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Abstract: Thermal-pressure Equations of State (EoS) such as the Mie-Grüneisen-Debye (MGD) model
depend on several assumptions, including the quasi-harmonic approximation (QHA) and a simplified
phonon density of states. We show how the QHA is violated by materials exhibiting anisotropic
thermal pressure. We also show that at pressures lower than those of the isochor of the reference
volume, the static pressure may become sufficiently negative to make the compressional part of
the EoS invalid. This limit is sensitive to the combined effects of the EoS parameters K’0, q and the
Grüneisen parameter γ0. Large values of q, which correspond to a rapid decrease in phonon mode
frequencies with increasing volume, can also lead to the bulk modulus becoming zero at high pressures
and temperatures that are not particularly extreme for planetary geotherms. The MGD EoS therefore
has an extremely limited P and T regime over which it is both valid and has physically-meaningful
properties. Outside of this range, additional terms should be included in the thermal pressure
that represents the physical properties of the solid. Or, alternatively, ‘isothermal’ EoS in which the
temperature variation of the elastic properties is explicitly modeled without reference to a physical
model can be used.
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1. Introduction

The text book written by Orson Anderson titled “Equations of State of Solids for Geophysics and
Ceramic Science” [1] is a masterful summary of the principles, theory, and practical application of
Equations of State (EoS). In particular, it is emphasized that “By physicists’ standards, the materials of
planets are not well characterized . . . . . . The corresponding physical theories applied to these planetary materials
are also necessarily simplified...” [1] (p. 113). Therefore, Orson Anderson took great care in laying out the
assumptions and simplifications underlying each EoS discussed, and in explaining the consequent
limitations on the P, T, and V regimes in which they are valid. The presentation of this material
was based on the deep knowledge and insights that Orson Anderson and his contemporaries and
co-workers developed over their research careers. Unfortunately, as research into planetary interiors
moves into new regimes of P and T, and science “frees itself from the tyranny of Earth’s geotherm” [2],
these limitations on EoS are often forgotten and EoS are blindly used in pressure and temperature
regimes where they are unphysical and have no validity. In this contribution, we build on the work of
Orson Anderson by first reviewing the properties and behavior of thermal-pressure type EoS, and then
indicate further limits to their physical validity, in particular at high-temperature and low-pressure
conditions not found on the terrestrial geotherm. These conditions are more likely to occur on the
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smaller terrestrial planets (i.e., Mars, Mercury) in the solar system. Furthermore, advances in the field
of extrasolar planet exploration have led to the discovery of planets with a wide variability in their
characteristics from Earth-like planets with different masses and radii, to planets that have no solar
system analogues (e.g., [3,4]). As equations of state are the link between astrophysical observations and
the interpretation of the interiors of exoplanets [5], knowing the limitations of PVT EoS is fundamental
for the study of exoplanets.

2. Methods

All numerical calculations were performed with v7.5 of the EosFit7c software [6], which was
released in summer 2019. The code has been validated [6] against a wide variety of other software and
algebraic solutions, as documented in the help system for the software. Most recently, the calculated
properties of the Mie-Grüneisen-Debye thermal pressure EoS have been validated against a Matlab
code independently written by Eleanor Berryman.

3. Thermal-Pressure EoS

In thermal-pressure EoS, the pressure at a given volume V and temperature T is treated as the
sum of two contributions:

P(V,T) = Pref(V,T0) + ∆Pth(V,T) (1)

The pressure Pref is the pressure required to compress the material from its volume V0 at reference
conditions (T0 and P = 0) to the volume V at the same temperature T0. The second term is the change
in thermal pressure ∆Pth. This is the pressure change at constant volume due to the temperature
difference between T0 and T. It is thus the pressure change along an isochor of the material (Figure 1).
If the volume V of the material at P and T is equal to its volume V0 at the reference conditions, then no
compression at the reference conditions is required to attain the final volume V, so Pref = 0. In this case,
the total pressure is equal to ∆Pth (black line and symbols in Figure 1).

Figure 1. The concepts and definitions of the various pressures and variables used in thermal pressure
EoS, illustrated for three different volumes. The solid lines are the isochors for three different volumes.

At pressures above the isochor of V0 the volume V is smaller than V0 and this is obtained with a
positive pressure Pref (blue in Figure 1). On the other hand, for P, T conditions below the isochor of V0

the V is greater than V0, and the material must be expanded at T0 to obtain the required V. This means
that Pref < 0 (red in Figure 1). The isochor passing through the reference conditions therefore divides
P–T space into two regions: at P above this reference isochor the Pref is positive, but at pressures below
the reference isochor the Pref is negative.
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3.1. Limitations to Isothermal EoS in Expansion

The volume variation of a material with pressure at T0 is described by its isothermal equation of
state. Such EoS for solids are developed explicitly for describing their behavior under compression,
and their validity for negative pressures and volume expansion relative to the reference conditions is
limited. This limit should be considered when working with thermal pressure EoS at volumes greater
than V0. The limit is illustrated in Figure 2 which shows that all common isothermal EoS show a
divergence of V (and thus V/V0) to very large values at negative pressures that are a small fraction
(typically <25%) of the value of the bulk modulus K0 at the reference conditions.

Figure 2. Volume-pressure variation for Murngahan, Vinet, 2nd-order Tait and Birch-Murnaghan
isothermal EoS, with K0 = 125 GPa and K’0 = 4, parameters similar to mantle composition olivines and
forsterite (e.g., [7]). The 3rd-order Birch-Murnaghan EoS (deep purple line) has the same bulk modulus
but K’0 = 9, a value typical of silicate orthopyroxenes, (e.g., [8,9]). At P ~ −K0/2K’0 the different EoS
start to diverge, predicting significantly different volumes. When the curves of V in this graph become
vertical the bulk modulus, K = −V(dP/dV), is zero.

This divergence can be most easily understood by reference to the Murnaghan EoS [10] which has
the property that the bulk modulus is linear in pressure:

K = K0 + K’0P (2)

with K’0 being the pressure derivative of the bulk modulus. It is clear that with K’0 > 0, there is a
pressure P = −K0/K’0 at which the bulk modulus K becomes zero and thus the volume diverges to
infinity (Figure 2). The pressure at which this divergence occurs depends on the EoS. It is generally
less-negative than for the Murnaghan EoS because other EoS include a variation in K’ = (dK/dP)T which
is expressed as K” = (dK’/dP)T. The value of K” is zero in the Murnaghan EoS (Equation (2)) but for
most materials it is actually negative [1], and the implied value of K” for the 2nd-order EoS shown in
Figure 2 is also negative (e.g., [1,6,11,12]). Therefore, K’ becomes more positive at negative pressures
in other EoS than in the Murnaghan, and thus the bulk modulus becomes zero at smaller negative
pressures. If the value of K’0 is larger, then the decrease of K is faster, and the limit to the validity
of the EoS is at less-negative pressures (deep purple line in Figure 2). This pressure limit becomes
even less-negative in 4th-order EoS with K” more negative than the implied value of the 3rd-order
EoS. It follows that there is no simple dependence upon the reference parameters of the EoS of the
pressure at which the divergence of volume occurs. Further, before the volume curves show strong
divergence, the bulk modulus and its pressure derivatives show values that would be considered
anomalous for solid materials. Therefore, rather than just considering the algebraic limit (e.g., K = 0) to
the validity of EoS in expansion, it is necessary to find a practical limit to their physical reasonableness or
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validity. Figure 2 also shows that the difference between the various EoS only becomes significant at
pressures more negative than where the bulk modulus of the Murnaghan EoS becomes one-half of K0,
which suggests that K > K0/2 is a reasonable criterium to use for a limit to the validity of EoS. For the
Murnaghan EoS this gives a limiting pressure Plim = −K0/2K’0. For other EoS the expressions for Plim
are more complex, but the values of Plim are typically 5–10% less negative than for a Murnaghan EoS
with the same values of the parameters K0 and K’0. For the example of an olivine-like EoS used in
Figure 2, Plim ranges from −14.0 to −15.6 GPa for different types of isothermal EoS. The influence of K’0
on this limit is significant. For an orthopyroxene-like EoS with K’0 = 9 and the same value of K0, the
EoS is restricted in expansion to only Plim ~ 6–7 GPa (deep purple line, Figure 2).

3.2. Limitations to Thermal-Pressure EoS

Thus, at sufficiently high temperatures, thermal-pressure EoS will have large enough ∆Pth that
Pref is more negative than Plim, thus making the EoS physically invalid. Given that in planetary science
we are only interested in positive total pressures, the largest negative value of Pref will occur for
calculations of volume at ambient pressure, for which Pref = −∆Pth. The corresponding temperature
limit, Tlim, to the validity of the thermal-pressure EoS at room pressure then follows from requiring
−∆Pth > Plim. For isochors that are approximately linear and parallel, we can estimate Tlim by using the
slope of the isochor (dP/dT)V = αK ~ α0K0 and equating it to the slope of the isochor from Plim and Tref
to P = 0 and Tlim, thus: (

dP
dT

)
V
≈ α0K0 ≈

−Plim

(Tlim − T0)
(3)

If we further take the value of Plim = −K0/2K’0 from the Murnaghan EoS, one can obtain an estimate
of the limiting temperature in terms of the EoS parameters at the reference conditions:

Tlim ≈ T0 +
1

(2α0K′0)
(4)

For our olivine-like EoS parameters, one obtains a Tlim ~ 5000 K, but for orthopyroxene-like EoS
parameters, the larger K’0 reduces Tlim to the range 1900–2400 K (depending on the value of the thermal
expansion coefficient). If the isochors are not quasi-parallel, a better estimate of Tlim can be obtained if
one does not equate αK = α0K0, thereby obtaining:

Tlim ≈ T0 +
K0

(2K′0αPlimKPlim)
(5)

where the subscript “Plim” indicates the parameter values at the pressure Plim and T0. One can imagine
that low-pressure conditions that exceed these temperature limits to the validity of the thermal-pressure
EoS may occur in several planetary environments. Certainly, they could occur in the later stages
of post-impact recovery from shock, when temperatures remain high but the shock wave-induced
pressure has decayed. Alternatively they could occur in the early stages of the evolution of hot
small planets.

The thermal pressure in a crystal arises from the excitation of its collective vibrational modes,
the phonons. Different thermal-pressure EoS are distinguished by the method used to calculate the
thermal pressure and hence the change in thermal pressure, ∆Pth, from the reference temperature.
It can be modeled either in an ad-hoc thermodynamic approach by fitting parameters such as the
thermal expansion coefficient and the bulk modulus and their derivatives to experimental data,
or it can be calculated from an analysis of the properties of the phonon modes themselves via
statistical mechanics [13]. In the thermodynamic approach there are no further assumptions, and the
temperature limit Tlim is a direct constraint on the physical meaningfulness of the EoS. On the other
hand, for thermal-pressure EoS based on statistical mechanics, Tlim may not be of practical relevance
if the assumptions behind the derivation of the EoS are already violated at lower temperatures.
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Therefore, each EoS formulism of this type needs to be examined individually, as we do for the
Mie-Grüneisen-Debye EoS in Section 4. Nonetheless, in order to prevent EoS software from crashing
in the large V regime, it is certainly necessary to impose a limit to how negative Pref can become. In the
latest release of EosFit software suite [6,14], this limit is now set as the requirement that K > K0/2 for all
steps of all EoS calculations.

4. Mie-Grüneisen-Debye EoS

The Mie-Grüneisen-Debye (MGD) EoS is based on the quasi-harmonic approximation (QHA)
to the statistical mechanics of the collective vibrational modes (phonons) of crystalline materials [1]
(chapter 2). Under the QHA it is assumed that the vibrational modes do not interact and are completely
independent of one another, and that their wavenumbers (and thus frequencies) are only dependent
upon the molar volume; the effects of P and T on the wavenumbers of the phonon modes are thus
indirect in the sense that they change the volume, which then changes the wavenumbers. The volume
dependence of the phonon frequencies ωι is defined by the phonon-mode Grüneisen parameters
γi =

V
ωi
∂ω
∂V . In order to derive the Mie-Grüneisen-Debye EoS, further assumptions are necessary.

The first is that the volume dependence of all of the phonon frequencies is the same, and can be
represented by a single Grüneisen parameter γ. Then the thermal pressure becomes Pth =

γ
V Eth, where

V is explicitly the molar volume and Eth is the thermal energy that is the energy of the vibrational
modes. Eth is further assumed to derive from a simplified phonon density of states, which can be
characterized by a single Debye frequency, or alternatively the Debye temperature θD, whose energy is
represented by the Debye function [1] which is a function of only T and θD and is an integral from
T = 0 to T. Therefore, if a finite temperature is chosen for T0, the change in thermal pressure from
T0 becomes:

∆Pth =
3nRγ

V

[
TD

[
θD

T

]
− Tre f D

[
θD

T0

]]
(6)

In which D
(
θD
T

)
represents the Debye function, R is the gas constant and n is the number of atoms

in the formula unit corresponding to the molar volume V.

4.1. Limitations to MGD EoS from Expansion

As demonstrated in [1] (Figure 10.1 therein), the temperature range in which the QHA is valid and
the material properties are dominated by harmonic effects is bounded by regions of invalidity at both
low and high temperatures. At ambient pressure and low temperatures, below T ~ 0.8θD, quantum
effects start to become significant, whereas above T ~ 1.2θD there can be significant contributions
from anharmonicity. Given that Debye temperatures for minerals are typically in the range 500–800 K,
this is a significant restriction, but the range of temperatures in which the QHA remains valid is
significantly expanded under high pressures [1] (Figure 10.2 therein) and [15]. If the non-validity of
the compressional part of the EoS discussed in Section 3 is to be significant for a MGD EoS, Tlim must
therefore be of the order of 1 – 2θD. Figure 3 shows isochors (in black) calculated for a range of values
of γ for the BM2 EoS representative of olivine minerals. All of the isochors are drawn from the same
pressure close to Plim and therefore all represent the same volume, and the same value of K at Tref.
For low values of γ, the thermal expansion coefficients are reasonable (α0 ~ 2.6 × 10−5 K−1), and the
Tlim where the isochors cut the temperature axis are far in excess of T = 2θD. Extreme values of γ = 5,
which lead to unrealistic values of the volume thermal expansion coefficient at reference conditions (α0
~ 1.3 × 10−4 K−1), are required to reduce Tlim to the vicinity of 2θD. In contrast, the orthopyroxene-like
EoS has a much larger value of K’0 and thus a smaller Plim. Thus, although the slopes of the isochors
through Plim are very similar to those of the olivine-like EoS, the Tlim is in the vicinity of 2θD for γ = 2.
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Figure 3. Isochors for two sets of MGD EoS with different values of γ, at volumes corresponding to the
respective Plim. The black lines are for the olivine-like compressional BM2 EoS with K′0 = 4, and the
purple lines are for the orthopyroxene-like compressional BM3 EoS with K′0 = 9. All the MGD EoS
shown have θD = 600K. Solid lines have q = 0. Dashed lines have γ0 = 1 and q = 5. The temperatures
corresponding to θD and 2θD are indicated.

The isochors shown as solid lines in Figure 3 are each calculated with a constant value of γ,
although it would be expected to increase with increasing volume. The variation in γwith volume is
usually modeled in the MGD EoS by γ = γ0

(
V
V0

)q
. The effect of q > 0 is to increase the value of γ at high

temperatures, increasing the volume thermal expansion coefficient and thus steepening the isochors,
as shown by the dashed lines in Figure 3, which both have γ0 = 1 and an extreme value of q = 5 so
as to clearly demonstrate the effects. The influence of large positive values of q is clearly stronger on
isochors of the EoS with the smaller K’0, but they are not expected to bring Tlim within the range of
temperature for which the QHA will be valid. Therefore, the temperature limit Tlim appears to only be
relevant for materials with large values of K’0 for which it is possible for Tlim to be in the vicinity of
2θD (purple lines in Figure 3).

4.2. The Consequences of q

We have already noted how the value of the γ parameter influences the volume thermal expansion
coefficient at room conditions, and that the value of q controls how the value of γ changes, especially
at large volumes corresponding to high temperatures. More generally, both γ0 and q affect the value
of both the thermal expansion coefficient and the bulk modulus at all P, T conditions. In this section
we take the results of Anderson [1] and show how extreme values of these variables place additional
constraints on the validity of the MGD EoS.

Taking the volume differential of Equation (1) and multiplying by the volume V, one obtains an
expression for the bulk modulus of a thermal-pressure EoS at any P, T:

−V
(
∂P
∂V

)
= −V

(
∂Pre f
∂V

)
−V

(
∂Pth
∂V

)
K = KPre f −V

(
∂Pth
∂V

) (7)

Thus, the bulk modulus is the sum of two terms. The first is the bulk modulus, KPre f , on the isochor
at T0, which is at the pressure Pref. The second term is the volume derivative of the thermal pressure.

At high temperatures the Debye function D
(
θD
T

)
approaches the value of 1, allowing Equation (6) to be

used to obtain an approximation for the Pth of the MGD EoS at high temperatures (see Equation (2.39)
in [1]):
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Pth ≈
3nRγT

V
(8)

By substituting γ0
(

V
V0

)q
for γ, taking the derivative of this expression with respect to V and then

multiplying by V, one obtains an expression for the last term in Equation (7):

−V
(
∂Pth
∂V

)
≈
−3nRγ0TV(q−1)

Vq
0

(q− 1) (9)

This term appears in Equation (2.42) in reference [1]. Along an isochor the terms in V remain
constant, as do the constants n, R, and γ0. Therefore, the sign of this contribution to the bulk modulus
variation along an isochor depends on (q − 1). For q = 1, the derivative (Equation (9)) is zero, and
therefore from Equation (7) K = KPre f . This means that the bulk modulus remains constant and equal
to KPref along an isochor. The Holland-Powell thermal-pressure EoS has this same property [7,13,16].

In the MGD EoS when q < 1, the expression for −V
(
∂Pth
∂V

)
is positive and the bulk modulus increases

with increasing temperature along an isochor. This is also a property of the MGD EoS with q = 0, or
constant γ = γ0, that are shown as solid lines in Figure 3. Conversely, for q > 1, the bulk modulus
decreases as temperature increases along an isochor. It is believed that most minerals and planetary
materials exhibit values of q in the range 1 to 2 [1] providing that there are no phase transitions.
However, for all values of q > 1, there will be a temperature at which the bulk modulus becomes
zero, and the EoS again becomes physically invalid. This limit is reached at lower temperatures with
larger values of q. For example, along the isochor shown as a purple dashed line in Figure 3 for the
orthopyroxene-like EoS with γ0 = 1 and q = 5, the bulk modulus becomes zero just above 3000 K and
7.6 GPa. At the same time, the volume thermal expansion coefficient becomes infinite, because the
product αKT has to remain equal to the slope

(
∂P
∂T

)
V

of the isochor.

4.3. The Consequences of Anisotropic Pth

The basis of the MGD EoS are the concepts of thermal pressure and isochors, with the thermal
pressure being the increase in pressure along an isochor. However, the thermal expansion and
compressibility which describe the response of a crystal to respectively temperature and hydrostatic
pressure are only isotropic for cubic crystals. Therefore, for lower-symmetry crystals, the cell parameters
vary by different amounts for a given change in P or T. From the definitions of the thermal expansion
tensor αij and the compressibility tensor βij [17], the combined effect of a change in P and T is described
by the strain tensor εij:

εi j = αi jdT − βi jdP (10)

It is therefore not possible to maintain all of the cell parameters or the lengths of all directions in
the crystal constant when P and T are changed. However, along a line defined by(

∂P
∂T

)
=
αi j

βi j
(11)

the strain εij will remain constant. The property
αi j
βi j

of a crystal varies with direction in the crystal, but
it is not a tensor property. It defines lines in P–T space along which there is no strain in one chosen
direction within the crystal. By analogy with the conventional definition of thermal pressure,

(
∂P
∂T

)
V

,
Equation (11) defines the anisotropic thermal pressure of a crystal.

In particular, for uniaxial crystals (in which a = b) and orthorhombic crystals, one can calculate
from the values of the axial thermal expansion coefficients and axial compressibilities lines in P–T space
along which the individual cell parameters a, b and c remain constant. It has long-been recognized [18]
that many minerals exhibit the property that directions with large thermal expansion tend to compress
more under pressure, which is equivalent to saying that the anisotropic thermal pressure defined by
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Equation (11) tends to be close to isotropic in many crystal structures. However, for crystals in which
the structural response to P and T appears to be dominated by cation-cation repulsion along one axis,
this axis tends to be relatively incompressible (small β) and at the same time exhibits a large thermal
expansion coefficient α. These compounds then exhibit significantly anisotropic thermal pressure
(Equation (11)). Figure 4 illustrates one way in which the anisotropy of the thermal pressure of a
material may be evaluated, directly from the thermal expansion and compressibility tensors measured
at room conditions. Figure 4a shows lines of constant a (=b) and c cell parameters calculated from
the well-constrained elastic properties of zircon at room conditions [19,20]. These two lines deviate
significantly from the isochor, with the consequence that there are significant linear strains along
isochors (Figure 4b). Because phonon-mode frequencies change linearly with small strains [21–25],
this implies that the phonon-mode frequencies of materials with anisotropic thermal pressure change
along the isochors, in violation of the assumptions of the QHA.

Figure 4. (a) The lines of constant a and c cell parameters of zircon passing through room T and P do
not coincide with the isochor. (b) As a consequence, there are significant changes in the a and c cell
parameters along this isochor.

Whether the resulting strains along the isochors are sufficiently large to constitute a significant
violation of the QHA and invalidate the MGD EoS depends on the magnitudes of the components of
the phonon-mode Grüneisen tensors which relate the phonon frequencies to the strains [19,22,23,25].
One direct test is to compare the measured changes in the phonon-mode frequencies (e.g., the
frequencies of Raman bands) with pressure and with temperature. If the isobaric and isothermal
change in phonon wavenumbers obey the relationship

(
∂ω
∂P

)
T
= −

( βV
αV

)(
∂ω
∂T

)
P

, then the thermal pressure
is effectively isotropic [19]. The isobaric variation of the bulk modulus with temperature is also a
sensitive indicator of the validity of the QHA because it is sensitive to the parameter K’0. If fitting
the temperature variation of the bulk modulus requires a value of K’0 that is inconsistent with that
required to fit either the volume variation with pressure or the measured change in the elastic moduli
with pressure this may indicate that the anisotropic thermal pressure is significant. EoS such as the
MGD which rely on the QHA should not be used for materials in which the thermal pressure is
significantly anisotropic.

5. Conclusions

In his book, Orson Anderson [1] took great pains to explain the assumptions behind various EoS
formula and to explore the limits of these assumptions. For the MGD EoS, he emphasized the point
that the temperature range within which the QHA is valid is extremely limited at ambient pressures,
although it expands at higher pressures as both quantum-mechanical and anharmonic effects are
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suppressed [15]. Further, in his chapter 5 [1] he demonstrated that only ‘close-packed’ structures
have phonon densities of state that are ‘Debye-like’, meaning that MGD EoS should not be applied
to open-framework materials whose structural response to changing pressure and temperature is
dominated by tilting of relatively rigid polyhedral structural units such as SiO4 tetrahedra, (e.g., [18,26]).
In this contribution we have identified further limitations on thermal-pressure type EoS. First, that
structures that respond by polyhedral tilting [26] and even densely-packed structures such as rutile
and zircon can exhibit strong anisotropy in their thermal pressure. This leads to changes of their
phonon-mode frequencies along the isochors, and thus invalidates a fundamental assumption behind
thermal-pressure EoS including the MGD and the Holland-Powell EoS [16] widely used for petrological
and planetary thermodynamics. Fits of a thermal-pressure EoS to volume and elastic data of such
materials are often poor, and at the same time can lead to extreme values of EoS parameters [27].
Second, at low pressures below the isochor of the reference volume V0 (and thus at high temperatures),
the static pressure Pref may become sufficiently negative to make the compressional part of the EoS
invalid. This limit to the validity of the MGD EoS is sensitive to the combined effects of the EoS
parameters K’0, q, and γ (Figure 3). Third, large values of q which correspond to a rapid decrease in
phonon mode frequencies with volume can lead to the bulk modulus becoming zero at pressures and
temperatures that are not particularly extreme for planetary geotherms. If one obtains extreme values
of especially K’0, q, and γ through fitting of P–V–T data, it is worthwhile to explore the physical reason
for the values and consider whether or not one or more of the assumptions behind the derivation of
thermal-pressure EoS are violated by the known structure, properties, or phonon density of states
of the material. Possible causes could include the presence of phase transitions, anisotropic thermal
pressure, or significant anharmonic contributions (both phonon and electronic) to the thermal pressure.
There are at least two possible types of approaches to obtaining more accurate and valid EoS in these
cases. One is to include additional terms in the thermal pressure that represent the physical properties
of the solid, for example by using additional oscillators to better represent the phonon density of
state [28] and explicitly adding terms to describe the anharmonic contributions of the phonons [1,29,30]
or electrons, (e.g., [31]), or by determining the anisotropy of the thermal Grüneisen parameter from the
variation of the unit-cell parameters with temperature [29,30,32]. The alternative approach is not to use
thermal-pressure EoS, but to employ “isothermal” EoS in which the temperature variation of the elastic
properties such as K and K’ is explicitly modeled [7]. Which approach is tractable and appropriate
depends on the data available for the material.
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