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Abstract: Bauxite residue is the voluminous by-product of alumina production after Bayer process.
Its high alkalinity causes disposal problems and harmful environmental impacts. However, the residue
contains significant amounts of valuable elements, such as rare earth elements, including scandium.
Greek bauxite residue contains a high amount of scandium close to its main resources. Taking into
account scandium’s limited availability coupled with its high demand in modern technology,
bauxite residue could be considered as a potential resource for scandium recovery. In this study,
the optimization of scandium extraction from bauxite residue with sulfuric acid is investigated
using Taguchi methodology. Based on previous studies, acid molarity, leaching time, solid/liquid
ratio, and reaction temperature were selected as control parameters for the selective Sc recovery.
Method optimization targeted the highest concentration of scandium combined with the lowest
concentration of iron without taking into account application constraints. Maximization of scandium
concentration can be achieved only by reduced selectivity. The predicted values resulted from the
Taguchi methodology were affirmed by a confirmation experiment conducted at optimal conditions.
Regression analysis provided the respective equations to be applied on several conditions, depending
on different applications.

Keywords: Taguchi method; experimental design; optimization; scandium; extraction; sulfuric acid

1. Introduction

Bauxite residue (BR) or red mud (RM) is the by-product generated in alumina production after
Bayer process. About 1–1.5 tons of BR are generated per ton of alumina produced [1], raising its
annual output up to almost 120 million tons and its accumulation up to 2.7 billion tons globally [2].
Its disposal is problematic, requiring large land areas and overloading the alumina’s production cost [3].
During the years, many investigations have been performed aiming for a low cost and environmental
friendly treatment and utilization of BR in numerous uses [4–6], such as an agent in building and
constructing materials [7–10], an agent in the ceramic and glass industry [11–13], as an adsorbent for
pollutant removal from water and wastewater or in pigments [14–19], as a coagulant for waste and
water treatment [20–22], an absorbent of waste acidic gases [23–25], an agent for neutralizing acidic
waste and raw materials of low cost for the recovery of valuable elements [26–38], in catalysts [39,40],
and as an agent for soil remediation [41–44].

All these applications could be potential and beneficial routes for BR consumption and its
introduction in the economic cycle. BR is a complex material enriched in numerous metals.
Depending on bauxite origin and Bayer process conditions, it mainly consists of Fe, Al, Ca, Na,
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Si, Ti oxides, and salts, and significant amounts of minor and trace elements, such as V, Cr, Zn, Ga,
Nb, Zr, and Ta as well as rare earths (REEs) (Sc, Y, lanthanides) [45–48]. It was found that Greek
BR—produced by Mytilineos S.A. (formerly Aluminum of Greece, the largest Greek alumina and
aluminum producer)—contains ~1kg REEs/t of dry BR with a Sc content of about 120g/t of dry BR
(0.02% Sc2O3), close to Sc main resources [45–48]. Scandium is the most valuable of rare earth elements
in BR [47] and is classified by the European Commission as a Critical Raw Material (CRM) due to its
high economic importance, resulting from the growing market demand in advanced technologies in
combination with its low availability [49,50].

Scandium extraction from its main minerals is difficult due to its rarity, as well as its
low concentration in natural deposits (1–800 mg/kg), in addition to the presence of radioactive
elements [51–53]. Different methods have been investigated for the recovery of REEs and Sc from
BR, such as hydrometallurgical treatment, ion liquid leaching, bioleaching, or pyrometallurgical
pretreatment of the residue before the leaching process. Pyrometallurgy, although energy consuming,
may result in an overall cost reduction due to major removal of main elements, thus having an
important impact on the cost of the subsequent Sc purification [54]. Furthermore, leaching with
ionic liquids falls short due to their cost and lower Sc recoveries, while bioleaching is not thoroughly
investigated [55–57]. Hydrometallurgy technique is performed for Sc and REE recovery, since it is
usually of low cost at ambient conditions [26]. Several solutions (acidic, alkaline) have been tested as
solvents. Mineral acids were found to be more suitable, resulting in higher Sc recovery and favoring
following processes, e.g., ion exchange and solvent extraction. Method yield and selectivity highly
depend on the type of mineral acid used, as well as the leaching parameters [28,58,59].

A large number of experiments are needed in order to study the effect of each parameter in
addition to all possible interactions between them on the response variable. The Taguchi experimental
design can be employed instead. The Taguchi Method uses orthogonal arrays to conduct a set of a
limited number of experiments. It involves the description of the control factors in order to obtain the
optimum results of the process. The relative importance of each parameter is determined with ANOVA
statistical method. The results of the experiments are evaluated in order to predict the optimum
outcome [60–62].

In this study, the optimization of the scandium selective leaching process from BR with sulfuric
acid is investigated using Taguchi methodology. Sulfuric acid was preferred for its mild environmental
impact compared to other mineral acids of the same molarity. Method performance was assessed by Sc
concentration in the leachate solution. Method selectivity was estimated in respect to iron content, since
it is the major element of BR, and therefore its removal becomes problematic in subsequent processes of
scandium isolation. Taguchi experimental design was used in order to evaluate the contribution of each
parameter and define the optimal conditions for maximization of concentration. Application limitations,
such as scale–up of the process and feed requirements of a subsequent ion exchange procedure for
scandium purification, were not taken into account in this study. The scope of this study was to
evaluate the interaction of different parameters. Previous studies assess the effect of each parameter,
either on specific leaching condition or by taking into account the combined effect of the maximum of
two parameters. The key point of the present work is to estimate the synergy effect of all leaching
variables, which has not been previously presented. Acid molarity, leaching time, solid-to-liquid ratio,
and reaction temperature were indicated as control parameters for Sc concentration in the leachate
solution and its selective recovery in respect to iron [63]. Signal-to-noise (S/N) ratio and analysis of
variance (ANOVA) statistical approach was employed for the calculation of percentage contribution
of each parameter and optimization of leaching conditions. Equations for Sc and iron concentration
were produced by applying regression analysis. A confirmation experiment was conducted under the
optimal conditions and the results were in good agreement with the predicated values.
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2. Materials and Methods

2.1. Sample Collection and Characterization

Bauxite residue used in this study was obtained from Mytilineos S.A., formerly Aluminum of
Greece, in the form of ferroalumina. Ferroalumina is a cake with 26% humidity produced from a BR
slurry, which is washed and filtered under pressure. The BR sample was very fine, having a particle
size of D80 = 25 µm. The initial pH of the BR slurry was 11.3 (5 g of BR stirred with 100 mL of deionized
water for 30 min). The sample used in all tests was dried at 105 ◦C and crushed prior to leaching.

As mentioned elsewhere [63], the chemical composition of BR is Fe2O3 (43.5%), Al2O3 (19%), SiO2

(7.3%), TiO2 (5.6%), Na2O (3%), and CaO (9.4%). Mineralogical analysis of BR revealed phases of
iron (hematite, goethite), alumina (gibbsite, diaspore, aluminium oxide) titania (rutile), silica (quartz),
calcium (calcite), and aluminosilicates (kaolinite, anorthite, cancrinite, montmorilonite). Scandium
rises up to an average of 100 mg/kg and is almost constant over 20 years.

2.2. Preliminary Tests

Several different acids had been tested previously [45,46,64]. It was proven that the type of acid
used in the leaching procedure was critical for the recovery of all metals studied. Extraction of Sc is
mainly influenced by the protons produced by the acids. The acid counter ion severely influences iron,
with HCl resulting in the highest recovery [45]. Chloride ions compared to sulfate more easily replace
the hydroxyl groups of hematite, and iron is readily released in the solution [58]. Thorough studying
of the processes and mechanisms taking place is beyond the scope of this study.

The “one-factor-at-a-time” approach was used in order to evaluate the effect of several parameters,
such as solid-to-liquid ratio (S/L), acid concentration (M), time, temperature, final pH, and type of
agitation [63].

The results obtained indicated four parameters being the most important control factors for
Sc recovery and concentration: Acid (H2SO4) molarity, Temperature, Solid-to-Liquid ratio (S/L),
and Leaching time. In order to study the effect of these parameters on the proposed process,
and identify their optimized values, a matrix experiment is set up by appropriately changing their
values over a specified range [65,66]. According to the findings of the previous phase and following a
symmetric as well as a rational resources’ use approach, each parameter is chosen to vary among three
values: minimum, middle, and maximum, as shown in Table 1.

Table 1. Parameters and their values at each level to be set and studied in experiments.

Factor Parameter Unit
Level

1 (Minimum) 2 (Middle) 3 (Maximum)

A H2SO4 molarity M 2 4 6
B Temperature ◦C 25 55 85
C Solid-to-Liquid ratio % 10 20 30
D Leaching time h 1 4 7

2.3. Experimental Procedure

The experimental procedure as well as instrumentation and reagents used are reported in details
elsewhere [63]. All experiments investigated in this study were conducted using sulfuric acid at three
different acid concentrations (2, 4, and 6 M), as designed by Taguchi’s experimental methodology
(Table 1). The different solid-to-liquid ratios were obtained by mixing a specific amount of BR with
200 mL of sulfuric acid of a certain molarity.

The solution was magnetically stirred at 600 rpm in all cases on a magnetic stirring plate. Agitation
rate was not involved in the parameters tested, since it is of lesser importance [63].

The leaching process was allowed to proceed for the different time intervals (1, 4, and 7 h).
After each experimental run, the pH of the slurry was measured. Temperature leaching tests were
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performed under reflux in a pre-heated water bath using pre-heated acids with magnetic agitation.
Temperatures tested are also listed in Table 1.

Separation of liquid from solid residue was performed after completion of each test,
via centrifugation (3000 rpm for 10 min, Eppendorf 5702 centrifuge). All liquid samples were filtered
under vacuum with 0.45 µm cellulose nitrate membranes supplied by Whatman plc (GE Healthcare
Life Sciences, Little Chalfont, UK) prior to storage and analysis.

All solutions were analyzed with an Optima 7000 DV, Perkin Elmer Inductively Coupled Plasma
Optical Emission Spectrometer (ICP-OES) instrument. External calibration method was applied using
multi-element stock solutions (High Purity Standards, Charleston, USA). The wavelengths used (nm)
were Sc (361.383 nm) and Fe (259.939 nm), while method accuracy and precision was checked using
BX-N Certified Reference Material, as reported elsewhere [48].

2.4. Taguchi Method

In the case of four parameters with values of three different levels, a traditional experimental
design—to satisfy all possible combinations (34)—would require the realization of 81 individual
experiments. Considering that each experiment has to be repeated 2–3 times (requirements of
repeatability), a significant analytical measurement load arises, lasting a long time and also having
a high cost due to the extensive consumption of resources and man-hours. To avoid this fully
combinatorial pattern, a fractional experimental plan is proposed based on the Taguchi method [67].

The Taguchi method sets the norms for performing experiments in order to test the sensitivity
of a set of response variables (dependent variables) under the effect of a set of control parameters
(independent variables) by considering experiments in “orthogonal array”, thus aiming to attain the
optimum setting of the control parameters [68]. The fundamental advantage of Taguchi method lies in
using “orthogonal array” distribution. It allows a much-reduced set of experiments to be done in order
to find the optimum settings of involved control factors, at a minimum cost of resources but in a robust
way, achieving high rates of reproducibility [62,66,69].

The Taguchi method is applied through (a) the design phase of the experiment, (b) the calculation of
factor effects, (c) the selection of optimum factor levels, and finally at (d) the validation of experimental
results stage [66].

In our study (four factors at three levels), the appropriate orthogonal array is LA(BC),
which distributes the factors (parameters) in a balanced manner, is L9(34). A = 9 is the requisite number
of experiments to be conducted, indicating the significant economy of the experimental procedure
(materials and man-hours) under the Taguchi design, as the traditional design of 81 experiments is
reduced by a square root. B = 3 denotes the number of levels and C = 4 corresponds to the factors
involved in the experiment. Table 2 presents the L9 orthogonal matrix experiment plan with the
resulting combinations among factors and their levels to be considered in order to study the effect of Sc
leaching parameters.

Table 2. L9(34) orthogonal matrix experimental plan.

Experiment No.
Factors/Parameters

A (H2SO4 Molarity) B (Temperature) C (Solid/Liquid) D (Time)

1 2 25 10 1
2 2 55 20 4
3 2 85 30 7
4 4 25 20 7
5 4 55 30 1
6 4 85 10 4
7 6 25 30 4
8 6 55 10 7
9 6 85 20 1
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As reported above, iron concentration in leachate was chosen to be monitored for selectivity
assessment, since it is co-extracted in large quantities, and therefore its subsequent removal is a
strenuous task. The focus is on Sc, aiming for the maximum concentration possible, in contrast to
Fe, where the lowest content is considered as optimal. Both element concentrations act as response
variables under the Taguchi method. Table 3 shows the results for Sc and Fe throughout all nine
experiments, where each measurement was repeated thrice, accompanied with the arithmetic average of
each triplet of experiments. It has to be noted that in the Taguchi method, the experiment corresponding
to optimum conditions for Sc extraction from BR might not exist within the designed orthogonal matrix
experimental plan [70].

Table 3. Measurements of Sc and Fe concentrations for the corresponding factor combinations of the
L9(34) experimental plan.

Exp.
No.

Factors
Combination

Concentration (mg/L)

Sc Fe

CSc
1 CSc

2 CSc
3 CSc

avg CFe
1 CFe

2 CFe
3 CFe

avg

1 A1B1C1D1 3.72 3.57 3.69 3.66 1263 1255 1294 1271
2 A1B2C2D2 9.36 8.89 8.96 9.07 22806 21815 22698 22440
3 A1B3C3D3 13.77 14.58 14.31 14.22 50260 51389 52072 51240
4 A2B1C2D3 7.80 7.65 7.68 7.71 15075 15133 14855 15021
5 A2B2C3D1 13.16 13.94 13.48 13.53 25684 25594 25459 25579
6 A2B3C1D2 8.90 9.66 9.41 9.32 36225 39154 37358 37579
7 A3B1C3D2 11.88 10.93 12.71 11.84 19588 19111 20814 19838
8 A3B2C1D3 8.14 7.99 8.91 8.34 31388 32697 32685 32257
9 A3B3C2D1 12.57 14.29 13.22 13.36 43741 41526 41370 42212

According to the Taguchi method, the metric of signal-to-noise (S/N) ratio is employed to find
the optimum conditions of BR’s H2SO4 leaching process. Sc and Fe concentrations follow exactly the
opposite direction for this particular expression of “objective function” to be optimized, meaning that
for Sc, the higher the concentration, the better the performance characteristics, while for Fe it applies
exactly the opposite—the smaller the concentration, the better the performance is [62,65,71,72]. As for
the case of Sc (the larger-the-better type), the form of S/N ratio is expressed as:

( S
N

)
CSc

avg

= −10 · log

1
n
·

n∑
i=1

1∣∣∣CSc
avg

∣∣∣2
i

 (1)

While for the case of main elements, in specific Fe (the smaller-the-better type), the form of S/N
ratio is as follows: ( S

N

)
CFe

avg

= −10 · log

1
n
·

n∑
i=1

∣∣∣CFe
avg

∣∣∣2
i

 (2)

In both cases n = 9, meaning the number of experiments done for an experimental combination
and CSc

i or CFe
i is the performance value for the corresponding ith experiment.

Yi = µ+ Xi + ei (3)

where µ is the overall mean of performance value, Xi the fixed effect of the parameter level combination
used in ith experiment, and ei the random error in ith experiment [70,71,73].

2.5. Analysis of Experimental Data

Analysis of Variance (ANOVA) is used to evaluate the experimental data of Table 3, and to identify
the relative influence of each factor on the variation of results of Sc and Fe concentrations, respectively.
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Furthermore, a regression analysis is performed in order to extract an equation correlating the four
independent variables with the dependent variable of Sc and Fe concentrations. This step will provide
the necessary tool to predict the response in Sc/Fe concentrations for a larger variety of the four factors
combinations outside the norms of the orthogonal array distribution and their set levels. As in the
design of the experimental plan, Minitab Statistical Software is used to calculate the effects of leaching
process parameters with a 95% confidence level, as well as the regression model and its coefficients.

3. Results and Discussion

According to ANOVA results, for Sc, the prioritization of four factors’ contribution is as shown in
Table 4. The most significant factor is S/L with a contribution of 58.95%, followed by Temperature with
33.32%, while the other two factors have a much lower contribution to BR leaching process, and thus
to Sc concentration. H2SO4 molarity presents a percentage of 7.71%, while Leaching time seems to
have an almost negligible effect at 0.02%.

Table 4. ANOVA results for Sc.

Factor Degree of
Freedom

Sequential Sums
of Squares

Contribution
(%)

Adjusted Sums
of Squares

Adjusted Mean
Squares F-Value P-Value

A 2 2.2742 7.71 7.2742 3.6371 * *
B 2 31.4224 33.32 31.4224 15.7112 * *
C 2 55.5981 58.95 55.5981 27.7991 * *
D 2 0.0187 0.02 0.0187 0.0094 * *

Error 0 * * * *
Total 8 94.3135 100.00

Regression analysis for Sc concentration produced the following best-fit equation with an R2 = 1
(Equation (4)):

CSc = −3.017− 0.758 ·A + 0.112 · B + 0.262 ·C− 0.067 ·D
−0.026 ·A2

− 0.328 · 10−3
· B2 + 1.066 · 10−3

·C2 + 6.469 · 10−3
·D2 (4)

As for Fe concentration, the corresponding findings of ANOVA are emphatically different
compared to those for Sc. As reported in Table 5, the largest contribution by far belongs to Temperature,
with 81.89%. This result is very reasonable as Fe is fully coupled with temperature, meaning that
increased temperatures favor Fe dissolution [74,75]. Unlike Sc, S/L effect is significantly lower for Fe,
with a 6.14% weight. Leaching time has a contribution share of 8.06%, while H2SO4 molarity remains
at the same order of magnitude at 3.90% as that of Sc.

Table 5. ANOVA results for Fe.

Factor Degree of
Freedom

Sequential Sums
of Squares

Contribution
(%)

Adjusted Sums
of Squares

Adjusted Mean
Squares

F-Value P-Value

A 2 7.169 × 107 3.90 7.169 × 107 3.584 × 107 * *
B 2 150.350 × 107 81.89 150.350 × 107 75.175 × 107 * *
C 2 11.274 × 107 6.14 11.274 × 107 5.637 × 107 * *
D 2 14.805 × 107 8.06 14.805 × 107 7.403 × 107 * *

Error 0 * * * *
Total 8 183.597 × 107 100.00%

Regression analysis for Fe concentration produced the following best-fit equation with an R2 = 1
(Equation (5)):

CFe = −6751− 2687 ·A + 392.5 · B− 135.3 ·C + 470.9 ·D
+537.5 ·A2 + 1.224 · B2 + 14.03 ·C2 + 145.7 ·D2 (5)

The effects of each parameter associated with their levels on Sc and Fe concentration are graphically
presented in Figures 1 and 2.
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Since higher S/N ratio is better for obtaining higher Sc concentration, the optimum leaching
conditions for Sc can be drawn from Figure 3, where the numerical value of the maximum point at each
factor corresponds to the optimized value of Sc concentration according to experimental design [62].
Concerning factor A (Acid molarity), the maximum S/N ratio (20.80) is obtained at 6 M (level 3).
Similarly, for Temperature (Factor B) and S/L ratio (Factor C) the maximum values of S/N ratio also
appear at level 3, meaning 21.65 corresponding to 85 ◦C and 22.38 corresponding to 30%, respectively.
The maximum S/N ratio output for Leaching time (Factor D) appears at level 2 with 20.00, being related
to 4 h. Therefore, the parameterization giving the optimum BR leaching conditions for Sc concentration
is A3B3C3D2 (6M, 85 ◦C, 30%, 4h).

Scandium concentration in this case is predicted to be 16.4mg/L, while iron is estimated as
51,472 mg/L. It is clear that the maximization of Sc concentration can be achieved with high dissolution
of iron at the expense of selectivity. This is in agreement with studies reporting that most of the
scandium content is trapped in the hematite phase [76]. The optimum conditions for iron extraction
can be deduced from the respective S/N plot (Figure 4), although in this case maximum S/N values
depict the minimum concentration of iron, as defined by the smaller-the-better model. The optimum
BR leaching conditions for Fe are A1B1C1D1, corresponding to leaching for 1 h at 25 ◦C using 2M
sulfuric acid and 10% solid-to-liquid ratio. Iron concentration in this case is identical to the measured
value for experiment No.1 (see Table 3), being 1271 mg/L, and scandium is 3.66 mg/L.

It should be noted that the proposed optimal conditions refer only to the maximization of Sc
concentration. Any application parameters, such as cost analysis for large-scale extraction or restrictions
resulting from subsequent purification process, were not included in the design of the present study.
Instead, regression analysis equations are suggested for any recommended application conditions.
In any case, the leaching behavior highly depends on the chemical and mineralogical composition of
the bauxite residue utilized.
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Figure 1. Effects of each parameter ((A) Acid molarity, (B) Temperature, (C) Solid-to-Liquid ratio 
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Figure 1. Effects of each parameter ((A) Acid molarity, (B) Temperature, (C) Solid-to-Liquid ratio (S/L),
and (D) Leaching time) associated with their levels on Sc concentration.
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Figure 2. Effects of each parameter ((A) Acid molarity, (B) Temperature, (C) Solid-to-Liquid ratio (S/L),
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Figure 4. Effects of each parameter ((A) Acid molarity, (B) Temperature, (C) Solid-to-Liquid ratio (S/L),
and (D) Leaching time) associated with their levels on the statistical performance of S/N ratio for Fe.

As seen from the above optimized conditions, for Sc the experiment-combination linked to
the optimum leaching acid conditions is not included in the L9 orthogonal matrix experiment plan
(see Table 2), while in the case of Fe the optimized conditions correspond to experiment No.1 under
the Taguchi design [62].

In order to verify that the optimal conditions resulting from Taguchi method are indeed the
best match for the above predicted performance for Sc concentration, confirmation experiments were
conducted under the specific conditions [77]. Sc concentration was predicted to be 16.4 mg/L and
measured as 16.6 mg/L, while Fe concentration for the same conditions was predicted as 51,472 mg/L
and measured as 55,289 mg/L. The results are very satisfactory, since the percent deviation is 1.2% for
Sc and 7.4% for Fe.

4. Conclusions

Recovery of scandium and iron from bauxite residue by sulfuric acid leaching depends significantly
on the conditions used. The applied Taguchi experimental design clearly showed that scandium
concentration in the leachate solution is enhanced with high acid concentrations, elevated reaction
temperatures, and high solid-to-liquid ratios. The most influential factor is the solid-to-liquid ratio
(58.95%), followed by temperature (33.32%). Iron shows similar leaching behavior, being influenced
mainly by temperature (81.89%), and secondarily by all the other factors. The optimal conditions
predicted from the Taguchi design are for Sc: 6M of H2SO4, 85 ◦C, solid/liquid 30%, 4h; and for Fe: 2M
of H2SO4, 25 ◦C, solid/liquid 10%, 1h. Therefore, the maximization of Sc concentration can be reached
along with an increased dissolution of iron, at the expense of leaching selectivity. The predicted values
were experimentally confirmed. Regression equations resulted from the statistical evaluation of the
obtained results can be applied on leaching conditions depending on the requirements of different
applications. The optimal conditions derived in this study are indicative of the leaching behavior for
bauxite residues of similar mineralogical and chemical composition.
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