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1. Introduction

Maximal element principle (MEP, for short) is a fascinating theory that has a wide
range of applications in many fields of mathematics. Various generalizations in different
directions of maximal element principle have been investigated by several authors, see
[1–8] and references therein. Lin and Du [3,4,7] introduced the concepts of the sizing-up
function and µ-bounded quasi-ordered set to define sufficient conditions for a nondecreas-
ing sequence on a quasi-ordered set to have an upper bound and used them to establish an
abstract MEP.

Definition 1 (see [3,4,7]). Let E be a nonempty set. A function µ : 2E → [0,+∞] defined on the
power set 2E of E is called sizing-up if it satisfies the following properties

(µ1) µ(∅) = 0;
(µ2) µ(C) ≤ µ(D) if C ⊆ D.

Definition 2 (see [3,4,7]). Let E be a nonempty set and µ : 2E → [0,+∞] a sizing-up function.
A multivalued map T : E → 2E with nonempty values is said to be of type (µ) if for each x ∈ E
and ε > 0, there exists a y = y(x, ε) ∈ T(x) such that µ(T(y)) ≤ ε.

Definition 3 (see [3,4,7]). A quasi-ordered set (E,.) with a sizing-up function µ : 2E →
[0,+∞], in short (E,., µ), is said to be µ-bounded if every .-nondecreasing sequence z1 . z2 .
· · · . zn . zn+1 . · · · in E satisfying

lim
n→+∞

µ({zn, zn+1, · · · }) = 0

has an upper bound.

The following abstract maximal element principle of Lin and Du is established
in [3,4,7].
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Theorem 1. Let (E,., µ) be a µ-bounded quasi-ordered set with a sizing-up function µ : 2E →
[0,+∞]. For each x ∈ E, let S : E → 2E be defined by S(x) = {y ∈ E : x . y}. If S is of type
(µ), then for each z0 ∈ E, there exists a nondecreasing sequence z0 . z1 . z2 . · · · in E and
v ∈ E such that

(i) v is an upper bound of {zn}∞
n=0;

(ii) S(v) ⊆ ⋂+∞
n=1 S(zn);

(iii) µ(
⋂+∞

n=1 S(zn)) = µ(S(v)) = 0.

Ekeland’s variational principle [9,10] is a very important tool for the study of approxi-
mate solutions approximate solutions of nonconvex minimization problems.

Theorem 2. (Ekeland’s variational principle) Let (M, d) be a complete metric space and f : M→
(−∞,+∞] be a proper lower semicontinuous and bounded below function. Let ε > 0 and u ∈ M
with f (u) < +∞. Then there exists v ∈ M such that

(a) f (v) + εd(u, v) ≤ f (u);
(b) f (z) + εd(v, z) > f (v) for all z ∈ M with z 6= v.

In 1976, Caristi [11] established the following famous fixed point theorem:

Theorem 3. (Caristi’s fixed point theorem) Let (M, d) be a complete metric space and f : M →
(−∞,+∞] be a proper lower semicontinuous and bounded below function. Suppose that T : M→
M is selfmapping, satisfying

f (Tz) + d(z, Tz) ≤ f (z)

for each z ∈ M. Then there exists w ∈ M such that Tw = w.

In 1991, Takahashi [12] proved the following nonconvex minimization theorem:

Theorem 4. (Takahashi’s nonconvex minimization theorem) Let (M, d) be a complete metric space
and f : M→ (−∞,+∞] be a proper lower semicontinuous and bounded below function. Suppose
that for any x ∈ M with f (x) > infz∈M f (z), there exists yx ∈ M with yx 6= x such that

f (yx) + d(x, yx) ≤ f (x).

Then there exists w ∈ M such that f (w) = infz∈M f (z).

It is well known that Caristi’s fixed point theorem, Takahashi’s nonconvex minimiza-
tion theorem and Ekeland’s variational principle are logically equivalent; for detail, one
can refer to [3,6–8,13–24]. Many authors have devoted their attention to investigating gen-
eralizations and applications in various different directions of the well-known fixed point
theorems (see, e.g., [3–8,12–31] and references therein). By using Theorem 1, Du proved
several versions of generalized Ekeland’s variational principle and maximal element prin-
ciple and established their equivalent formulations in complete metric spaces, for detail,
see [3,4].

In this paper, we present some new existence theorems related with critical point
theorem, generalized Ekeland’s variational principle, maximal element principle, and
common (fuzzy) fixed point theorem for essential distances by applying Theorem 1.

2. Preliminaries

Let E be a nonempty set. A fuzzy set in E is a function of E into [0, 1]. Let F (E) be the
family of all fuzzy sets in E. A fuzzy mapping on E is a mapping from E into F (E). This
enables us to regard each fuzzy map as a two variable function of E× E into [0, 1]. Let F be
a fuzzy mapping on E. An element a of E is said to be a fuzzy fixed point of F if F(a, a) = 1
(see, e.g., [4]). Let Γ : E → 2E be a multivalued mapping. A point x ∈ E is called to be a
critical point (or stationary point or strict fixed point) [4] of Γ if Γ(v) = {v}.
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Let E be a nonempty set and “.” a quasi-order (preorder or pseudo-order; that is, a
reflexive and transitive relation) on E. Then (E,.) is called a quasi-ordered set. An element
v in E is called a maximal element of E if there is no element x of E, different from v, such
that v . x; that is, v . w for some w ∈ E implies that v = w. Let (E,.) be a quasi-ordered
set. A sequence {xn}n∈N is called .-nondecreasing (resp. .-nonincreasing) if xn . xn+1
(resp. xn+1 . xn) for each n ∈ N.

Let (X, d) be a metric space. A real valued function ϕ : X → R is lower semicontinuous
(in short l.s.c) (resp. upper semicontinuous, in short u.s.c) if {x ∈ X : ϕ(x) ≤ r} (resp.
{x ∈ X : ϕ(x) ≥ r}) is closed for each r ∈ R. A real-valued function f : X → (−∞,+∞]
is said to be proper if f 6≡ +∞. Recall that a function p : X × X → [0,+∞) is called a
w-distance [17,23], if the following are satisfied

(w1) p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈ X;
(w2) For any x ∈ X, p(x, ·) : X → [0,+∞) is l.s.c.;
(w3) For any ε > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ imply

d(x, y) ≤ ε.

The concept of τ-function was introduced and studied by Lin and Du as follows.
A function p : X×X → [0, ∞) is said to be a τ-function [4,13,15,20,22,24,25], if the following
conditions hold

(τ1) p(x, z) ≤ p(x, y) + p(y, z) for all x, y, z ∈ X;
(τ2) If x ∈ X and {yn} in X with limn→∞ yn = y such that p(x, yn) ≤ c for some c =

c(x) > 0, then p(x, y) ≤ c;
(τ3) For any sequence {xn} in X with limn→∞ sup{p(xn, xm) : m > n} = 0, if there exists

a sequence {yn} in X such that limn→+∞ p(xn, yn) = 0, then limn→+∞ d(xn, yn) = 0;
(τ4) For x, y, z ∈ X, p(x, y) = 0 and p(x, z) = 0 imply y = z.

It is worth mentioning that a τ-function is nonsymmetric in general. It is known that
any metric d is a w-distance and any w-distance is a τ-function, but the converse is not true,
see [24] for more detail.

Lemma 1 (see [15,16,26]). If condition (τ4) is weakened to the following condition (τ4)′:

(τ4)′ for any x ∈ X with p(x, x) = 0, if p(x, y) = 0 and p(x, z) = 0, then y = z,

then (τ3) implies (τ4)′.

The concept of essential distance was introduced by Du [15] in 2016.

Definition 4 (see [15]). Let (X, d) be a metric space. A function p : X× X → [0,+∞) is called
an essential distance if conditions (τ1), (τ2), and (τ3) hold.

Remark 1. It is obvious that any τ-function is an essential distance. By Lemma 1, we know that if
p is an essential distance, then condition (τ4)′ holds.

The following known result is very crucial in our proofs.

Lemma 2 (see [4]). Let (X, d) be a metric space and p : X×X → [0,+∞) be a function. Assume
that p satisfies the condition (τ3). If a sequence {xn} in X with limn→∞ sup{p(xn, xm) : m >
n} = 0, then {xn} is a Cauchy sequence in X.

3. Main Results

Lemma 3. Let (M, d) be a metric space and p : M × M → [0,+∞) be a function satisfying
p(x, x) = 0 for all x ∈ M and p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈ M. Suppose that the
extended real-valued function L : M×M→ (−∞,+∞] satisfies the following assumptions

(i) L(x, x) ≤ 0 for all x ∈ M;
(ii) L(x, z) ≤ L(x, y) + L(y, z) for all x, y, z ∈ M;
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(iii) For each x ∈ M, y→ L(x, y) is l.s.c.;
(iv) {x ∈ X : infy∈M L(x, y) > −∞} 6= ∅.

Define a binary relation . on M by

x . y ⇐⇒ L(x, y) + p(x, y) ≤ 0.

Then . is a quasi-order.

Proof. Clearly, x . x for all x ∈ M. If x . y and y . z, then

L(x, y) + p(x, y) ≤ 0

and
L(y, z) + p(y, z) ≤ 0.

By (ii), we get

L(x, z) + p(x, z) ≤ L(x, y) + L(y, z) + p(x, y) + p(y, z) ≤ 0,

which shows that x . z. Hence . is a quasi-order.

Lemma 4. Let (M, d), p, L, and . be the same as in Lemma 3. Assume that for each x ∈ M,
the function y→ p(x, y) is l.s.c. Define G : M→ 2M by

G(x) = {y ∈ M : x . y} for x ∈ M.

Then the following hold

(a) G(x) is nonempty and closed for each x ∈ M;
(b) G(y) ⊆ G(x) for each y ∈ G(x).

Proof. Obviously, the conclusion (a) holds. To see (b), let y ∈ G(x). Then x . y. We claim
that G(y) ⊆ G(x). Given z ∈ G(y). Thus y . z. By the transitive relation, we get x . z
which means z ∈ G(x). Hence G(y) ⊆ G(x).

The following theorem is one of the main results of this paper.

Theorem 5. Let (M, d) be a metric space and p be an essential distance on M with p(x, ·) is
l.s.c. for each x ∈ M and p(a, a) = 0 for all a ∈ M. Suppose that L, . and G be the same as in
Lemmas 3 and 4. If,

p(y, x) ≤ p(x, y) for all y ∈ G(x),

then the following hold:

(a) G is of type (µp) where µp(D) := sup{p(x, y) : x, y ∈ D} for D ⊆ M;
(b) If M is .-complete, then (M,., µp) is a µp-bounded quasi-ordered set.

Proof. We first show that G is of type (µp). Let x ∈ M and ε > 0 be given. Then there exists
n0 = n0(ε) ∈ N, such that 2−n0 < ε

2 . Define a function κ : M→ [−∞,+∞] by

κ(x) = inf
y∈G(x)

L(x, y).

Let y ∈ G(x). If κ(x) = −∞, then 0 ≤ p(x, y) < −κ(x). Otherwise, if κ(x) > −∞, then

p(x, y) ≤ −L(x, y) ≤ −κ(x).

Hence we conclude

0 ≤ p(x, y) ≤ −κ(x) for all y ∈ G(x). (1)



Axioms 2021, 10, 11 5 of 10

Set x1 := x ∈ M. Thus one can choose x2 ∈ G(x1) ⊆ M, such that

L(x1, x2) ≤ κ(x1) +
1
2

.

Let k ∈ N and assume that xk ∈ M is already known. Then, one can choose
xk+1 ∈ G(xk) such that

L(xk, xk+1) ≤ κ(xk) +
1
2k .

Hence, by induction, we obtain a nondecreasing sequence x1 . x2 . · · · in M such
that xn+1 ∈ G(xn) and

L(xn, xn+1) ≤ κ(xn) +
1
2n for all n ∈ N. (2)

By Lemma 4, we have G(xn+1) ⊆ G(xn) for all n ∈ N. So it follows that

κ(xn+1) = inf
y∈G(xn+1)

L(xn+1, y)

≥ inf
y∈G(xn)

L(xn+1, y)

≥ inf
y∈G(xn)

[L(xn, y)− L(xn, xn+1)]

= κ(xn)− L(xn, xn+1).

(3)

Combining (2) with (3), we obtain

κ(xn+1) +
1
2n ≥ 0,

and hence
0 ≤ −κ(xn+1) ≤

1
2n <

ε

2
for all n ≥ n0.

Put w = xn0+1. Thus w ∈ G(x) and

0 ≤ −κ(w) <
ε

2
.

If G(w) is a singleton set, then µp(G(w)) = 0 ≤ ε. Assume that G(w) is not a singleton
set. Let u, v ∈ G(w). By our hypothesis, we have p(u, w) ≤ p(w, u). So, by (1), we obtain

p(u, v) ≤ p(u, w) + p(w, v)

≤ −2κ(w)

< ε

which implies
µp(G(w)) = sup{p(u, v) : u, v ∈ G(w)} ≤ ε.

Therefore G is of type (µp). Finally, we prove (b). Let α1 . α2 . · · · be a .-
nondecreasing sequence in M satisfying lim

n→+∞
µp({αn, αn+1, · · · }) = 0. Since

0 = lim
n→+∞

µp({αn, αn+1, · · · })

= lim
n→+∞

sup{p(u, v) : u, v ∈ {αn, αn+1, · · · }},

we get
lim

n→+∞
sup{p(αn, αm) : m > n} = 0.
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So, by applying Lemma 2, we show that {αn} is a nondecreasing Cauchy sequence
in M. By the .-completeness of M, there exists β ∈ M such that αn → β as n → +∞.
We claim that β is an upper bound of {αn}+∞

n=1. For each n ∈ N, since αm ∈ G(αn) for all
m ≥ n and αn → β, by the closedness of G(αn), we have β ∈ G(αn) or αn . β for all n ∈ N.
Therefore β is an upper bound of {αn} and hence (M,., µp) is a µp-bounded quasi-ordered
set. The proof is completed.

The following result is immediate from Theorem 5 and Lemmas 3 and 4.

Corollary 1. Let (M, d) be a metric space and p be an essential distance on M with p(x, ·) a
l.s.c. for each x ∈ M and p(a, a) = 0 for all a ∈ M. Suppose that the extended real-valued function
f : M → (−∞,+∞] is proper, l.s.c. and bounded below. Let ε > 0. Define a binary relation
.(ε, f ,p) on M by

x .(ε, f ,p) y ⇐⇒ εp(x, y) ≤ f (x)− f (y).

Let Γ : M→ 2M be defined by

Γ(x) = {y ∈ M : x .(ε, f ,p) y} for x ∈ M.

Then the following hold:

(a) .(ε, f ,p) is a quasi-order;
(b) For each x ∈ M, Γ(x) is closed;
(c) Γ is of type (µp) where µp(D) := sup{p(x, y) : x, y ∈ D} for D ⊂ M;
(d) If M is complete, then (M,.(ε, f ,p), µp) is a µp-bounded quasi-ordered set.

Proof. Define L : M×M→ (−∞, ∞] by

L(x, y) =
1
ε
( f (y)− f (x)).

Then the following hold

• x .(ε, f ,p) y ⇐⇒ L(x, y) + p(x, y) ≤ 0;
• L(x, x) = 0 for all x ∈ M;
• L(x, z) = L(x, y) + L(y, z) for all x, y, z ∈ M;
• For each x ∈ M, y→ L(x, y) is l.s.c.;
• {x ∈ X : infy∈M L(x, y) > −∞} 6= ∅.

Therefore, applying Theorem 5 and Lemmas 3 and 4, we show the desired conclusions.

By applying Theorem 5, we obtain a new result related to common fuzzy fixed point
theorem, critical point theorem, maximal element principle and generalized Ekeland’s
variational principle for essential distances.

Theorem 6. Let (M, d) be a complete metric space. Suppose that p, L, ., and G be the same as in
Theorem 5. Let I be any index set. For each i ∈ I, let Fi be a fuzzy mapping on M. Assume that for
each (i, x) ∈ I ×M, there exists y(i,x) ∈ G(x) such that Fi(x, y(i,x)) = 1. Then for every ε > 0
and for every u ∈ M, there exists v ∈ M such that

(a) v is a maximal element of (M,.);
(b) G(v) = {v};
(c) L(u, v) + p(u, v) ≤ 0;
(d) L(v, x) + p(v, x) > 0 for all x ∈ M with x 6= v;
(e) Fi(v, v) = 1 for all i ∈ I.

Proof. By applying Theorem 5, G is of type (µp) and (M,., µp) is a µp-bounded quasi-
ordered set, where

µp(D) := sup{p(x, y) : x, y ∈ D} for D ⊆ M.
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Let u ∈ M be given. Put u0 := u. Since G is of type (µp), by Theorem 1, there exists a
.-nondecreasing sequence u0 . u1 . u2 . · · · in M and v ∈ M such that

(i) v is an upper bound of {un}+∞
n=0;

(ii) µp(G(v)) = 0.

From (i), we prove (c). Next, we claim that G(v) = {v}. Let z ∈ G(v). By (µ2) and
(ii), we have

p(v, z) = µp({v, z}) ≤ µp(G(v)) = 0,

which deduces p(v, z) = 0. Since p(v, v) = 0, by Lemma 1, we get z = v. Therefore
G(v) = {v} and, equivalency, (d) holds. For each (i, v) ∈ I ×M, due to G(v) = {v} and
our hypothesis, there exists y(i,v) := v ∈ G(v) such that Fi(v, v) = Fi(v, y(i,v)) = 1. So (e) is
true. Finally, we verify (a). If v . w for some w ∈W, then w ∈ G(v) = {v}, which implies
v = w. Hence v is a maximal element of (M,.). The proof is completed.

Corollary 2. Let (M, d) be a complete metric space and ε > 0. Suppose that f , p, .(ε, f ,p), and
Γ be the same as in Corollary 1. Let I be any index set. For each i ∈ I, let Fi be a fuzzy mapping
on M. Assume that for each (i, x) ∈ I ×M, there exists y(i,x) ∈ Γ(x) such that Fi(x, y(i,x)) = 1.
Then for every u ∈ M, there exists v ∈ M such that

(a) v is a maximal element of (M,.(ε, f ,p));
(b) Γ(v) = {v};
(c) f (v) + εp(u, v) ≤ f (u);
(d) f (z) + εp(v, z) > f (v) for all z ∈ M with z 6= v;
(e) Fi(v, v) = 1 for all i ∈ I.

Proof. Define L : M×M→ (−∞,+∞] by

L(x, y) =
1
ε
( f (y)− f (x)).

Then,
x .(ε, f ,p) y ⇐⇒ L(x, y) + p(x, y) ≤ 0.

So the desired conclusions follow from Theorem 6 immediately.

Let (M, d) be a metric space and T : M→ 2M be a multivalued mapping with nonempty
values. Then we can define a fuzzy mapping K on M by

K(x, y) = χT(x)(y),

where χA is the characteristic function for an arbitrary set A ⊂ M. Note that

K(x, y) = 1 ⇐⇒ y ∈ T(x).

The following new result related to critical point theorem, generalized Ekeland’s
variational principle, maximal element principle, and common fixed point theorem for
essential distances can be established by Theorem 6 immediately.

Theorem 7. Let (M, d) be a complete metric space. Suppose that p, L, ., and G are the same as
in Theorem 5. Let I be any index set. For each i ∈ I, let Ti : M→ 2M be a multivalued mapping
with nonempty values such that for each (i, x) ∈ I ×M, there exists y(i,x) ∈ Ti(x)

⋂
G(x). Then

for every ε > 0 and for every u ∈ M, there exists v ∈ M such that

(a) v is a maximal element of (M,.);
(b) G(v) = {v};
(c) L(u, v) + p(u, v) ≤ 0;
(d) L(v, x) + p(vi, xi) > 0 for all x ∈ M with x 6= v;
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(e) v is a common fixed point for the family {Ti}i∈I .

Corollary 3. Let (M, d) be a complete metric space and ε > 0. Suppose that f , p, .(ε, f ,p),
and Γ be the same as in Corollary 1. Let I be any index set. For each i ∈ I, let Ti : M → 2M

be a multivalued mapping with nonempty values such that for each (i, x) ∈ I ×M, there exists
y(i,x) ∈ Ti(x)

⋂
Γ(x). Then for every u ∈ M, there exists v ∈ M such that

(a) v is a maximal element of (M,.(ε, f ,p));
(b) Γ(v) = {v};
(c) f (v) + εp(u, v) ≤ f (u);
(d) f (z) + εp(v, z) > f (v) for all z ∈ M with z 6= v;
(e) v is a common fixed point for the family {Ti}i∈I .

Finally, the following simple example is given to illustrate Corollary 3.

Example 1. Let M = [−1, 1] with the metric d(x, y) = |x− y| for x, y ∈ M. Then (M, d) is a
complete metric space. Let T1, T2 : M → 2M be defined by T1x =

{
1
2 x
}

and T2x =
{

1
3 x
}

for
x ∈ M. Clearly, 0 is the unique common fixed point of T1 and T2. Let f : M→ R by f (x) = |x|
for x ∈ M. Define a binary relation .(1, f ,d) on M by

x .(1, f ,d) y ⇐⇒ d(x, y) ≤ f (x)− f (y).

Then .(1, f ,d)is a quasi-order and

Γ(x) = {y ∈ M : x .(1, f ,d) y} = {y ∈ M : d(x, y) ≤ f (x)− f (y)} 6= ∅.

It is easy to see that for each x ∈ M, we have

d
(

x,
1
2

x
)
= f (x)− f

(
1
2

x
)

and

d
(

x,
1
3

x
)
= f (x)− f

(
1
3

x
)

.

Hence 1
2 x ∈ T1x ∩ Γ(x) and 1

3 x ∈ T2x ∩ Γ(x) for any x ∈ M. Therefore, all the assumptions
of Corollary 3 are satisfied. By applying Corollary 3, for every u ∈ M, we can obtain v ∈ M (in
fact, v = 0) such that

(a) 0 is a common fixed point for T1 and T2;
(b) 0 is a maximal element of (M,.(1, f ,d));
(c) Γ(0) = {0};
(d) f (0) + d(u, 0) ≤ f (u);
(e) f (z) + d(0, z) > f (0) for all z ∈ M with z 6= 0.

Remark 2.

(a) Theorems 5–7 and Corollaries 1–3 improve and generalize some of the existence results on the
topic in the literature, see, e.g., [3,4,8,17,23,24] and references therein;

(b) Following the same argument as in the proof of [16], one can establish the equivalence
of Ekeland’s variational principle Caristi’s fixed point theorem and Takahashi’s nonconvex
minimization theorem for essential distances.

4. Conclusions

Maximal element principle is a significant theory and has already been proposed and
investigated its potential applications in several areas of mathematics. In this paper, by
applying the abstract maximal element principle of Lin and Du, we present some new
existence theorems related with common (fuzzy) fixed point theorem, maximal element
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theorem, critical point theorem and generalized Ekeland’s variational principle for essential
distances.
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