reveal Permian
and Triassic formations that consist of muddy limestone, bioclastic limestone, siltstone, and argillite
(Figures 2 and 3). The Middle Permian Maokou formation, a massive bioclastic limestone, is conformably
overlain by the Upper Permian Longtan, Changxing, and Dalong and Lower Triassic Yelang formations
(Figure 3). These strata were deformed into a nearly east–west-trending anticline with north and south
limbs cut by reverse faults F101 and F105, respectively (Figure 2; [32]). The Maokou and Longtan
formations are separated by an unconformity (SBT), consisting of silicified, brecciated argillite and
limestone. SBT has been proposed as the structural conduit that fed ore fluids into the anticline
core [28].
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In this deposit, gold mineralization occurs mainly at the vicinity of the anticlinal core, and is
preferentially disseminated in bioclastic limestone and calcareous siltstone of the Longtan formation at
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depths of 100–1400 m below the surface (Figure 3). In addition, SBT hosts low-grade orebodies (Figure 3).
The mineralization is closely associated with decarbonatization (carbonate dissolution), silicification,
sulfidation, and dolomitization, similar to Carlin-type gold deposits in Nevada, USA [33]. The gold
is mainly hosted in arsenian pyrite and arsenopyrite as invisible forms including submicroscopic
particles, nanoparticles, and crystal lattice gold, which suggests that sulfidation took place during the
main mineralization stage [34]. Sulfides formed from sulfidation consist mainly of arsenian pyrite,
arsenopyrite, marcasite, and lesser orpiment, realgar (Figure 4a,b), and stibnite. Gangue minerals
consist of quartz, dolomite, calcite (Figure 4a,b), fluorite (Figure 4c,d), and clay minerals (e.g., kaolinite
and illite). Fluorite generally occurs at the vicinity of SBT, and calcite commonly fills fractures at the
periphery of highly porous decarbonated rocks that host high-grade orebodies.
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containing intergrown realgar and orpiment from drill cores at the periphery of decarbonated rocks;
(c,d) fluorite samples cementing argillite breccia or intergrowth with calcite at the vicinity of SBT.

3. Sampling and Analytical Methods

Six fluorite samples were collected from drill holes ZK16701, ZK17501, ZK19901, and ZK24304 of
SBT at depths of 600–747 m below the surface (Figure 2). Five calcite samples, containing intergrown
realgar and orpiment, were collected from drill holes ZK23908 and ZK23902 at depths of 376–522 m
below the surface (Figure 3). Pure fluorite and calcite separates were hand-picked under a binocular
microscope and crushed to 200 mesh in an agate mortar.

Prior to isotopic analysis, concentrations of REE in subsamples from the separated fluorite and
calcite were determined by a Perkin-Elmer Sciex ELAN 6000 inductively coupled plasma quadrupole
mass spectrometer at the Institute of Geochemistry at the Chinese Academy of Sciences. Sm and Nd
concentrations and isotope ratio measurements were performed using a MAT-261 thermal ionization
mass spectrometer at the Tianjin Institute of Geology and Mineral Resources at the Chinese Academy
of Geological Sciences. Detailed analytical procedures are available in Peng et al. [13], Su et al. [10],
and Zhang et al. [35]. Nd ratios were normalized to a 146Nd/144Nd ratio of 0.7219, using a power
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law fractionation correction. The reproducibility of isotopic ratios is better than 0.005% (2σ); the
precision for Sm and Nd concentrations is less than 0.5% of the quoted values (2σ). The average
element concentrations and isotopic ratios of the standard BCR-1 determined during this study were
6.57 µg/g for Sm, 28.75 µg/g for Nd, and 0.512644 ± 0.000005 (2σ, n = 6) for 143Nd/144Nd, which are
consistent with the values of 6.58 µg/g for Sm and 28.8 µg/g for Nd in the literature [22]. Replicate
analyses of the Johnson and Mattey® Nd standard (JMC) provided an average 143Nd/144Nd ratio of
0.511132 ± 0.000005 (2σ, n = 6). Average blanks were 0.03 ng for Sm and 0.05 ng for Nd. The decay
constant of λ147Sm = 6.54 × 10−12/year was used in the age calculation. Sm–Nd isochron ages were
calculated using the computer program ISOPLOT 2.9 [36].

4. Results

REE concentrations and Sm–Nd isotopic compositions of fluorite and calcite are shown in Figure 5
and listed in Tables 1 and 2, respectively. All the samples contained considerable ΣREE concentrations
(12.3–25.6 µg/g for fluorites and 5.71–31.7 µg/g for calcites) and variable Sm/Nd ratios (0.52–1.03 for
fluorites and 0.57–1.71 for calcites). Chondrite-normalized REE patterns of fluorite and calcite all
showed MREE enrichment characteristics (Figure 5a,b). However, fluorite and calcite exhibited certain
apparent differences between their REE patterns. Fluorite was characterized by negative Eu anomalies
(δEu = 0.67–0.78; Table 1) and a parabolic shape, with the peak between Gd and Ho (Figure 5a), whereas
calcite was characterized by positive Eu anomalies (δEu = 1.01–1.54; Table 1) and a hump shape with
the peak on Eu (Figure 5b).
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Table 1. REE data (µg/g) for fluorite and calcite from the Shuiyindong deposit.

Sample Number Minerals Locality La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ΣREE δEu

16701-7 Fluorite ZK16701, 615 m 0.938 1.48 0.317 2.06 1.40 0.523 4.02 0.745 5.17 1.10 2.64 0.266 1.34 0.196 22.2 0.67
16701-10 Fluorite ZK16701, 627 m 0.850 0.999 0.269 1.94 1.29 0.552 4.43 0.841 6.06 1.32 2.97 0.335 1.54 0.209 23.6 0.71
17501-1 Fluorite ZK17501, 600 m 0.386 0.723 0.175 1.52 1.40 0.593 5.26 0.946 6.95 1.56 3.65 0.380 1.84 0.210 25.6 0.67
17501-6 Fluorite ZK17501, 605 m 0.451 0.750 0.239 1.97 1.13 0.442 3.48 0.635 4.87 0.99 2.57 0.306 1.18 0.146 19.2 0.68
19901 Fluorite ZK19901, 675 m 0.959 1.43 0.476 2.71 1.48 0.543 3.64 0.671 4.87 1.11 2.74 0.298 1.47 0.187 22.6 0.71

24304-3 Fluorite ZK24204, 747 m 0.559 0.768 0.226 1.38 0.815 0.340 2.20 0.365 2.62 0.62 1.43 0.166 0.714 0.099 12.3 0.78
23902-34 Calcite ZK23902, 376 m 0.239 0.838 0.169 1.14 0.609 0.296 1.01 0.148 0.69 0.13 0.25 0.018 0.144 0.017 5.71 1.15
23902-57 Calcite ZK23902, 441 m 0.511 2.000 0.439 3.24 2.06 0.794 2.81 0.401 2.44 0.40 0.88 0.112 0.484 0.054 16.6 1.01
23902-67 Calcite ZK23902, 487 m 0.254 0.745 0.174 1.50 2.83 1.94 7.02 1.03 5.66 0.79 1.43 0.153 0.773 0.104 24.4 1.33
23902-76 Calcite ZK23902, 522 m 0.892 1.88 0.330 1.60 0.894 0.572 1.77 0.263 1.76 0.31 0.64 0.090 0.480 0.060 11.5 1.39
23908-30 Calcite ZK23908, 427 m 0.354 1.43 0.316 2.56 3.85 2.72 7.59 1.26 6.88 1.05 2.16 0.234 1.12 0.138 31.7 1.54

Note: δEu = EuN/
√

SmN ×GdN.

Table 2. Sm and Nd isotope compositions of fluorite and calcite from the Shuiyindong deposit.

Sample Number Occurrence Sm (µg/g) Nd (µg/g) Sm/Nd 147Sm/144Nd 143Nd/144Nd <2σ> εNd

16701-7 Fl 1.4365 2.3481 0.61 0.3699 0.512637 ± 0.000006 −4.4
16701-10 Fl 1.1948 1.7974 0.66 0.4019 0.512678 ± 0.000013 −4.4
17501-1 Fl + Cal 1.3179 1.2764 1.03 0.6242 0.512981 ± 0.000023 −4.2
17501-6 Fl + Cal 1.2285 1.8001 0.68 0.4126 0.512692 ± 0.000009 −4.4
19901 Fl + Cal + Qz 1.6196 3.1428 0.52 0.3115 0.512561 ± 0.000005 −4.4

24304-3 Fl 0.8801 1.6124 0.55 0.3300 0.512587 ± 0.000003 −4.4
23902-34 Cal 0.6734 1.1878 0.57 0.3427 0.512721 ± 0.000010 −1.1
23902-57 Cal + Rlg + Orp 2.1858 3.1230 0.70 0.4231 0.512798 ± 0.000011 −1.2
23902-67 Cal + Rlg + Orp 2.7132 1.5875 1.71 1.0332 0.513401 ± 0.000008 −1.1
23902-76 Cal + Rlg + Orp 1.0964 1.6630 0.66 0.3986 0.512778 ± 0.000004 −1.1
23908-30 Cal + Rlg + Orp 3.9756 2.9210 1.36 0.8228 0.513194 ± 0.000017 −1.1

Abbreviations: Cal—calcite, Rlg—realgar, Orp—orpiment, Fl—fluorite, Qz—quartz.
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The six fluorite samples collected from SBT showed 147Sm/144Nd and 143Nd/144Nd values ranging
from 0.3115 to 0.6242 and from 0.512561 to 0.512981, respectively, and yielded a Sm–Nd isochron age of
200.1 ± 8.6 Ma (Figure 5c), with a low mean square of weighted deviates (MSWD) of 0.47 and an initial
143Nd/144Nd ratio of 0.512154 ± 0.000019 (initial εNd(t) = −4.4). The five calcite samples collected
from orebodies showed 147Sm/144Nd and 143Nd/144Nd values ranging from 0.3427 to 1.0332 and from
0.512721 to 0.513401, respectively, and yielded a different Sm–Nd isochron age of 150.2 ± 2.2 Ma
(Figure 5d), with a low MSWD of 0.18 and an initial 143Nd/144Nd ratio of 0.5123854 ± 0.000081 (initial
εNd(t) = −1.1). The low MSWD values reflect the excellent fit of the data to a straight line.

5. Discussion

The linear relationships shown in Figure 5c,d represent isochrons or mixed lines with two end
members having quite different 143Nd/144Nd and 147Sm/144Nd ratios. In the former, the slopes of the
straight lines determine the ages of fluorite and calcite; in the latter, the slopes have no meaning but
simply reflect the isotopic compositions and Sm/Nd ratios of the two end members. The variation in
Sm/Nd ratios is not attributable to the mixing of the two end members because this would result in
variable initial εNd(t) values. The εNd(t) values of fluorite and calcite range from −4.2 to −4.4 and from
−1.1 to −1.2, both showing slight variations. In addition, no linear relationships could be determined
from the 1/Nd vs. 143Nd/144Nd diagrams for fluorite and calcite (Figure 6). Therefore, the possibility of
a mixing line can be rejected.
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The slopes of the straight lines in Figure 5c,d determine the ages of fluorite (200.1 ± 8.6 Ma) and
calcite (150.2 ± 2.2 Ma), respectively. The difference in ages suggests the occurrence of two episodes of
hydrothermal events at the Shuiyindong deposit. Some important progress has been made for dating
hydrothermal minerals from Carlin-type gold deposits in Southwestern China. Some hydrothermal
minerals (e.g., calcite and apatite) were deposited during the late Yanshanian Period (ca. 130–150 Ma),
based on the Sm–Nd isochron age (calcite; [10,11]) and the SIMS Th–Pb age (apatite; [12]). However,
other hydrothermal minerals (e.g., sericite, arsenopyrite, and rutile) were precipitated during the
Indosinian Period (ca. 200–230 Ma), based on the 40Ar–39Ar plateau age (sericite; [7]), the Re–Os age
(arsenopyrite; [8]), and the in situ U–Pb age (rutile; [9]). The two age groups may also imply two
distinct low-temperature hydrothermal events in Southwestern China.

To date, there is no consensus on the age of the Shuiyindong gold deposit owing to the lack of
minerals clearly related to gold mineralization. The Re–Os isotope age of arsenopyrite (235 ± 33 Ma; [8]),
interpreted as the age of gold mineralization, may be a mixed age. The arsenopyrite is very difficult
to separate from pre-ore pyrite, as it is commonly intergrown with zoned pyrite containing pre-ore
Au-poor pyrite cores and Au-rich pyrite overgrowth rims (Figure 7a,b; [2,5]).
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Hydrothermal calcite around orebodies is believed to be a product of decarbonatization of the
host rocks that served as the main source of Fe for sulfidation during gold deposition [37]. The gold
often occurs in invisible forms, including submicroscopic particles, nanoparticles, and crystal lattice
gold. Gold submicroscopic particles and nanoparticles are mostly distributed in arsenian pyrite or
quartz veinlets, while lattice gold always occurs as crystal lattice in the overgrowth rims of arsenian
pyrite [30,34]. Decarbonatization and sulfidation are responsible for providing the Fe and S to form
hydrothermal arsenian pyrite, which is the most important mineral coprecipitated with gold. For
Carlin-type gold deposits, numerous studies have shown that gold deposition is closely associated
with decarbonatization of host strata [28,33,37]. After decarbonatization, host rocks commonly develop
high porosity (Figure 7c), and calcite veins fill fractures at the periphery of decarbonated rocks. It is
noteworthy that decarbonatization did not occur in the wall rocks, which are nonporous (Figure 7d).
Therefore, the age of the calcite (150.2 ± 2.2 Ma) formed from decarbonatization potentially reflects the
age of decarbonatization and gold deposition during the late stages of the Yanshanian Period.
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Figure 7. Backscattered electron (BSE) image of selected ore as well as wall rock from Shuiyindong.
(a,b) BSE image of ores containing zoned arsenian pyrite (showing As-rich rims on As-poor pyrite cores)
and arsenopyrite (after Su et al. [5,38]). (c) BSE image of high-grade ore showing decarbonatization and
high porosity. (d) BSE image of wall rock showing no decarbonatization and nonporous. Abbreviations:
Asp—arsenopyrite, As-py—arsenian pyrite, Dol—dolomite, Fe-Cal—ferroan calcite, Fe-Dol—ferroan
dolomite, Py—pyrite, Qz—quartz.

Fluorite veins commonly cement argillite breccia or are intergrown with calcite veins at the
vicinity of SBT at the Shuiyindong deposit (Figure 4c,d). However, no fluorite appears at decarbonated
high-gold-grade rocks or around other types of ores. Until now, the relationship between the
precipitation of fluorite and gold mineralization remains uncertain based on geological evidence (e.g.,
mineral assemblage and paragenetic sequence). The age of the hydrothermal fluorite (200.1 ± 8.6 Ma)
likely records an episode of low-temperature hydrothermal events in the Indosinian Period in
Southwestern China.
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Isotope data can also be used to shed some light on the source of the Nd in the fluorite and
calcite. The Maokou formation limestone and Longtan formation shale from the Permian period in
Southeastern China have low εNd(t) values of −6.3 and −12.5 at 150 Ma, as calculated using the data
of Peng et al. [39] and Chen and Jahn [40], respectively. The basaltic volcanic tuff from the Permian
period has an εNd(t) value of +1.5, based on the data in Chung and Jahn [41] at 150 Ma. The initial
εNd(t) values of fluorite and calcite are −4.4 and −1.1, respectively, and are in the range of values for
Permian limestone (−6.3) and basaltic volcanic tuff (+1.5). This indicates that the Nd in the fluorite
and calcite probably originated from mixtures of basaltic volcanic tuff and bioclastic limestone of the
Permian formations, such as the Longtan formation.

6. Conclusions

Fluorite and calcite from the Shuiyindong gold deposit contain considerable concentrations of
REE, and exhibit variable Sm/Nd ratios, facilitating the direct dating of associated hydrothermal events.
The fluorite and calcite yielded Sm–Nd isochron ages of 200.1 ± 8.6 (initial εNd(t) = −4.4; MSWD = 0.47)
and 150.2 ± 2.2 Ma (initial εNd(t) = −1.1; MSWD = 0.18), respectively. These two groups of Sm–Nd
isochron ages suggest two episodes of hydrothermal events in Shuiyindong. The age of the calcite
probably represents the late stage of the gold mineralization period. Initial Nd isotopic compositions
indicate that the Nd in the fluorite and calcite was likely derived from mixtures of basaltic volcanic tuff

and bioclastic limestone of the Permian formations.
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