Next Issue
Volume 9, October
Previous Issue
Volume 9, August
 
 

Minerals, Volume 9, Issue 9 (September 2019) – 65 articles

Cover Story (view full-size image): Scapolite and calcite crystals from the Rose Road mineral locality in Pitcairn, St. Lawrence County, New York. In addition to purple diopside, the Rose Road locality (Purple diopside mound) contains scapolite that fluoresces bright yellow in long-wave UV light and rare red corundum crystals. The mineral deposit formed during the intrusion of syenitic magma into the Grenville marbles at ca. 1165 Ma. The Rose Road locality is one of many mineral localities developed along the Carthage-Colton Shear Zone, the boundary between the Adirondack Highlands and Lowlands. Photographs by George Robinson. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
22 pages, 11094 KiB  
Article
Mineralogy of Chub Lake-Type Hematite Deposits in St. Lawrence County, NY
by Steven C. Chamberlain, Marian V. Lupulescu and David G. Bailey
Minerals 2019, 9(9), 567; https://0-doi-org.brum.beds.ac.uk/10.3390/min9090567 - 19 Sep 2019
Cited by 1 | Viewed by 4748
Abstract
Numerous localities of specular hematite have been found in the Grenville Province in St. Lawrence County, New York. Here, we focus on six of them: the Dodge mine, the Chub Lake prospect, the Toothaker Creek prospect, the Bowman prospect, the Whitton prospect, and [...] Read more.
Numerous localities of specular hematite have been found in the Grenville Province in St. Lawrence County, New York. Here, we focus on six of them: the Dodge mine, the Chub Lake prospect, the Toothaker Creek prospect, the Bowman prospect, the Whitton prospect, and the Toothaker Pond prospect. We used literature research, interviews, and personal observations to establish the history of each site as a source of mineral specimens. We examined extensive holdings of specimens from each site in the New York State Museum. We used sight identification, chemical tests, x-ray diffraction, and scanning electron microscopy with energy dispersive spectroscopy as necessary to identify all the mineral species present. We had determinations made of the stable oxygen isotope content of quartz, hematite, and calcite from the Chub Lake prospect, reported as 18O relative to Vienna Standard Mean Ocean Water (VSMOW). We conclude that these occurrences formed from groundwaters at a temperature of about 170 °C in areas of low topography on the surface of the Precambrian basement rocks. Two hypotheses for this process are presented and evaluated. Well-crystallized specimens of bladed specular hematite and Cumberland-habit quartz are the most common minerals found. Noteworthy accessory crystallized minerals include barite, calcite, and goethite. All six deposits are relatively free of sulfides, so that secondary goethite formed from weathering of iron-rich carbonates at some sites. It is likely that more such deposits will be discovered in this region in the future. Full article
(This article belongs to the Special Issue Minerals of the Southern Grenville Province)
Show Figures

Figure 1

13 pages, 4419 KiB  
Article
Bands of Zircon, Allanite and Magnetite in Paleozoic Alkali Granite in the Chungju Unit, South Korea, and Origin of REE Mineralizations
by Sang-Gun No and Maeng-Eon Park
Minerals 2019, 9(9), 566; https://0-doi-org.brum.beds.ac.uk/10.3390/min9090566 - 19 Sep 2019
Cited by 5 | Viewed by 3397
Abstract
High-grade Zr–Nb–Y–rare earth element (REE) mineralization occurs as zircon–allanite–magnetite bands in layered Paleozoic alkali rocks which intruded the Gyemyeongsan Formation of the Chungju unit, South Korea. The mineralization period and genesis have been controversial. We investigated the petrological and mineralogical properties of the [...] Read more.
High-grade Zr–Nb–Y–rare earth element (REE) mineralization occurs as zircon–allanite–magnetite bands in layered Paleozoic alkali rocks which intruded the Gyemyeongsan Formation of the Chungju unit, South Korea. The mineralization period and genesis have been controversial. We investigated the petrological and mineralogical properties of the newly discovered zircon–allanite–magnetite bands and the geochronological properties of zircon within the bands in the alkali granite. We analyzed the zircon with laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). The repeated quartz–feldspar-rich layers in the alkali granite show grain-sized grading textures and equilibrium igneous textures. Magnetite and allanite grains in these layers varied in size and exhibited isolated, aggregated, and coalesced textures. In addition, the settling texture of zircon grains onto the other minerals was observed. These observations could reasonably be explained by the process of gravitational accumulation during the solidification of magma. The 206Pb/238U ages obtained from zircon from the zircon–allanite–magnetite-rich layer and the alkali aplite were 331.1 ± 1.5 Ma and 334.5 ± 8.9 Ma, respectively. Therefore, we suggest that the Zr–Y–Nb–REE mineralization developed in the alkali rocks and the Gyemyeongsan Formation in the Chungju unit were formed by fractional crystallization of alkali magma and hydrothermal fluids which evolved from alkali magma fractional crystallization, respectively. The correlation between alkaline granite and REE mineralization found in this study could be used as a tool for REE exploration in other regions where the permeable geological unit is intruded by the alkali granite. Full article
Show Figures

Figure 1

22 pages, 4934 KiB  
Article
Ophiolitic Pyroxenites Record Boninite Percolation in Subduction Zone Mantle
by Véronique Le Roux and Yan Liang
Minerals 2019, 9(9), 565; https://0-doi-org.brum.beds.ac.uk/10.3390/min9090565 - 18 Sep 2019
Cited by 13 | Viewed by 3533
Abstract
The peridotite section of supra-subduction zone ophiolites is often crosscut by pyroxenite veins, reflecting the variety of melts that percolate through the mantle wedge, react, and eventually crystallize in the shallow lithospheric mantle. Understanding the nature of parental melts and the timing of [...] Read more.
The peridotite section of supra-subduction zone ophiolites is often crosscut by pyroxenite veins, reflecting the variety of melts that percolate through the mantle wedge, react, and eventually crystallize in the shallow lithospheric mantle. Understanding the nature of parental melts and the timing of formation of these pyroxenites provides unique constraints on melt infiltration processes that may occur in active subduction zones. This study deciphers the processes of orthopyroxenite and clinopyroxenite formation in the Josephine ophiolite (USA), using new trace and major element analyses of pyroxenite minerals, closure temperatures, elemental profiles, diffusion modeling, and equilibrium melt calculations. We show that multiple melt percolation events are required to explain the variable chemistry of peridotite-hosted pyroxenite veins, consistent with previous observations in the xenolith record. We argue that the Josephine ophiolite evolved in conditions intermediate between back-arc and sub-arc. Clinopyroxenites formed at an early stage of ophiolite formation from percolation of high-Ca boninites. Several million years later, and shortly before exhumation, orthopyroxenites formed through remelting of the Josephine harzburgites through percolation of ultra-depleted low-Ca boninites. Thus, we support the hypothesis that multiple types of boninites can be created at different stages of arc formation and that ophiolitic pyroxenites uniquely record the timing of boninite percolation in subduction zone mantle. Full article
(This article belongs to the Special Issue Mineralogy, Petrology and Geochemistry of Ophiolitic Complexes)
Show Figures

Figure 1

22 pages, 6726 KiB  
Article
Geochemical Fingerprinting of Conflict Minerals Using Handheld XRF: An Example for Coltan, Cassiterite, and Wolframite Ores from Democratic Republic of the Congo, Africa
by Alireza K. Somarin
Minerals 2019, 9(9), 564; https://0-doi-org.brum.beds.ac.uk/10.3390/min9090564 - 18 Sep 2019
Cited by 5 | Viewed by 6135
Abstract
Conflict minerals are those mined in politically unstable regions of the world and are then sold to finance war or other illegal activities. Industrial manufacturers are required to show that minerals used in their applications are not derived from conflict areas. Several geochemical [...] Read more.
Conflict minerals are those mined in politically unstable regions of the world and are then sold to finance war or other illegal activities. Industrial manufacturers are required to show that minerals used in their applications are not derived from conflict areas. Several geochemical and geochronological methods have been suggested to fingerprint conflict minerals; however, all these methods require sophisticated and extensive laboratory procedures. Portable X-ray fluorescence data of 108 samples from various location in Democratic Republic of the Congo shows that cassiterite and wolframite ores from all studied regions can be fingerprinted using various discrimination diagrams. Coltan ore samples from several regions can also be discriminated using major and trace elements of these samples. In addition, patterns in chondrite-normalized spider diagrams for each region are unique and can be used as fingerprinting tools. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

19 pages, 2229 KiB  
Article
Recovery of Metals from Waste Lithium Ion Battery Leachates Using Biogenic Hydrogen Sulfide
by Giles Calvert, Anna H. Kaksonen, Ka Yu Cheng, Jonovan Van Yken, Barbara Chang and Naomi J. Boxall
Minerals 2019, 9(9), 563; https://0-doi-org.brum.beds.ac.uk/10.3390/min9090563 - 17 Sep 2019
Cited by 19 | Viewed by 5234
Abstract
Lithium ion battery (LIB) waste is increasing globally and contains an abundance of valuable metals that can be recovered for re-use. This study aimed to evaluate the recovery of metals from LIB waste leachate using hydrogen sulfide generated by a consortium of sulfate-reducing [...] Read more.
Lithium ion battery (LIB) waste is increasing globally and contains an abundance of valuable metals that can be recovered for re-use. This study aimed to evaluate the recovery of metals from LIB waste leachate using hydrogen sulfide generated by a consortium of sulfate-reducing bacteria (SRB) in a lactate-fed fluidised bed reactor (FBR). The microbial community analysis showed Desulfovibrio as the most abundant genus in a dynamic and diverse bioreactor consortium. During periods of biogenic hydrogen sulfide production, the average dissolved sulfide concentration was 507 mg L−1 and the average volumetric sulfate reduction rate was 278 mg L−1 d−1. Over 99% precipitation efficiency was achieved for Al, Ni, Co, and Cu using biogenic sulfide and NaOH, accounting for 96% of the metal value contained in the LIB waste leachate. The purity indices of the precipitates were highest for Co, being above 0.7 for the precipitate at pH 10. However, the process was not selective for individual metals due to simultaneous precipitation and the complexity of the metal content of the LIB waste. Overall, the process facilitated the production of high value mixed metal precipitates, which could be purified further or used as feedstock for other processes, such as the production of steel. Full article
(This article belongs to the Special Issue The Processing of Alternative and Urban Ores)
Show Figures

Figure 1

11 pages, 1274 KiB  
Article
Limits to the Validity of Thermal-Pressure Equations of State
by Ross J. Angel, Francesca Miozzi and Matteo Alvaro
Minerals 2019, 9(9), 562; https://0-doi-org.brum.beds.ac.uk/10.3390/min9090562 - 17 Sep 2019
Cited by 14 | Viewed by 2848
Abstract
Thermal-pressure Equations of State (EoS) such as the Mie-Grüneisen-Debye (MGD) model depend on several assumptions, including the quasi-harmonic approximation (QHA) and a simplified phonon density of states. We show how the QHA is violated by materials exhibiting anisotropic thermal pressure. We also show [...] Read more.
Thermal-pressure Equations of State (EoS) such as the Mie-Grüneisen-Debye (MGD) model depend on several assumptions, including the quasi-harmonic approximation (QHA) and a simplified phonon density of states. We show how the QHA is violated by materials exhibiting anisotropic thermal pressure. We also show that at pressures lower than those of the isochor of the reference volume, the static pressure may become sufficiently negative to make the compressional part of the EoS invalid. This limit is sensitive to the combined effects of the EoS parameters K’0, q and the Grüneisen parameter γ0. Large values of q, which correspond to a rapid decrease in phonon mode frequencies with increasing volume, can also lead to the bulk modulus becoming zero at high pressures and temperatures that are not particularly extreme for planetary geotherms. The MGD EoS therefore has an extremely limited P and T regime over which it is both valid and has physically-meaningful properties. Outside of this range, additional terms should be included in the thermal pressure that represents the physical properties of the solid. Or, alternatively, ‘isothermal’ EoS in which the temperature variation of the elastic properties is explicitly modeled without reference to a physical model can be used. Full article
(This article belongs to the Special Issue Mineral Physics—In Memory of Orson Anderson)
Show Figures

Figure 1

29 pages, 10051 KiB  
Article
Emeralds from the Most Important Occurrences: Chemical and Spectroscopic Data
by Stefanos Karampelas, Bader Al-Shaybani, Fatima Mohamed, Supharart Sangsawong and Abeer Al-Alawi
Minerals 2019, 9(9), 561; https://0-doi-org.brum.beds.ac.uk/10.3390/min9090561 - 17 Sep 2019
Cited by 35 | Viewed by 8380
Abstract
The present study applied LA–ICP-MS on gem-quality emeralds from the most important sources (Afghanistan, Brazil, Colombia, Ethiopia, Madagascar, Russia, Zambia and Zimbabwe). It revealed that emeralds from Afghanistan, Brazil, Colombia and Madagascar have a relatively lower lithium content (7Li < 200 [...] Read more.
The present study applied LA–ICP-MS on gem-quality emeralds from the most important sources (Afghanistan, Brazil, Colombia, Ethiopia, Madagascar, Russia, Zambia and Zimbabwe). It revealed that emeralds from Afghanistan, Brazil, Colombia and Madagascar have a relatively lower lithium content (7Li < 200 ppmw) compared to emeralds from other places (7Li > 250 ppmw). Alkali element contents as well as scandium, manganese, cobalt, nickel, zinc and gallium can further help us in obtaining accurate origin information for these emeralds. UV-Vis spectroscopy can aid in the separation of emeralds from Colombia and Afghanistan from these obtained from the other sources as the latter present pronounced iron-related bands. Intense Type-II water vibrations are observed in the infrared spectra of emeralds from Madagascar, Zambia and Zimbabwe, as well as in some samples from Afghanistan and Ethiopia, which contain higher alkali contents. A band at 2818 cm−1, supposedly attributed to chlorine, was observed only in emeralds from Colombia and Afghanistan. Samples with medium to high alkalis from Ethiopia, Madagascar, Zambia and Zimbabwe can also be separated from the others by Raman spectroscopy based on the lower or equal relative intensity of the Type I water band at around 3608 cm−1 compared to the Type II water band at around 3598 cm−1 band (with some samples from Afghanistan, Brazil and Russia presenting equal relative intensities). Full article
(This article belongs to the Special Issue Mineralogy and Geochemistry of Gems)
Show Figures

Figure 1

17 pages, 14403 KiB  
Article
Use of Sodium Hexametaphosphate and Citric Acid Mixture as Depressant in the Flotation Separation of Scheelite from Calcite
by Wenlong Zhu, Liuyang Dong, Fen Jiao, Wenqing Qin and Qian Wei
Minerals 2019, 9(9), 560; https://0-doi-org.brum.beds.ac.uk/10.3390/min9090560 - 16 Sep 2019
Cited by 10 | Viewed by 14909
Abstract
The floatability of scheelite and calcite in the presence of single depressant (SHMP or H3Cit) and mixed depressant (SHMP/H3Cit) was studied by microflotation experiments and artificial mixed mineral experiments. Solution chemical calculation, zeta potential tests, thermodynamic analysis and XPS [...] Read more.
The floatability of scheelite and calcite in the presence of single depressant (SHMP or H3Cit) and mixed depressant (SHMP/H3Cit) was studied by microflotation experiments and artificial mixed mineral experiments. Solution chemical calculation, zeta potential tests, thermodynamic analysis and XPS analysis were used to explain the relevant depressive mechanism. Mixed depressant (SHMP/H3Cit) exhibited excellent selective depressive effect on calcite. The optimal molar ratio of SHMP to H3Cit was 1:4. The depressant SHMP and H3Cit can be chemically bonded with Ca2+ to form CaHPO4 and Ca3(Cit)2 at pH 8. The CaHPO4 was more easily formed than Ca3(Cit)2 on the mineral surface, which indicated that the depressive effect of SHMP was stronger than H3Cit. The SHMP and H3Cit of the mixed depressant were co-adsorbed on the calcite surface, while the H3Cit of the mixed depressant was weakly adsorbed on the scheelite surface. The mixed depressant can significantly improve the separation efficiency of scheelite from calcite. Full article
Show Figures

Graphical abstract

9 pages, 1831 KiB  
Article
Phase Relations in MAFSH System up to 21 GPa: Implications for Water Cycles in Martian Interior
by Chaowen Xu and Toru Inoue
Minerals 2019, 9(9), 559; https://0-doi-org.brum.beds.ac.uk/10.3390/min9090559 - 16 Sep 2019
Cited by 4 | Viewed by 2416
Abstract
To elucidate the water cycles in iron-rich Mars, we investigated the phase relation of a water-undersaturated (2 wt.%) analog of Martian mantle in simplified MgO-Al2O3-FeO-SiO2-H2O (MAFSH) system between 15 and 21 GPa at 900–1500 °C [...] Read more.
To elucidate the water cycles in iron-rich Mars, we investigated the phase relation of a water-undersaturated (2 wt.%) analog of Martian mantle in simplified MgO-Al2O3-FeO-SiO2-H2O (MAFSH) system between 15 and 21 GPa at 900–1500 °C using a multi-anvil apparatus. Results showed that phase E coexisting with wadsleyite or ringwoodite was at least stable at 15–16.5 GPa and below 1050 °C. Phase D coexisted with ringwoodite at pressures higher than 16.5 GPa and temperatures below 1100 °C. The transition pressure of the loop at the wadsleyite-ringwoodite boundary shifted towards lower pressure in an iron-rich system compared with a hydrous pyrolite model of the Earth. Some evidence indicates that water once existed on the Martian surface on ancient Mars. The water present in the hydrous crust might have been brought into the deep interior by the convecting mantle. Therefore, water might have been transported to the deep Martian interior by hydrous minerals, such as phase E and phase D, in cold subduction plates. Moreover, it might have been stored in wadsleyite or ringwoodite after those hydrous materials decomposed when the plates equilibrated thermally with the surrounding Martian mantle. Full article
(This article belongs to the Special Issue Mineral Physics—In Memory of Orson Anderson)
Show Figures

Figure 1

20 pages, 5777 KiB  
Article
The K2CO3–CaCO3–MgCO3 System at 6 GPa: Implications for Diamond Forming Carbonatitic Melts
by Anton V. Arefiev, Anton Shatskiy, Ivan V. Podborodnikov and Konstantin D. Litasov
Minerals 2019, 9(9), 558; https://0-doi-org.brum.beds.ac.uk/10.3390/min9090558 - 16 Sep 2019
Cited by 16 | Viewed by 3867
Abstract
Carbonate micro inclusions with abnormally high K2O appear in diamonds worldwide. However, the precise determination of their chemical and phase compositions is complicated due to their sub-micron size. The K2CO3–CaCO3–MgCO3 is the simplest system [...] Read more.
Carbonate micro inclusions with abnormally high K2O appear in diamonds worldwide. However, the precise determination of their chemical and phase compositions is complicated due to their sub-micron size. The K2CO3–CaCO3–MgCO3 is the simplest system that can be used as a basis for the reconstruction of the phase composition and P–T conditions of the origin of the K-rich carbonatitic inclusions in diamonds. In this regard, this paper is concerned with the subsolidus and melting phase relations in the K2CO3–CaCO3–MgCO3 system established in Kawai-type multianvil experiments at 6 GPa and 900–1300 °C. At 900 °C, the system has three intermediate compounds K2Ca3(CO3)4 (Ca# ≥ 97), K2Ca(CO3)2 (Ca# ≥ 58), and K2Mg(CO3)2 (Ca# ≤ 10), where Ca# = 100Ca/(Ca + Mg). Miscibility gap between K2Ca(CO3)2 and K2Mg(CO3)2 suggest that their crystal structures differ at 6 GPa. Mg-bearing K2Ca(CO3)2 (Ca# ≤ 28) disappear above 1000 °C to produce K2Ca3(CO3)4 + K8Ca3(CO3)7 + K2Mg(CO3)2. The system has two eutectics between 1000 and 1100 °C controlled by the following melting reactions: K2Ca3(CO3)4 + K8Ca3(CO3)7 + K2Mg(CO3)2 → [40K2CO3∙60(Ca0.70Mg0.30)CO3] (1st eutectic melt) and K8Ca3(CO3)7 + K2CO3 + K2Mg(CO3)2 → [62K2CO3∙38(Ca0.73Mg0.27)CO3] (2nd eutectic melt). The projection of the K2CO3–CaCO3–MgCO3 liquidus surface is divided into the eight primary crystallization fields for magnesite, aragonite, dolomite, Ca-dolomite, K2Ca3(CO3)4, K8Ca3(CO3)7, K2Mg(CO3)2, and K2CO3. The temperature increase is accompanied by the sequential disappearance of crystalline phases in the following sequence: K8Ca3(CO3)7 (1220 °C) → K2Mg(CO3)2 (1250 °C) → K2Ca3(CO3)4 (1350 °C) → K2CO3 (1425 °C) → dolomite (1450 °C) → CaCO3 (1660 °C) → magnesite (1780 °C). The high Ca# of about 40 of the K2(Mg, Ca)(CO3)2 compound found as inclusions in diamond suggest (1) its formation and entrapment by diamond under the P–T conditions of 6 GPa and 1100 °C; (2) its remelting during transport by hot kimberlite magma, and (3) repeated crystallization in inclusion that retained mantle pressure during kimberlite magma emplacement. The obtained results indicate that the K–Ca–Mg carbonate melts containing 20–40 mol% K2CO3 is stable under P–T conditions of 6 GPa and 1100–1200 °C corresponding to the base of the continental lithospheric mantle. It must be emphasized that the high alkali content in the carbonate melt is a necessary condition for its existence under geothermal conditions of the continental lithosphere, otherwise, it will simply freeze. Full article
Show Figures

Graphical abstract

18 pages, 4928 KiB  
Article
CIL Gold Loss Characterization within Oxidized Leach Tails: Creating a Synergistic Approach between Mineralogical Characterization, Diagnostic Leach Tests, and Preg-Robbing Tests
by Mohamed Edahbi, Raphaël Mermillod-Blondin, Benoît Plante and Mostafa Benzaazoua
Minerals 2019, 9(9), 557; https://0-doi-org.brum.beds.ac.uk/10.3390/min9090557 - 16 Sep 2019
Cited by 8 | Viewed by 6590
Abstract
A double refractory gold ore contains gold particles locked in sulphides, solid-solution in arsenopyrite, and preg-robbing material such as carbonaceous matter, and so on. The diagnostic leach test (DLT) and preg-robbing (PR) approaches are widely used to investigate the occurrence and the distribution [...] Read more.
A double refractory gold ore contains gold particles locked in sulphides, solid-solution in arsenopyrite, and preg-robbing material such as carbonaceous matter, and so on. The diagnostic leach test (DLT) and preg-robbing (PR) approaches are widely used to investigate the occurrence and the distribution of refractory gold. DLT serves to qualitatively evaluate the gold occurrences within the ore. Preg-robbing, or the ore’s capacity to fix dissolved gold, is evaluated to determine physical surface interactions (preg-borrowing) and chemical interactions (preg-robbing). The objective of this project is to characterize the refractory gold in Agnico Eagle Mine’s Kittilä ore using the DLT and PRT approaches coupled with mineralogical analyses to confirm testing. The studied material was sampled from the metallurgical circuit following carbon in leach (CIL) treatment at the outlet of the autoclave in order to investigate the effect of the autoclave treatment on the occurrence and distribution of gold. Different reagents were used in the DLT procedure: sodium carbonate (Na2CO3), sodium hydroxide (NaOH), hydrochloric acid (HCl), and nitric acid (HNO3). The final residue was roasted at a temperature of around 900 °C. These reagents were selected based on the mineralogical composition of the studied samples. After each leaching test/roasting, cyanide leaching with activated carbon was required to recover gold cyanide. The results show that gold is present in two forms (native and/or refractory): to a small extent in its native form and in its refractory form as association with sulfide minerals (i.e., arsenopyrite and pyrite) and autoclave secondary minerals that have been produced during the oxidation and neutralization processes such as iron oxides, iron sulfates, and calcium sulfate (i.e., hematite and jarosite), along with carbonaceous matter. The results of DLT indicate that 25–35% of the gold in the tails is nonrecoverable, as it is locked in silicates, and 20–40% is autoclave products. A regrind can help to mitigate the gold losses by liberating the Au-bearing sulphide minerals encapsulated within silicates. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

23 pages, 20001 KiB  
Article
Application of a Maximum Entropy Model for Mineral Prospectivity Maps
by Binbin Li, Bingli Liu, Ke Guo, Cheng Li and Bin Wang
Minerals 2019, 9(9), 556; https://0-doi-org.brum.beds.ac.uk/10.3390/min9090556 - 15 Sep 2019
Cited by 15 | Viewed by 3426
Abstract
The effective integration of geochemical data with multisource geoscience data is a necessary condition for mapping mineral prospects. In the present study, based on the maximum entropy principle, a maximum entropy model (MaxEnt model) was established to predict the potential distribution of copper [...] Read more.
The effective integration of geochemical data with multisource geoscience data is a necessary condition for mapping mineral prospects. In the present study, based on the maximum entropy principle, a maximum entropy model (MaxEnt model) was established to predict the potential distribution of copper deposits by integrating 43 ore-controlling factors from geological, geochemical and geophysical data. The MaxEnt model was used to screen the ore-controlling factors, and eight ore-controlling factors (i.e., stratigraphic combination entropy, structural iso-density, Cu, Hg, Li, La, U, Na2O) were selected to establish the MaxEnt model to determine the highest potential zone of copper deposits. The spatial correlation between each ore-controlling factor and the occurrence of a copper mine was studied using a response curve, and the relative importance of each ore-controlling factor was determined by jackknife analysis in the MaxEnt model. The results show that the occurrence of copper ore is positively correlated with the content of Cu, Hg, La, structural iso-density and stratigraphic combination entropy, and negatively correlated with the content of Na2O, Li and U. The model’s performance was evaluated by the area under the receiver operating characteristic curve (AUC), Cohen’s maximized Kappa and true skill statistic (TSS) (training AUC = 0.84, test AUC = 0.8, maximum Kappa = 0.5 and maximum TSS = 0.6). The results indicate that the model can effectively integrate multi-source geospatial data to map mineral prospectivity. Full article
(This article belongs to the Special Issue Geological Modelling, Volume II)
Show Figures

Figure 1

14 pages, 3547 KiB  
Article
Methylene Blue Adsorption Study on Microcline Particles in the Function of Particle Size Range and Temperature
by Tímea Pernyeszi, Roland Farkas and János Kovács
Minerals 2019, 9(9), 555; https://0-doi-org.brum.beds.ac.uk/10.3390/min9090555 - 15 Sep 2019
Cited by 15 | Viewed by 4570
Abstract
In this paper, the adsorption process of methylene blue has been investigated on microcline particles as a function of particle size and temperature. The characterization of microcline in the particle size ranges of 1−71 μm and 71−315 μm gained by sieving was proved [...] Read more.
In this paper, the adsorption process of methylene blue has been investigated on microcline particles as a function of particle size and temperature. The characterization of microcline in the particle size ranges of 1−71 μm and 71−315 μm gained by sieving was proved using X-ray diffraction (XRD) and scanning electron microscopy combined with energy-dispersive detector (SEM-EDS) in powder form, over laser diffraction measurements in aqueous suspension. The optimum dosage of adsorbent was 13.5 g/L in dye adsorption and the adsorption isotherms on both microcline size fractions were determined at this adsorbent concentration. The maximum adsorption capacities were in the range of 1.5–3.1 mg g−1 on microcline particles with supplementing evaluation of isotherms using the Langmuir model. Considering the problems of linearization of equations, the non-linear least-squares estimation can be strongly recommended for modeling adsorption-equilibrium. The adsorption isotherm determined at elevated temperature of 60−65 °C represents a breakpoint at around 20 mg L−1 of equilibrated dye concentration due to performing of a potential process of dye self-association. According to our experiments, the increase in temperature has an adverse effect on adsorption. Full article
(This article belongs to the Special Issue Mineral Sorbents)
Show Figures

Figure 1

14 pages, 12393 KiB  
Article
The Kilmar Magnesite Deposits: Evaporitic Metasediments in the Grenville Supergroup, Morin Terrane, Quebec
by William H. Peck and Gary R. Eppich
Minerals 2019, 9(9), 554; https://0-doi-org.brum.beds.ac.uk/10.3390/min9090554 - 14 Sep 2019
Cited by 4 | Viewed by 3864
Abstract
Mesoproterozoic magnesite deposits are found associated with dolomitic marble and intercalated with metasedimentary rocks of the Grenville Supergroup in the granulite facies Morin terrane (Grenville Province, Quebec). This study examines one of the remaining ore deposits exposed on the surface (at the Dobbie [...] Read more.
Mesoproterozoic magnesite deposits are found associated with dolomitic marble and intercalated with metasedimentary rocks of the Grenville Supergroup in the granulite facies Morin terrane (Grenville Province, Quebec). This study examines one of the remaining ore deposits exposed on the surface (at the Dobbie mine), and presents stable isotope and mineralogical data for a marine evaporitic origin. The magnesite ore zone has δ18O(Mag) = 25.5 ± 0.4‰ (VSMOW) and δ13C(Mag) = 1.7 ± 0.2‰ (VPDB; n = 7), while surrounding dolomitic marble has δ18O(Dol) = 24.2 ± 0.6‰ and δ13C(Dol) = −0.2 ± 0.7‰ (n = 11). These values are at the high end of the range for other Morin terrane marbles, and this and sharp transitions in stable isotope ratios between lithologies argue for preservation of evaporitic enrichment in δ18O and δ13C. Boron isotope ratios (δ11B = 15.5‰ to 22.7‰) are also consistent with a marine evaporite origin. Identifying evaporitic protoliths in metasedimentary rocks is important for determining pre-metamorphic depositional environments, and in this case links the sedimentary setting of the Morin terrane to the Adirondack Lowlands (New York, NY, USA). The identification of the Kilmar magnesite deposits as evaporitic also has implications for the formation of sedimentary exhalative base metal deposits in the Grenville Supergroup. Full article
(This article belongs to the Special Issue Minerals of the Southern Grenville Province)
Show Figures

Figure 1

23 pages, 4301 KiB  
Article
Mineral Composition, Pore Structure, and Mechanical Characteristics of Pyroxene Granite Exposed to Heat Treatments
by Xiaoji Shang, Zhizhen Zhang, Xiaoli Xu, Tingting Liu and Yan Xing
Minerals 2019, 9(9), 553; https://0-doi-org.brum.beds.ac.uk/10.3390/min9090553 - 14 Sep 2019
Cited by 37 | Viewed by 6975
Abstract
In deep geoengineering, including geothermal development, deep mining, and nuclear waste geological disposal, high temperature significantly affects the mineral properties of rocks, thereby changing their porous and mechanical characteristics. This paper experimentally studied the changes in mineral composition, pore structure, and mechanical characteristics [...] Read more.
In deep geoengineering, including geothermal development, deep mining, and nuclear waste geological disposal, high temperature significantly affects the mineral properties of rocks, thereby changing their porous and mechanical characteristics. This paper experimentally studied the changes in mineral composition, pore structure, and mechanical characteristics of pyroxene granite heated to high temperature (from 25 °C to 1200 °C). The results concluded that (1) the high-temperature effect can be roughly identified as three stages: 25–500 °C, 500–800 °C, 800–1200 °C. (2) Below 500 °C, the maximum diffracted intensities of the essential minerals are comparatively stable and the porous and mechanical characteristics of granite samples change slightly, mainly due to mineral dehydration and uncoordinated thermal expansion; additionally, the failure mechanism of granite is brittle. (3) In 500–800 °C, the diffraction angles of the minerals become wider, pyroxene and quartz undergo phase transitions, and the difference in thermal expansion among minerals reaches a peak; the rock porosity increases rapidly by 1.95 times, and the newly created pores caused by high heat treatment are mainly medium ones with radii between 1 μm and 10 μm; the P-wave velocity and the elastic modulus decrease by 62.5% and 34.6%, respectively, and the peak strain increases greatly by 105.7%, indicating the failure mode changes from brittle to quasi-brittle. (4) In 800–1200 °C, illite and quartz react chemically to produce mullite and the crystal state of the minerals deteriorate dramatically; the porous and mechanical parameters of granite samples all change significantly and the P-wave, the uniaxial compressive strength (UCS), and the elastic modulus decrease by 81.30%, 81.20%, and 92.52%, while the rock porosity and the shear-slip strain increase by 4.10 times and 11.37 times, respectively; the failure mechanism of granite samples transforms from quasi-brittle to plastic, which also was confirmed with scanning electron microscopy (SEM). Full article
Show Figures

Figure 1

23 pages, 4763 KiB  
Article
Geochronology and Geochemistry of Uraninite and Coffinite: Insights into Ore-Forming Process in the Pegmatite-Hosted Uraniferous Province, North Qinling, Central China
by Feng Yuan, Shao-Yong Jiang, Jiajun Liu, Shuai Zhang, Zhibin Xiao, Gang Liu and Xiaojia Hu
Minerals 2019, 9(9), 552; https://0-doi-org.brum.beds.ac.uk/10.3390/min9090552 - 13 Sep 2019
Cited by 12 | Viewed by 3440
Abstract
The biotite pegmatites in the Shangdan domain of the North Qinling orogenic belt contain economic concentrations of U, constituting a low-grade, large-tonnage pegmatite-hosted uraniferous province. Uraninite is predominant and ubiquitous ore mineral and coffinite is common alteration mineral after initial deposit formation. A [...] Read more.
The biotite pegmatites in the Shangdan domain of the North Qinling orogenic belt contain economic concentrations of U, constituting a low-grade, large-tonnage pegmatite-hosted uraniferous province. Uraninite is predominant and ubiquitous ore mineral and coffinite is common alteration mineral after initial deposit formation. A comprehensive survey of the uraninite and coffinite assemblage of the Chenjiazhuang, Xiaohuacha, and Guangshigou biotite pegmatites in this uraniferous province reveal the primary magmatic U mineralization and its response during subsequent hydrothermal events. Integrating the ID-TIMS (Isotope Dilution Thermal Ionization Mass Spectrometry) 206Pb/238U ages and U-Th-Pb chemical ages for the uraninites with those reported from previous studies suggests that the timing of U mineralization in the uraniferous province was constrained at 407–415 Ma, confirming an Early Devonian magmatic ore-forming event. Based on microtextural relationships and compositional variation, three generations of uranium minerals can be identified: uaninite-A (high Th-low U-variable Y group), uranite-B (low Th-high U, Y group), and coffinite (high Si, Ca-low U, Pb group). Petrographic and microanalytical observations support a three-stage evolution model of uranium minerals from primary to subsequent generations as follows: (1) during the Early Devonian (stage 1), U derived from the hydrous silicate melt was mainly concentrated in primary magmatic uaninite-A by high-T (450–607 °C) precipitation; (2) during the Late Devonian (stage 2), U was mobilized and dissolved from pre-existing uraninite-A by U-bearing fluids and in situ reprecipitated as uraninite-B under reduced conditions. The in situ transformation of primary uraninite-A to second uraninite-B represent a local medium-T (250–450 °C) hydrothermal U-event; and (3) during the later low-T (100–140 °C) hydrothermal alteration (stage 3), U was remobilized and derived from the dissolution of pre-existing uraninite by CO2- and SiO2-rich fluids and interacted with reducing agent (e.g., pyrite) leading to reprecipitation of coffinite. This process represents a regional and extensive low-T hydrothermal U-event. In view of this, U minerals evolved from magmatic uraninite-A though fluid-induced recrystallized uraninite-B to coffinite, revealing three episodes of U circulation in the magmatic-hydrothermal system. Full article
(This article belongs to the Special Issue Accessory Minerals in Silicic Igneous Rocks)
Show Figures

Figure 1

16 pages, 1854 KiB  
Article
Properties of Inorganic Polymers Produced from Brick Waste and Metallurgical Slag
by Athanasia Soultana, Aikaterini Valouma, Georgios Bartzas and Konstantinos Komnitsas
Minerals 2019, 9(9), 551; https://0-doi-org.brum.beds.ac.uk/10.3390/min9090551 - 12 Sep 2019
Cited by 20 | Viewed by 4214
Abstract
This paper explores the alkali activation potential of brick wastes and metallurgical slags. Inorganic polymers (IPs) were produced using an alkaline medium consisting of sodium hydroxide and sodium silicate solutions and the optimum synthesis conditions were determined. In this context, the variable parameters, [...] Read more.
This paper explores the alkali activation potential of brick wastes and metallurgical slags. Inorganic polymers (IPs) were produced using an alkaline medium consisting of sodium hydroxide and sodium silicate solutions and the optimum synthesis conditions were determined. In this context, the variable parameters, such as solid to liquid (S/L) ratio, curing temperature (60, 80 and 90 °C) and ageing time (7 and 28 days) on the compressive strength and the morphology of the produced IPs were investigated. Specimens produced under the optimum synthesis conditions were subjected to high temperature firing and immersed in distilled water and acidic solutions for various periods of time, in order to assess their durability and structural integrity. The results showed that the IPs produced using a mix ratio of 50 wt % metallurgical slag and 50 wt % brick wastes, cured at 90 °C and aged for 7 days obtained the highest compressive strength (48.9 MPa). X-ray fluorescence analysis (XRF), particle size analysis, Fourier transform infrared spectroscopy (FTIR), mineralogical analysis (XRD), mercury intrusion porosimetry (MIP), scanning electron microscopy (SEM) and thermogravimetric (TG) analysis also confirmed the optimum microstructural characteristics and the chemical reactions that took place during synthesis. The overall results of this study indicate that the co-valorization of different waste streams, which are produced in large quantities and cause environmental problems if not properly managed, is a viable alternative for the production of binders or secondary construction materials with higher added value. Full article
(This article belongs to the Special Issue Metallurgical Slags)
Show Figures

Graphical abstract

25 pages, 4019 KiB  
Article
Implications of Hf Isotopes for the Evolution of the Mantle Source of Magmas Associated with the Giant El Teniente Cu-Mo Megabreccia Deposit, Central Chile
by Charles R. Stern, Kwan-Nang Pang, Hao-Yang Lee, M. Alexandra Skewes and Alejandra Arévalo
Minerals 2019, 9(9), 550; https://0-doi-org.brum.beds.ac.uk/10.3390/min9090550 - 12 Sep 2019
Cited by 4 | Viewed by 3090
Abstract
We have determined the Hf isotopic compositions of 12 samples associated with the giant El Teniente Cu-Mo megabreccia deposit, central Chile. The samples range in age from ≥8.9 to 2.3 Ma and provide information about the temporal evolution of their magmatic sources from [...] Read more.
We have determined the Hf isotopic compositions of 12 samples associated with the giant El Teniente Cu-Mo megabreccia deposit, central Chile. The samples range in age from ≥8.9 to 2.3 Ma and provide information about the temporal evolution of their magmatic sources from the Late Miocene to Pliocene. Together with previously published data, the new analysis indicates a temporal decrease of 10 εHf(t) units, from +11.6 down to +1.6, in the 12.7 m.y. from 15 to 2.3 Ma. These variations imply increasing incorporation of continental crust through time in the magmas that formed these rocks. The fact that the samples include mantle-derived olivine basalts and olivine lamprophyres suggests that these continental components were incorporated into their mantle source, and not by intra-crustal contamination (MASH). We attribute the increase, between the Middle Miocene and Pliocene, of crustal components in the subarc mantle source below El Teniente to be due to increased rates of subduction erosion and transport of crust into the mantle. The deposit formed above a large, long-lived, vertically zoned magma chamber that developed due to compressive deformation and persisted between ~7 to 4.6 Ma. Progressively more hydrous mantle-derived mafic magmas feed this chamber from below, providing heat, H2O, S and metals, but no unique “fertile” Cu-rich magma was involved in the formation of the deposit. As the volume of these mantle-derived magmas decreased from the Late Miocene into the Pliocene, the chamber crystallized and solidified, producing felsic plutons and large metal-rich magmatic-hydrothermal breccias that emplaced Cu and S into the older (≥8.9 Ma) mafic host rocks of this megabreccia deposit. Full article
(This article belongs to the Special Issue Role of Magmatic Activity in Generation of Ore Deposits)
Show Figures

Figure 1

11 pages, 2614 KiB  
Article
Selective Flotation of Pyrite from Galena Using Chitosan with Different Molecular Weights
by Wanjia Zhang, Wei Sun, Yuehua Hu, Jian Cao and Zhiyong Gao
Minerals 2019, 9(9), 549; https://0-doi-org.brum.beds.ac.uk/10.3390/min9090549 - 12 Sep 2019
Cited by 24 | Viewed by 3768
Abstract
Pyrite is a major gangue mineral associated with galena and other valuable minerals, and it is necessary to selectively remove pyrite to upgrade the lead concentrate by froth flotation. In this study, the flotation experiments of a single mineral and mixed minerals were [...] Read more.
Pyrite is a major gangue mineral associated with galena and other valuable minerals, and it is necessary to selectively remove pyrite to upgrade the lead concentrate by froth flotation. In this study, the flotation experiments of a single mineral and mixed minerals were performed using chitosan with different molecular weights (MW = 2−3, 3−6, 10 and 100 kDa) as a depressant, ethyl xanthate as a collector, and terpineol as a frother, in a bid to testify the separation of pyrite from galena. Flotation results showed that the selective flotation of pyrite from galena can be achieved under the preferred reagent scheme, i.e., 400 g/t chitosan (10 kDa), 1600 g/t ethyl xanthate, and 100 g/t terpineol, while chitosan with other molecular weights cannot. Furthermore, the results of the zeta potential and contact angle measurements revealed that chitosan (10 kDa) has a strong adsorption on galena yet a very weak adsorption on pyrite at the dosage of 400 g/t. This study showed that chitosan (10 kDa) has great potential in the industrial flotation separation of pyrite from lead concentrates. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Graphical abstract

20 pages, 6718 KiB  
Article
Micropore Structural Heterogeneity of Siliceous Shale Reservoir of the Longmaxi Formation in the Southern Sichuan Basin, China
by Hu Li, Hongming Tang and Majia Zheng
Minerals 2019, 9(9), 548; https://0-doi-org.brum.beds.ac.uk/10.3390/min9090548 - 11 Sep 2019
Cited by 41 | Viewed by 2746
Abstract
In recent years, the shale gas in the southern Sichuan Basin has achieved great commercial development, and the Silurian Longmaxi Formation is the main development stratum. In order to solve the problems of great difference production and inaccurate gas content of the Longmaxi [...] Read more.
In recent years, the shale gas in the southern Sichuan Basin has achieved great commercial development, and the Silurian Longmaxi Formation is the main development stratum. In order to solve the problems of great difference production and inaccurate gas content of the Longmaxi Formation shale gas field in the southern Sichuan Basin, based on thin section identification, argon ion polishing-field emission scanning electron microscopy, high pressure mercury injection, low temperature nitrogen adsorption and the fractal method, the micropore structural heterogeneity of the siliceous shale reservoir of the Longmaxi Formation has been studied. The results show the following: The pores of siliceous shale are mainly intergranular pores and organic pores. Image analysis shows that there are obvious differences in size and distribution of shale pores among different types. The micropore structural heterogeneity is as follows: intragranular pore > intergranular pore > organic pore. In the paper, the combination of low temperature nitrogen adsorption method and high-pressure mercury injection method is proposed to characterize the micropore size distribution and fractal dimension, which ensures the credibility of pore heterogeneity. The shale pores are mainly composed of mesopores (2–20 nm), followed by macropores (100–300 nm). For different pore sizes, the fractal dimension from large to small is mesopore, micropore and macropore. Shale pore structure and fractal dimension are correlated with mineral composition and total organic carbon (TOC) content, but the correlation is significantly different in different areas, being mainly controlled by the sedimentary environment and diagenesis. Full article
Show Figures

Figure 1

20 pages, 6287 KiB  
Article
Fluid Inclusions and S–Pb Isotopes of the Reshui Porphyry Mo Deposit in East Kunlun, Qinghai Province, China
by Xianzheng Guo, Xinbiao Lü, Qunzi Jia, Jinchao Li and Huilei Kong
Minerals 2019, 9(9), 547; https://0-doi-org.brum.beds.ac.uk/10.3390/min9090547 - 11 Sep 2019
Cited by 5 | Viewed by 2572
Abstract
The Reshui porphyry Mo deposit is located in the East Kunlun orogenic belt (EKOB). Molybdenum mineralization is distributed in monzogranite and porphyritic monzogranite rocks, mainly presenting as various types of hydrothermal veinlets in altered wall rocks, and the orebodies are controlled by three [...] Read more.
The Reshui porphyry Mo deposit is located in the East Kunlun orogenic belt (EKOB). Molybdenum mineralization is distributed in monzogranite and porphyritic monzogranite rocks, mainly presenting as various types of hydrothermal veinlets in altered wall rocks, and the orebodies are controlled by three groups of fractures. In this paper, we present the results of fluid-inclusion and isotopic (S and Pb) investigations of the Reshui Mo deposit. The ore-forming process of the deposit can be divided into three stages: an early disseminated molybdenite stage (stage 1), a middle quartz–molybdenite stage (stage 2) and a late quartz–polymetallic sulfide stage (stage 3). The alteration was mainly potassic and silicic in stage 1, silicic in stage 2, and sericitic and silicic in stage 3. Five types of fluid inclusions (FIs) can be distinguished in quartz phenocrysts and quartz veins, namely W, PL (pure liquid inclusions), PV (pure gas inclusions), C (CO2 three-phase inclusions), and S (daughter mineral-bearing inclusions). The homogenization temperatures of fluid inclusions belonging to stages 1 to 3 are 282.3–378 °C, 238.7–312.6 °C and 198.3–228 °C, respectively. The fluid salinities at stages 1 to 3 are 4.65–8.14% NaCl eq., 4.34–42.64% NaCl eq., and 3.55–4.65% NaCl eq., respectively. The fluids of this deposit were generally moderate–high temperature and moderate–low salinity and belong to the H2O–NaCl–CO2 ± CH4 system. The temperature and pressure changed considerably between stage 2 (high–medium-temperature) and stage 3 (low-temperature). The evidence for ore-forming fluids containing different types of coexisting inclusions in stage 2 and a decrease in the fluid temperature from stage 2 to stage 3 indicate that fluid boiling and fluid mixing were the main mechanisms of ore precipitation. The sulfide 34SV-CDT values range from 4.90‰ to 5.80‰, which is characteristic of magmatic sulfur. The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values of the ore minerals are 18.210–18.786, 15.589–15.723, and 38.298–39.126, respectively. These lead isotopic compositions suggest that the ores were mainly sourced from crustally derived magmas, with minor input from the mantle. The fluid inclusions and S–Pb isotopes provide important information on the genesis of the Reshui porphyry Mo deposit and indicate that the Triassic has high metallogenic porphyry potential in the EKOB. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Graphical abstract

25 pages, 4770 KiB  
Article
Evidence for a Carbonatite-Influenced Source Assemblage for Intraplate Basalts from the Buckland Volcanic Province, Queensland, Australia
by Joshua J. Shea and Stephen F. Foley
Minerals 2019, 9(9), 546; https://0-doi-org.brum.beds.ac.uk/10.3390/min9090546 - 10 Sep 2019
Cited by 18 | Viewed by 4793
Abstract
Eastern Australia contains a widespread suite of primitive (MgO ≥ 7.5 wt.%) intraplate basaltic provinces, including those sited along the longest continental hotspot track on Earth (≈2000 km), the Cosgrove track. The Buckland volcanic province is the most southerly basaltic province on the [...] Read more.
Eastern Australia contains a widespread suite of primitive (MgO ≥ 7.5 wt.%) intraplate basaltic provinces, including those sited along the longest continental hotspot track on Earth (≈2000 km), the Cosgrove track. The Buckland volcanic province is the most southerly basaltic province on the Cosgrove track before a >1600 km stretch that contains only sparse leucitite volcanism. Buckland is also situated just northeast of the edge of thick cratonic lithosphere where it transitions to a thinner continental lithosphere (<110 km) to the east, which may influence the production of plume-derived melts. Here, analysis of minor and trace elements in olivines in alkali basalts and basanites from the Buckland Province are combined with whole-rock compositions to elucidate the mantle source assemblages, and to calibrate minor and trace element indicators in olivine for application to source mineralogy. Olivine xenocrysts show element concentration ranges typical for peridotites; Mn and Al concentrations indicate that the ambient mantle is spinel, rather than garnet, peridotite. High modal pyroxene content is indicated by high Ni, Zn/Fe, and Fe/Mn in olivines, while high Ti/Sc is consistent with amphibole in the source. Residual phlogopite in the source of the basanites is indicated by low K/Nb in whole rocks, while apatite contains high P2O5 and low Rb/Sr (≥0.015) and Sr/La (≥13). The basanite source assemblage probably contains apatite, phlogopite, olivine, clinopyroxene and orthopyroxene, whereas the alkali basalt source assemblage is probably amphibole, olivine, orthopyroxene and clinopyroxene ± phlogopite ± apatite. Both source assemblages correspond broadly to olivine websterite, with the basanite source lying deeper than that for alkali basalt, explaining the occurrence of phlogopite in the source. This mineralogy, along with whole-rock Ti/Eu, Zr/Hf and P2O5/TiO2 values approaching those of natural carbonatites, provide evidence showing that the Buckland source consists of a peridotite that has interacted with a carbonate-rich melt whose origin may be in the deep lithosphere or asthenosphere beneath the craton. Similar enrichment processes are probably common throughout eastern Australia, controlling trace element characteristics in basaltic provinces. The topography of the underside of the lithosphere may play a significant role in determining mantle source assemblages by diverting and concentrating melt flow, and thus influence the location of basaltic provinces. Full article
Show Figures

Figure 1

18 pages, 2108 KiB  
Article
Distribution, Enrichment and Transport of Trace Metals in Sediments from the Dagu River Estuary in the Jiaozhou Bay, Qingdao, China
by Jinqing Liu, Ping Yin, Xiaoying Chen and Ke Cao
Minerals 2019, 9(9), 545; https://0-doi-org.brum.beds.ac.uk/10.3390/min9090545 - 10 Sep 2019
Cited by 14 | Viewed by 2793
Abstract
26 river bank sediments and 15 estuary seafloor sediments were sampled from the Dagu River and the estuary of Northwestern Jiaozhou Bay to determine contaminations of heavy metals and metalloids (Cu, Pb, Zn, Cr, Cd, Hg and As). The trace metal contents in [...] Read more.
26 river bank sediments and 15 estuary seafloor sediments were sampled from the Dagu River and the estuary of Northwestern Jiaozhou Bay to determine contaminations of heavy metals and metalloids (Cu, Pb, Zn, Cr, Cd, Hg and As). The trace metal contents in sediment from the estuary area were much higher than those of the river. Correlation analysis showed that except for Pb, the metals were mainly controlled by the grain size, and enriched by adsorption of aluminosilicate minerals, Fe/Mn oxides and organic matter in river and estuary sediments. In addition to Cu in some stations, the metals met the requirements of the marine organism and humans for the quality of the marine environment. The concentrations of Cu, Pb, Cr, Hg and As were between the threshold effect level (TEL) and probable effect level (PEL), indicating those metals might have occasional adverse effects. Results of Enrichment Factor values revealed that the entire study area was enriched in Pb and Hg, at moderate environmental risk, but the estuary was more significant. Pb and Hg contaminations in this area were mainly from coal combustion and automobile emissions. River runoff and atmospheric deposition dominated the metals distribution and enrichment in the study area. Contaminants in sediments entering the estuary were further transported to the south and east under the river runoff and reciprocating current in the Jiaozhou Bay. Full article
(This article belongs to the Special Issue Metallic Elements in Sediments)
Show Figures

Figure 1

14 pages, 2846 KiB  
Article
Mineralogical Imaging for Characterization of the Per Geijer Apatite Iron Ores in the Kiruna District, Northern Sweden: A Comparative Study of Mineral Liberation Analysis and Raman Imaging
by Patrick Krolop, Anne Jantschke, Sabine Gilbricht, Kari Niiranen and Thomas Seifert
Minerals 2019, 9(9), 544; https://0-doi-org.brum.beds.ac.uk/10.3390/min9090544 - 10 Sep 2019
Cited by 14 | Viewed by 7075
Abstract
The Per Geijer iron oxide apatite deposits are important potential future resources for Luossavaara-Kiirunavaara Aktiebolag (LKAB) which has been continuously mining magnetite/hematite ores in northern Sweden for over 125 years. Reliable and quantitative characterization of the mineralization is required as these ores inherit [...] Read more.
The Per Geijer iron oxide apatite deposits are important potential future resources for Luossavaara-Kiirunavaara Aktiebolag (LKAB) which has been continuously mining magnetite/hematite ores in northern Sweden for over 125 years. Reliable and quantitative characterization of the mineralization is required as these ores inherit complex mineralogical and textural features. Scanning electron microscopy-based analyses software, such as mineral liberation analyzer (MLA) provide significant, time-efficient analyses. Similar elemental compositions of Fe-oxides and, therefore, almost identical backscattered electron (BSE) intensities complicate their discrimination. In this study, MLA and Raman imaging are compared to acquire mineralogical data for better characterization of magnetite and hematite-bearing ores. The different approaches demonstrate advantages and disadvantages in classification, imaging, discrimination of iron oxides, and time consumption of measurement and processing. The obtained precise mineralogical information improves the characterization of ore types and will benefit future processing strategies for this complex mineralization. Full article
Show Figures

Figure 1

26 pages, 6940 KiB  
Article
Full-Scale Pore Structure and Fractal Dimension of the Longmaxi Shale from the Southern Sichuan Basin: Investigations Using FE-SEM, Gas Adsorption and Mercury Intrusion Porosimetry
by Xingmeng Wang, Zhenxue Jiang, Shu Jiang, Jiaqi Chang, Lin Zhu, Xiaohui Li and Jitong Li
Minerals 2019, 9(9), 543; https://0-doi-org.brum.beds.ac.uk/10.3390/min9090543 - 09 Sep 2019
Cited by 41 | Viewed by 3605
Abstract
Pore structure determines the gas occurrence and storage properties of gas shale and is a vital element for reservoir evaluation and shale gas resources assessment. Field emission scanning electron microscopy (FE-SEM), high-pressure mercury intrusion porosimetry (HMIP), and low-pressure N2/CO2 adsorption [...] Read more.
Pore structure determines the gas occurrence and storage properties of gas shale and is a vital element for reservoir evaluation and shale gas resources assessment. Field emission scanning electron microscopy (FE-SEM), high-pressure mercury intrusion porosimetry (HMIP), and low-pressure N2/CO2 adsorption were used to qualitatively and quantitatively characterize full-scale pore structure of Longmaxi (LM) shale from the southern Sichuan Basin. Fractal dimension and its controlling factors were also discussed in our study. Longmaxi shale mainly developed organic matter (OM) pores, interparticle pores, intraparticle pores, and microfracture, of which the OM pores dominated the pore system. The pore diameters are mainly distributed in the ranges of 0.4–0.7 nm, 2–20 nm and 40–200 μm. Micro-, meso- and macropores contribute 24%, 57% and 19% of the total pore volume (PV), respectively, and 64.5%, 34.6%, and 0.9% of the total specific surface area (SSA). Organic matter and clay minerals have a positive contribution to pore development. While high brittle mineral content can inhibit shale pore development. The fractal dimensions D1 and D2 which represents the roughness of the shale surface and irregularity of the space structure, respectively, are calculated based on N2 desorption data. The value of D1 is in the range of 2.6480–2.7334 (average of 2.6857), D2 is in the range of 2.8924–2.9439 (average of 2.9229), which indicates that Longmaxi shales have a rather irregular pore morphology as well as complex pore structure. Both PV and SSA positively correlated with fractal dimensions D1 and D2. The fractal dimension D1 decreases with increasing average pore diameter, while D2 is on the contrary. These results suggest that the small pores have a higher roughness surface, while the larger pores have a more complex spatial structure. The fractal dimensions of shale are jointly controlled by OM, clays and brittle minerals. The TOC content is the key factor which has a positive correlation with the fractal dimension. Clay minerals have a negative influence on fractal dimension D1, and positive influence D2, while brittle minerals show an opposite effect compared with clay minerals. Full article
(This article belongs to the Special Issue Mineralogy of Shale Gas and Other Low Permeability Reservoirs)
Show Figures

Figure 1

24 pages, 7454 KiB  
Article
Prospective (Bio)leaching of Historical Copper Slags as an Alternative to Their Disposal
by Anna Potysz and Jakub Kierczak
Minerals 2019, 9(9), 542; https://0-doi-org.brum.beds.ac.uk/10.3390/min9090542 - 09 Sep 2019
Cited by 32 | Viewed by 4195
Abstract
The aim of this study was to evaluate the feasibility of (bio)hydrometallurgical methods for metal extraction from historical copper slags. Two types of slags (amorphous slag—AS, and crystalline slag—CS) were subjected to 24 to 48 h of leaching with: (i) Sulfuric acid at [...] Read more.
The aim of this study was to evaluate the feasibility of (bio)hydrometallurgical methods for metal extraction from historical copper slags. Two types of slags (amorphous slag—AS, and crystalline slag—CS) were subjected to 24 to 48 h of leaching with: (i) Sulfuric acid at 0.1, 0.5, and 1 M concentrations at 1%, 5%, and 10% pulp densities (PDs); and (ii) normality equivalent (2 N) acids (sulfuric, hydrochloric, nitric, citric, and oxalic) at pulp densities ranging from 1% to 2%. Bioleaching experiments were performed within 21 days with Acidithiobacillus thiooxidans accompanied by an abiotic control (sterile growth medium). The results demonstrated that the most efficient treatment for amorphous and crystalline slag was bioleaching at 1% PD over 21 days, which led to extraction of Cu at rates of 98.7% and 52.1% for AS and CS, respectively. Among the chemical agents, hydrochloric acid was the most efficient and enabled 30.5% of Cu to be extracted from CS (1% PD, 48 h) and 98.8% of Cu to be extracted from AS (1% PD, 24 h). Slag residues after leaching were characterized by strong alteration features demonstrated by the complete dissolution of fayalite in the case of CS and the transformation of AS to amorphous silica and secondary gypsum. Based on this study, we conclude that amorphous slag is a more suitable candidate for potential metal recovery because of its generally high susceptibility to leaching and due to the generation of residue significantly depleted in metals as the end product. The inventory of economically relevant metals showed that 1 ton of historical copper slag contains metals valued at $47 and $135 for crystalline and amorphous slag, respectively, suggesting that secondary processing of such materials can potentially be both economically and environmentally viable. Full article
(This article belongs to the Special Issue Metallurgical Slags)
Show Figures

Figure 1

22 pages, 13039 KiB  
Article
Joint Inversion of 2D Gravity Gradiometry and Magnetotelluric Data in Mineral Exploration
by Rongzhe Zhang and Tonglin Li
Minerals 2019, 9(9), 541; https://0-doi-org.brum.beds.ac.uk/10.3390/min9090541 - 07 Sep 2019
Cited by 9 | Viewed by 4183
Abstract
We have developed a mineral exploration method for the joint inversion of 2D gravity gradiometry and magnetotelluric (MT) data based on data-space and normalized cross-gradient constraints. To accurately explore the underground structure of complex mineral deposits and solve the problems such as the [...] Read more.
We have developed a mineral exploration method for the joint inversion of 2D gravity gradiometry and magnetotelluric (MT) data based on data-space and normalized cross-gradient constraints. To accurately explore the underground structure of complex mineral deposits and solve the problems such as the non-uniqueness and inconsistency of the single parameter inversion model, it is now common practice to perform collocated MT and gravity surveys that complement each other in the search. Although conventional joint inversion of MT and gravity using model-space can be diagnostic, we posit that better results can be derived from the joint inversion of the MT and gravity gradiometry data using data-space. Gravity gradiometry data contains more abundant component information than traditional gravity data and can be used to classify the spatial structure and location of underground structures and field sources more accurately and finely, and the data-space method consumes less memory and has a shorter computation time for our particular inversion iteration algorithm. We verify our proposed method with synthetic models. The experimental results prove that our proposed method leads to models with remarkable structural resemblance and improved estimates of electrical resistivity and density and requires shorter computation time and less memory. We also apply the method to field data to test its potential use for subsurface lithofacies discrimination or structural classification. Our results suggest that the imaging method leads to improved characterization of geological targets, which is more conducive to geological interpretation and the exploration of mineral resources. Full article
(This article belongs to the Special Issue Novel Methods and Applications for Mineral Exploration)
Show Figures

Figure 1

13 pages, 2826 KiB  
Article
Original Calibration of a Garnet Geobarometer in Metapelite
by Chun-Ming Wu
Minerals 2019, 9(9), 540; https://0-doi-org.brum.beds.ac.uk/10.3390/min9090540 - 06 Sep 2019
Cited by 37 | Viewed by 5905
Abstract
In many metapelitic assemblages, plagioclase is either CaO-deficient or even absent. In such cases, all the widely applied, well-calibrated plagioclase-related geobarometers lose their usage. Fortunately, it has been found that a net-transfer reaction including intracrystalline Fe2+–Ca2+ exchange in garnet is [...] Read more.
In many metapelitic assemblages, plagioclase is either CaO-deficient or even absent. In such cases, all the widely applied, well-calibrated plagioclase-related geobarometers lose their usage. Fortunately, it has been found that a net-transfer reaction including intracrystalline Fe2+–Ca2+ exchange in garnet is pressure-sensitive, therefore, a garnet geobarometer can be empirically calibrated under pressure–temperature (P–T) conditions of 430~895 °C and 1~15 kbar. The chemical composition range of the calibrant garnet is XCa = 0.02~0.29 and XFe = 0.42~0.91, and covers the majority of garnet in metapelite. The total error of this geobarometer was estimated to be within ±1.3 kbar. The application of this garnet geobarometer to metamorphic terranes certifies its applicability, and this geobarometer can play a unique role, especially when plagioclase is absent or CaO-deficient. Metamorphic P–T conditions can be simultaneously determined by the garnet–biotite pair through the application of the present garnet geobarometer in combination with a well-calibrated garnet-biotite geothermometer. Full article
(This article belongs to the Special Issue High‐and Ultrahigh‐Pressure Rocks)
Show Figures

Figure 1

19 pages, 6085 KiB  
Article
The Concentration of Asbestos Fibers in Bulk Samples and Its Variation with Grain Size
by Gaia M. Militello, Elisa Sanguineti, Adrián Yus González, Federico Mantovani and Laura Gaggero
Minerals 2019, 9(9), 539; https://0-doi-org.brum.beds.ac.uk/10.3390/min9090539 - 06 Sep 2019
Cited by 8 | Viewed by 4405
Abstract
The aim of this work was to establish whether asbestos fibers homogeneously occur in the different fractions ground from naturally occurring asbestos lithotypes, and to calculate the contribution of fibers from each fraction to the overall concentration in the sample. Serpentinite, metabasalt, calc-schist, [...] Read more.
The aim of this work was to establish whether asbestos fibers homogeneously occur in the different fractions ground from naturally occurring asbestos lithotypes, and to calculate the contribution of fibers from each fraction to the overall concentration in the sample. Serpentinite, metabasalt, calc-schist, clay, debris material, and soil, were addressed. Grain size fractions below 20 mm were sieved at 2 mm and 0.106 mm; they were then were mechanically milled to obtain powders below 0.106 mm. The three powdered fractions were characterized using a scanning electron microscope coupled with energy dispersive spectroscopy following M.D. 06/09/94. The still in use (in some cases), Italian normative M.D. 161/2012 specifies that analyses must be performed on the <2 mm fraction and the concentration (mg/kg) correlated with the weight of the whole sample <20 mm. However, the fiber counts yielded asbestos concentrations 50–60% lower compared with total asbestos analyses according to the new R.P.D. 120/2017. Consequently, there is a need to standardize the normative worldwide regulations for the management of asbestos-containing materials, by re-evaluation of sample preparation and quantification of asbestos. Full article
Show Figures

Figure 1

22 pages, 6299 KiB  
Article
Geochemistry, Zircon U-Pb Geochronology and Hf-O Isotopes of the Banzhusi Granite Porphyry from the Xiong’ershan Area, East Qinling Orogen, China: Implications for Petrogenesis and Geodynamics
by Bin Wang, Xinkai Hu, Li Tang and Jingchao Li
Minerals 2019, 9(9), 538; https://0-doi-org.brum.beds.ac.uk/10.3390/min9090538 - 05 Sep 2019
Cited by 3 | Viewed by 3095
Abstract
The Banzhusi granite porphyry is located in the Xiong’ershan area, East Qinling orogenic belt (EQOB). This study presents an integrated whole-rock geochemistry and zircon U-Pb-Hf-O isotope analysis of the Banzhusi granite porphyry. These rocks have metaluminous, high-K alkali-calcic and shoshonitic features and show [...] Read more.
The Banzhusi granite porphyry is located in the Xiong’ershan area, East Qinling orogenic belt (EQOB). This study presents an integrated whole-rock geochemistry and zircon U-Pb-Hf-O isotope analysis of the Banzhusi granite porphyry. These rocks have metaluminous, high-K alkali-calcic and shoshonitic features and show significant enrichment in light rare earth elements (LREEs) over heavy rare earth elements (HREEs) with negative Eu anomalies. These samples are also greatly enriched in Rb, Ba, K, Pb, Th and U and depleted in Nb, Ta, P and Ti, and they mostly overlap the ranges of the Taihua Group tonalite–trondhjemite–granodiorite (TTG) gneiss. Magmatic zircons from three samples of the Banzhusi granite porphyry yield U-Pb ages of 125.1 ± 0.97 Ma, 128.1 ± 1.2 Ma and 128.2 ± 1.3 Ma. The Hf-O isotope features of zircons from the three samples are very similar (δ18Ozircon = 4.84‰ to 6.51‰, εHf(t) = −26.9 to −14.4). The co-variations of geochemical and isotopic data in these granite porphyries imply that the Banzhusi granite porphyry resulted from the mixing of the partially melted Taihua Group and mantle-derived material in a post-collisional setting from 128–125 Ma. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop