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1. Introduction

We consider finding a common fixed point of a finite number of resolvents operators
for proper lower semicontinuous convex functions on a geodesic space. To find this
point, we often use iterative schemes. We focus on Mann’s [1] and Halpern’s [2] iterative
schemes. We know many authors have considered these schemes by using nonexpansive
mappings. In a Banach space, Reich [3] proved weak convergence of Mann-type iteration,
and Takahashi and Tamura [4] proved that by using two nonexpansive mappings. In a
Hilbert space, Wittmann [5] proved strong convergence of the Halpern-type iteration.

We also know many researchers have proved iterative schemes on geodesic spaces. In a
CAT(0) space, Dhompongsa and Panyanak [6] proved ∆-convergence of Mann’s iterative
scheme, and Saejung [7] also proved convergence of Halpern’s iterative scheme. We know a
large number of results by using Mann’s and Halpern’s iterative schemes in a CAT(1) space.
Pia̧tek [8] considered Halpern’s iterative scheme by using a nonexpansive mapping in
CAT(1) space. Kimura and Satô [9] proved that by using a strongly quasi-nonexpansive and
∆-demiclosed mapping in a complete CAT(1) space. Kimura, Saejung, and Yotkaew [10]
also proved convergence of Halpern’s iterative schemes under the same setting. Kimura
and Kohsaka [11] proved convergence of Mann and Halpern types of iterative schemes
with a sequence of resolvent operators for a single proper lower semicontinuous convex
function. We are particularly interested in these results [9–11], and obtain Theorems 1 and 2
with a finite number of resolvent operators in a complete CAT(1) space.

In a Hilbert space, the resolvent operator J f is defined as follows. Let f be a proper
lower semicontinuous convex function from a Hilbert space H to ]−∞,+∞]. Then, J f is
defined by

J f x = argmin
y∈H

{ f (y) +
1
2
‖y− x‖2}

for all x ∈ H. We know the resolvent J f is a single-valued mapping from H to H and it
is nonexpansive. For a proper lower semicontinuous convex function f from a complete
CAT(0) space X into ]−∞,+∞], Jost [12] and Mayer [13] defined the resolvent R f of f by

R f x = argmin
y∈X

{ f (y) +
1
2

d(y, x)2}
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for all x ∈ X. We also know the resolvent R f is a single-valued mapping from X to X and
it is nonexpansive. In this paper, we use the resolvent in a complete CAT(1) space defined
by Kimura and Kohsaka [11,14].

2. Preliminaries

Let (X, d) be a metric space. For x, y ∈ X, a geodesic between x and y is an isometric
mapping c : [0, d(x, y)] → X with c(0) = x and c(d(x, y)) = y. We say X is an r-geodesic
space for r > 0 if a geodesic exists for every pair of points in X satisfying d(x, y) < r.
Further, a metric space X is said to be r-uniquely geodesic if such a geodesic is unique for
each pair of points satisfying d(x, y) < r. The image of a unique geodesic between x and y
is denoted by [x, y].

For an r-uniquely geodesic space X, the convex combination between x, y ∈ X with
d(x, y) < r is naturally defined. That is, for α ∈ [0, 1], we denote by αx⊕ (1− α)y the point
c((1− α)d(x, y)), where c is a geodesic between x and y. It follows that

d(αx⊕ (1− α)y, x) = (1− α)d(x, y) and d(αx⊕ (1− α)y, y) = αd(x, y).

A subset C of X is said to be r-convex if αx⊕ (1− α)y ∈ C for every x, y ∈ C with d(x, y) < r
and α ∈ [0, 1].

If X is r-geodesic for any r > 0, then X is simply called a geodesic space. A uniquely
geodesic space and a convex subset are also defined in the same way.

Let X be a uniquely geodesic space and x, y, z ∈ X. For a triangle4(x, y, z) = [y, z] ∪
[z, x] ∪ [x, y] ⊂ X satisfying d(y, z) + d(z, x) + d(x, y) < 2π, we define its comparison
triangle 4(x, y, z) in the two-dimensional unit sphere S2 by the triangle such that each
corresponding edge has the same length as that of the original triangle. Using this notion,
we call X a CAT(1) space if for every x, y, z ∈ X, p, q ∈ 4(x, y, z), and their corresponding
points p, q ∈ S2, the following relation is satisfied,

d(p, q) ≤ dS2(x, y),

where dS2 is the spherical metric on S2.
The following results are fundamental and important for our work.

Lemma 1 (Kimura-Satô [15]). Let X be a CAT(1) space. Then, for every x, y, z ∈ X with
d(x, y) + d(y, z) + d(z, x) < 2π and α ∈ [0, 1], the following inequality holds,

cos d(x, w) sin d(y, z) ≥ cos d(x, y) sin(αd(y, z)) + cos d(x, z) sin((1− α)d(y, z)),

where w = αy⊕ (1− α)z.

Lemma 2 (Kimura-Satô [9]). Let X be a CAT(1) space. Then, for every x, y, z ∈ X with
d(x, y) + d(y, z) + d(z, x) < 2π and α ∈ [0, 1], the following inequality holds,

cos d(x, w) ≥ α cos d(x, y) + (1− α) cos d(x, z),

where w = αy⊕ (1− α)z.

Lemma 3 (Kimura-Satô [9]). Let X be a CAT(1) space such that d(v, v′) < π for every v, v′ ∈ X.
Let α ∈ [0, 1] and u, y, z ∈ X. Then,

1− cos d(αu⊕ (1− α)y, z)

≤ (1− β)(1− cos d(y, z)) + β

(
1− cos d(u, z)

sin d(u, y) tan( α
2 d(u, y)) + cos d(u, y)

)
,
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where

β =

1− sin((1− α)d(u, y))
sin d(u, y)

(u 6= y),

α (u = y).

Let {xn} ⊂ X be a bounded sequence. We say a point z ∈ X is an asymptotic center of
{xn} if it is a minimizer of the function lim supn→∞ d(xn, ·), that is,

lim sup
n→∞

d(xn, z) ≤ lim sup
n→∞

d(xn, y)

for every y ∈ X. If z ∈ X is the unique asymptotic center of all subsequences of {xn},
then we say {xn} is ∆-convergent to a ∆-limit z. We know that in a CAT(1) space,
every sequence {xn} satisfying infy∈X lim supn→∞ d(xn, y) < π/2 has a unique asymp-
totic center and a ∆-convergent subsequence.

Let X be a CAT(1) space and T : X → X. The set of all fixed points of T is denoted by
F(T). Namely, F(T) = {z ∈ X : z = Tz}. T is said to be quasi-nonexpansive if F(T) 6= ∅
and d(Tx, z) ≤ d(x, z) for every x ∈ X and z ∈ F(T). A quasi-nonexpansive mapping T
is said to be strongly quasi-nonexpansive if limn→∞ d(xn, Txn) = 0 whenever {xn} ⊂ X
satisfies supn∈N d(xn, p) < π/2 and limn→∞(cos d(xn, p)/ cos d(Txn, p)) = 1 for every
p ∈ F(T).

A mapping T is said to be ∆-demiclosed if z ∈ F(T) whenever {xn} is ∆-convergent
to z and limn→∞ d(xn, Txn) = 0.

Following [16], we define the notions of a strongly quasi-nonexpansive sequence
and a ∆-demiclosed sequence on CAT(1) spaces as follows. Let {Tn} be a sequence of
mappings from X to X. {Tn} is said to be a strongly quasi-nonexpansive sequence if each
Tn is quasi-nonexpansive and limn→∞ d(xn, Tnxn) = 0 whenever supn∈N d(xn, p) < π/2
and limn→∞(cos d(xn, p)/ cos d(Tnxn, p)) = 1 for every p ∈ ⋂∞

n=1 F(Tn). {Tn} is said to
be a ∆-demiclosed sequence if z ∈ ⋂∞

n=1 F(Tn) whenever {xn} is ∆-convergent to z and
limn→∞ d(xn, Tnxn) = 0.

Let X be a complete CAT(1) space and C ⊂ X a nonempty closed π-convex subset
such that d(x, C) = infy∈C d(x, y) < π/2 for every x ∈ X. Then, for each x ∈ X, there exists
a unique point yx ∈ C satisfying d(x, yx) = infy∈C d(x, y). Using this point, we define a
metric projection PC : X → C by PCx = yx for x ∈ X.

Let X be a complete CAT(1) space such that d(v, v′) < π/2 for every v, v′ ∈ X.
Let f : X → ]−∞,+∞] be a proper lower semicontinuous convex function. The resolvent
R f of f is defined by

R f x = argmin
y∈X

( f (y) + tan d(y, x) sin d(y, x))

for all x ∈ X; (see in [14]). We know that R f is a single-valued mapping from X to X. We
also know that the resolvent R f is strongly quasi-nonexpansive and ∆-demiclosed such
that F(R f ) = argminx∈X f (see [11,14]).

We recall some lemmas useful for our results.

Lemma 4 (Kimura-Satô [17]). Let X be a complete CAT(1) space such that d(u, v) < π/2 for
all u, v ∈ X. Let S, T be quasi-nonexpansive mappings from X to X with F(S) ∩ F(T) 6= ∅.
Then, for every α ∈ ]0, 1[, F(S) ∩ F(T) = F(αS⊕ (1− α)T) and the mapping αS⊕ (1− α)T is
quasi-nonexpansive.

Lemma 5 (He-Fang-López-Li [18]). Let X be a complete CAT(1) space and p ∈ X. If a sequence
{xn} in X satisfies that lim supn→∞ d(xn, p) < π/2 and that {xn} is ∆-convergent to x ∈ X,
then d(x, p) ≤ lim infn→∞ d(xn, p).
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Lemma 6 (Saejung-Yotkaew [19], Aoyama-Kimura-Kohsaka [20]). Let {sn} and {tn} be se-
quences of real numbers such that sn ≥ 0 for every n ∈ N. Let {βn} be a sequence in ]0, 1[ such that
∑∞

n=0 βn = ∞. Suppose that sn+1 ≤ (1− βn)sn + βntn for every n ∈ N. If lim supk→∞ tnk ≤ 0
for every nondecreasing sequence {nk} of N satisfying lim infk→∞(snk+1 − snk ) ≥ 0, then
limn→∞ sn = 0.

3. Lemmas for a Finite Number of Resolvent Operators

In this section, we prove some lemmas by using a finite number of resolvent oper-
ators for iterative schemes. Throughout this section, let X be a CAT(1) space such that
d(v, v′) < π/2 for every v, v′ ∈ X.

Lemma 7. For a given real number a ∈
]
0, 1

2

]
, let σ ∈ [a, 1− a]. For given points y, y0, y1 ∈ X,

define w ∈ X by
w = σy0 ⊕ (1− σ)y1.

Then,
cos d(w, y) cos(ad(y0, y1)) ≥ min{cos d(y0, y), cos d(y1, y)}.

Proof. If y0 = y1, it is obvious. Otherwise, by Lemma 1, we have

cos d(w, y) sin d(y0, y1)

≥ cos d(y0, y) sin(σd(y0, y1)) + cos d(y1, y) sin((1− σ)d(y0, y1))

≥ min{cos d(y0, y), cos d(y1, y)}(sin(σd(y0, y1)) + sin((1− σ)d(y0, y1)))

= 2 min{cos d(y0, y), cos d(y1, y)} sin
d(y0, y1)

2
cos

(2σ− 1)d(y0, y1)

2
.

Dividing above by 2 sin(d(y0, y1)/2), we have

cos d(w, y) cos
d(y0, y1)

2

≥ min{cos d(y0, y), cos d(y1, y)} cos
(2σ− 1)d(y0, y1)

2

≥ min{cos d(y0, y), cos d(y1, y)} cos
(1− 2a)d(y0, y1)

2
.

Moreover, dividing above by cos((1− 2a)d(y0, y1)/2), we have

min{cos d(y0, y), cos d(y1, y)}

≤ cos d(w, y)
cos

(1− 2a)d(y0, y1)

2
cos(ad(y0, y1))− sin

(1− 2a)d(y0, y1)

2
sin(ad(y0, y1))

cos
(1− 2a)d(y0, y1)

2
≤ cos d(w, y) cos(ad(y0, y1)).

This completes the proof.

Lemma 8. For a given real number a ∈
]
0, 1

2

]
, let σl ∈ [a, 1− a] for every l = 0, 1, . . . , N − 1.

For given points y, yk ∈ X for every k = 0, 1, . . . , N, define wl ∈ X by

wN = yN and wl = σlyl ⊕ (1− σl)wl+1

for every l = 0, 1, . . . , N − 1. Then,

cos d(w0, y) cos(ad(y0, w1)) ≥ min
k∈{0,1,...,N}

cos d(yk, y).
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Proof. By Lemma 7,

cos d(w0, y) cos(ad(y0, w1)) ≥ min{cos d(y0, y), cos d(w1, y)}.

We also have

cos d(wl , y) ≥ cos d(wl , y) cos(ad(yl , wl+1))

≥ min{cos d(yl , y), cos d(wl+1, y)}

for l = 1, 2, . . . , N − 1. Therefore, cos d(w0, y) cos(ad(y0, w1)) ≥ mink∈{0,1,...,N} cos d(yk, y).
This completes the proof.

Corollary 1. Let Tk be a quasi-nonexpansive mapping from X to X for every k = 0, 1, . . . , N.
For a given real number a ∈

]
0, 1

2

]
, let σl ∈ [a, 1− a] for every l = 0, 1, . . . , N − 1. Define

Ul : X → X by
UN = TN and Ul = σlTl ⊕ (1− σl)Ul+1

for every l = 0, 1, . . . , N − 1. Let x ∈ X and p ∈ ⋂N
k=0 F(Tk). Then,

cos d(U0x, p) cos(ad(T0x, U1x)) ≥ cos d(x, p).

Next, we show several properties of a sequence of resolvents. Let f be a proper lower
semicontinuous convex function from X into ]−∞,+∞] such that argminX f 6= ∅ and let
{λn} be a real sequence such that inf λn > 0. Then we know that {Rλn f } is a strongly
quasi-nonexpansive sequence and ∆-demiclosed sequence (see [11]). Therefore, we obtain
the following results, using Lemma 4.

Lemma 9. Let f k be a proper lower semicontinuous convex function from X into ]−∞,+∞] for
every k = 0, 1, . . . , N such that

⋂N
k=0 argminX f k 6= ∅. For a given real number a ∈

]
0, 1

2

]
,

let σl ∈ [a, 1− a] for every l = 0, 1, . . . , N − 1 and λk ∈ [a,+∞[ for every k = 0, 1, . . . , N.
Let Rλk f k be the resolvent of λk f k for every k = 0, 1, . . . , N. Define Ul : X → X by

UN = RλN f N and Ul = σl Rλl f l ⊕ (1− σl)Ul+1

for every l = 0, 1, . . . , N − 1. Then

F(U0) =
N⋂

k=0

argmin
X

f k.

Lemma 10. Let {Tn} be a strongly quasi-nonexpansive sequence. Let f be a proper lower semicon-
tinuous convex function from X into ]−∞,+∞] such that

⋂∞
n=1 F(Tn) ∩ argminX f 6= ∅. For a

given real number a ∈
]
0, 1

2

]
, let {σn} ⊂ [a, 1− a] and {λn} ⊂ [a,+∞[. Let Rλn f be the resolvent

of λn f for every n ∈ N. Then {σnRλn f ⊕ (1− σn)Tn} is a strongly quasi-nonexpansive sequence.

Proof. Let Vn = σnRλn f ⊕ (1− σn)Tn for every n ∈ N. From Lemma 4, Vn is a quasi-
nonexpansive mapping for every n ∈ N. From Corollary 1, for {xn} ⊂ X and p ∈⋂∞

n=1 F(Tn)∩ argminX f such that limn→∞ cos d(xn, p)/ cos d(Vnxn, p) = 1 and supn∈N d(xn, p) <
π/2, we have

cos d(Vnxn, p) cos(ad(Rλn f xn, Tnxn)) ≥ cos d(xn, p)

and thus

cos(ad(Rλn f xn, Tnxn)) ≥
cos d(xn, p)

cos d(Vnxn, p)
→ 1.
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That is, limn→∞ d(Rλn f xn, Tnxn) = 0. Therefore, we have

lim
n→∞

d(Tnxn, Vnxn) = lim
n→∞

σnd(Rλn f xn, Tnxn) = 0.

As 1 = limn→∞ cos d(xn, p)/ cos d(Vnxn, p) = limn→∞ cos d(xn, p)/ cos d(Tnxn, p), we have

lim
n→∞

d(Tnxn, xn) = 0.

Thus, we obtain
d(Vnxn, xn) ≤ d(Vnxn, Tnxn) + d(Tnxn, xn)→ 0.

This completes the proof.

Corollary 2. Let f k be the same as in Lemma 9 for k = 0, 1, . . . , N. For a given real number
a ∈

]
0, 1

2

]
, let {σl

n} ⊂ [a, 1− a] for every l = 0, 1, . . . , N − 1 and {λk
n} ⊂ [a,+∞[ for every

k = 0, 1, . . . , N. Let Rλk
n f k be the resolvent of λk

n f k for every k = 0, 1, . . . , N and n ∈ N. Define

Ul
n : X → X by

UN
n = RλN

n f N and Ul
n = σl

nRλl
n f l ⊕ (1− σl

n)U
l+1
n

for every l = 0, 1, . . . , N − 1 and n ∈ N. Then, {U0
n} is a strongly quasi-nonexpansive sequence.

Lemma 11. Let {Tn} be a quasi-nonexpansive and ∆-demiclosed sequence. Let f be a proper lower
semicontinuous convex function from X into ]−∞,+∞] such that

⋂∞
n=1 F(Tn)∩ argminX f 6= ∅.

For a given real number a ∈
]
0, 1

2

]
, let {σn} ⊂ [a, 1− a] and {λn} ⊂ [a,+∞[. Let Rλn f be the

resolvent of λn f for every n ∈ N. Then {σnRλn f ⊕ (1− σn)Tn} is a ∆-demiclosed sequence.

Proof. Let Vn = σnRλn f ⊕ (1− σn)Tn for every n ∈ N. Let p ∈ ⋂∞
n=1 F(Tn) ∩ argminX f ,

{xn} ⊂ X, and z ∈ X such that limn→∞ d(Vnxn, xn) = 0 and suppose that {xn} is ∆-
convergent to z. Then,

cos d(Vnxn, p) cos(ad(Rλn f xn, Tnxn)) ≥ cos d(xn, p)

and thus

1 ≥ cos(ad(Rλn f xn, Tnxn)) ≥
cos d(xn, p)

cos d(Vnxn, p)

≥ cos(d(xn, Vnxn) + d(Vnxn, p))
cos d(Vnxn, p)

→ 1.

Therefore, limn→∞ d(Rλn f xn, Tnxn) = 0. Thus, we have

d(Rλn f xn, Vnxn) = (1− σn)d(Rλn f xn, Tnxn)

≤ (1− a)d(Rλn f xn, Tnxn)→ 0.

Since Rλn f is a ∆-demiclosed sequence, we have Rλn f z = z. Similarly,

d(Tnxn, Vnxn) = σnd(Rλn f xn, Tnxn)

≤ (1− a)d(Rλn f xn, Tnxn)→ 0.

Since {Tn} is a ∆-demiclosed sequence, we have Tnz = z. Thus, Vnz = z. This completes
the proof.

Corollary 3. Let f k, {σl
n}, {λk

n} and {Ul
n} be the same as in Corollary 2 for k = 0, 1, . . . , N and

l = 0, 1, . . . , N − 1. Then {U0
n} is a ∆-demiclosed sequence.
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4. Iterative Schemes for a Finite Resolvents Operators

We prove convergence of Mann and Halpern types of iterative sequences for finitely
many convex functions by using the properties of a sequence of the resolvents in CAT(1) space.

Theorem 1. Let X be a complete CAT(1) space such that d(v, v′) < π/2 for every v, v′ ∈ X.
Let f k be a proper lower semicontinuous convex function from X into ]−∞,+∞] for every k =

0, 1, . . . , N such that F =
⋂N

k=0 argminX f k 6= ∅. For a given real number a ∈
]
0, 1

2

]
, let

{σl
n} ⊂ [a, 1− a] for every l = 0, 1, . . . , N − 1 and {λk

n} ⊂ [a,+∞[ for every k = 0, 1, . . . , N.
Let Rλk

n f k be the resolvent of λk
n f k for every k = 0, 1, . . . , N and n ∈ N. Define Ul

n : X → X by

UN
n = RλN

n f N and Ul
n = σl

nRλl
n f l ⊕ (1− σl

n)U
l+1
n

for every l = 0, 1, . . . , N − 1 and n ∈ N. Let {αn} be a real sequence in [a, 1− a]. For a given
point x1 ∈ X, let {xn} be the sequence in X generated by

xn+1 = αnxn ⊕ (1− αn)U0
nxn

for n ∈ N. Then, {xn} ∆-converges to a point of F.

Proof. Let z ∈ F. As U0
n is a quasi-nonexpansive mapping, it follows from Lemma 2 that

cos d(xn+1, z) ≥ αn cos d(xn, z) + (1− αn) cos d(U0
nxn, z)

≥ cos d(xn, z).

Thus we have d(xn+1, z) ≤ d(xn, z) for n ∈ N. There exists D = limn→∞ d(xn, z) ≤
d(x1, z) < π/2. From Lemma 1, we get

cos d(xn+1, z) sin d(xn, U0
nxn)

≥ cos d(xn, z) sin αnd(xn, U0
nxn) + cos d(U0

nxn, z) sin(1− αn)d(xn, U0
nxn)

≥ 2 cos d(xn, z) sin
d(xn, U0

nxn)

2
cos

(2αn − 1)d(xn, U0
nxn)

2
.

If d(xn, U0
nxn) 6= 0, we obtain

cos d(xn+1, z) cos
d(xn, U0

nxn)

2
≥ cos d(xn, z) cos

(2αn − 1)d(xn, U0
nxn)

2
.

As {αn} ⊂ [a, 1− a], we get

1 >
cos d(xn ,U0

nxn)
2

cos (1−2a)d(xn ,U0
nxn)

2

≥
cos d(xn ,U0

nxn)
2

cos (2αn−1)d(xn ,U0
nxn)

2

≥ cos d(xn, z)
cos d(xn+1, z)

.

As D = limn→∞ d(xn, z) ≤ d(x1, z) < π/2, we have

lim
n→∞

cos d(xn ,U0
nxn)

2

cos (1−2a)d(xn ,U0
nxn)

2

= 1

and thus limn→∞ d(xn, U0
nxn) = 0. Let x0 be an asymptotic center of {xn} and y an asymp-

totic center of any subsequence {xnk} ⊂ {xn}. There exists {xnkl
} ⊂ {xnk} such that {xnkl

}
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∆-converges to w. As {U0
nkl
} is a ∆-demiclosed sequence and limn→∞ d(U0

nkl
xnkl

, xnkl
) = 0,

we obtain w ∈ F. Since there exists limn→∞ d(xnk , w), we have

lim sup
k→∞

d(xnk , w) = lim
k→∞

d(xnk , w) = lim
l→∞

d(xnkl
, w)

≤ lim sup
l→∞

d(xnkl
, y) ≤ lim sup

k→∞
d(xnk , y).

Therefore, we obtain y = w ∈ F. Similarly, we get x0 = y. Therefore, {xn} ∆-converges to
x0 ∈ F.

Theorem 2. Let X, f k, {σl
n}, {λk

n} and {Ul
n} be the same as in Theorem 1 for k = 0, 1, . . . , N

and l = 0, 1, . . . , N − 1. Let {αn} be a real sequence in ]0, 1[ such that limn→∞ αn = 0 and
∑∞

n=0 αn = ∞. For given points u, x1 ∈ X, let {xn} be the sequence in X generated by

xn+1 = αnu⊕ (1− αn)U0
nxn

for n ∈ N. Suppose that one of the following conditions holds:

(a) supv,v′∈X d(v, v′) < π/2;
(b) d(u, PFu) < π/4 and d(u, PFu) + d(x0, PFu) < π/2;
(c) ∑∞

n=0 α2
n = ∞.

Then, {xn} converges to PFu.

To prove this theorem, we also employ the technique proposed in [9]. Note that
F =

⋂N
k=0 argminX f k.

Proof. Let p = PFu and let

sn = 1− cos d(xn, p),

tn = 1− cos d(u, p)
sin d(u, U0

nxn) tan( αn
2 d(u, U0

nxn)) + cos d(u, U0
nxn)

,

βn =

1− sin((1− αn)d(u, U0
nxn))

sin d(u, U0
nxn)

(u 6= U0
nxn),

αn (u = U0
nxn)

for n ∈ N. Since U0
n is a quasi-nonexpansive mapping, it follows from Lemma 3 that

sn+1 ≤ (1− βn)(1− cos d(U0
nxn, p)) + βntn ≤ (1− βn)sn + βntn

for n ∈ N. By Lemma 2, we have

cos d(xn+1, p) = cos d(αnu⊕ (1− αn)U0
nxn, p)

≥ αn cos d(u, p) + (1− αn) cos d(U0
nxn, p)

≥ αn cos d(u, p) + (1− αn) cos d(xn, p)

≥ min{cos d(u, p), cos d(xn, p)}

for n ∈ N. So we have

cos d(xn, p) ≥ min{cos d(u, p), cos d(x0, p)} = cos max{d(u, p), d(x0, p)} > 0

for n ∈ N. Hence supn∈N d(xn, p) ≤ max{d(u, p), d(x0, p)} < π/2. Next, we will show for
each of the conditions (a–c) imply that ∑∞

n=0 βn = ∞. For the conditions (a) and (b), let



Axioms 2021, 10, 15 9 of 12

M = supn∈N d(u, U0
nxn). Thus, we will show M < π/2. In case (a), it is obvious. In case

(b), as supn∈N d(xn, p) ≤ max{d(u, p), d(x0, p)}, we have

M ≤ sup
n∈N

(d(u, p) + d(U0
nxn, p))

≤ sup
n∈N

(d(u, p) + d(xn, p))

≤ max{2d(u, p), d(u, p) + d(x0, p)} < π/2.

Thus, for cases (a) and (b), we have

βn ≥ 1− sin((1− αn)M)

sin M

=
2

sin M
sin
(αn

2
M
)

cos
((

1− αn

2

)
M
)

≥ αn cos M

for n ∈ N. As ∑∞
n=0 αn = ∞, each of the conditions (a) and (b) implies that ∑∞

n=0 βn = ∞.
In the case (c), we have

βn ≥ 1− sin
(1− αn)π

2
= 1− cos

αn

2
≥ α2

nπ2

16

for n ∈ N. Hence the condition (c) also implies that ∑∞
n=0 βn = ∞. For {sni} ⊂ {sn} with a

nondecreasing real sequence {ni} ⊂ N such that lim infi→∞(sni+1 − sni ) ≥ 0, we have

0 ≤ lim inf
i→∞

(sni+1 − sni )

= lim inf
i→∞

(cos d(xni , p)− cos d(xni+1, p))

≤ lim inf
i→∞

(cos d(xni , p)− (αni cos d(u, p) + (1− αni ) cos d(U0
ni

xni , p)))

= lim inf
i→∞

(cos d(xni , p)− cos d(U0
ni

xni , p))

≤ lim sup
i→∞

(cos d(xni , p)− cos d(U0
ni

xni , p)) ≤ 0.

Hence limi→∞(cos d(xni , p) − cos d(U0
ni

xni , p)) = 0. Since supn∈N d(U0
nxn, p) < π/2,

we have limi→∞(cos d(xni , p)/ cos d(U0
ni

xni , p)) = 1. As {U0
ni
} is a strongly quasi-nonexpansive

sequence, it follows that limi→∞ d(xni , U0
ni

xni ) = 0. Let {xnj} ⊂ {xni} be a ∆-convergent
subsequence such that limj→∞ d(u, xnj) = lim infi→∞ d(u, xni ). Since {U0

n} is a ∆-demiclosed
sequence and limj→∞ d(xnj , U0

nj
xnj) = 0, the ∆-limit z ∈ {xnj} belongs to F. By Lemma 5,

we have

lim inf
i→∞

d(u, U0
ni

xni ) = lim inf
i→∞

d(u, xni ) = lim
j→∞

d(u, xnj) ≥ d(u, z) ≥ d(u, p).

Hence

lim sup
i→∞

tni = lim sup
i→∞

(
1− cos d(u, p)

sin d(u, U0
ni xni ) tan(

αni
2 d(u, U0

ni xni ) + cos d(u, U0
ni xni )

)

= lim sup
i→∞

(
1− cos d(u, p)

cos d(u, U0
ni xni )

)
≤ 0.

From Lemma 6, we have limn→∞ sn = 0. Therefore, {xn} converges to p. This completes
the proof.
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5. Applications to the Image Recovery Problem

At the end of this work, we apply our results to the problem of finding a point of the
intersection of a finite family of closed convex subsets. This problem is also known as the
image recovery problem. See the works in [21,22] and references therein.

Let C be a nonempty closed convex subset of a complete CAT(1) space such that
d(v, v′) < π/2 for every v, v′ ∈ X. Then, the indicator function iC : C → X of C defined by

iC(x) =

{
0 (x ∈ C),
∞ (x /∈ C)

is proper, lower semicontinuous, and convex. As is mentioned in [14], the resolvent RiC
of this function coincides with the metric projection PC. Using this fact, we obtain the
following results for the image recovery problem. The first result can be proved by using
Theorem 1.

Theorem 3. Let X be a complete CAT(1) space such that d(v, v′) < π/2 for every v, v′ ∈ X.
Let {C0, C1, . . . , CN} be a finite family of nonempty closed convex subsets of X such that C =⋂N

k=0 CK 6= ∅. For a given real number a ∈
]
0, 1

2

]
, let {σl

n} ⊂ [a, 1− a] for l = 0, 1, . . . , N − 1

and n ∈ N. Let PCk be the metric projection onto Ck for k = 0, 1, . . . , N. Define Ul
n : X → X by

UN
n = PCN and Ul

n = σl
nPCl ⊕ (1− σl

n)U
l+1
n

for every l = 0, 1, . . . , N − 1 and n ∈ N. Let {αn} be a real sequence in [a, 1− a]. For a given
point x1 ∈ X, let {xn} be the sequence in X generated by

xn+1 = αnxn ⊕ (1− αn)U0
nxn

for n ∈ N. Then, {xn} ∆-converges to a point of C.

Note that this theorem is a generalization of the result by [21] in the setting of Hilbert
spaces, to complete CAT(1) spaces.

On the other hand, by using Thoerem 2, we can also prove the following theorem
which was obtained by the authors of [23].

Theorem 4 (Kasahara-Kimura [23]). Let X be a complete CAT(1) space such that d(v, v′) <
π/2 for every v, v′ ∈ X. Let {C0, C1, . . . , CN} be a finite family of nonempty closed convex subsets
of X such that C =

⋂N
k=0 CK 6= ∅. For a given real number a ∈

]
0, 1

2

]
, let {σl

n} ⊂ [a, 1− a]
for l = 0, 1, . . . , N − 1 and n ∈ N. Let PCk be the metric projection onto Ck for k = 0, 1, . . . , N.
Define Ul

n : X → X by

UN
n = PCN and Ul

n = σl
nPCl ⊕ (1− σl

n)U
l+1
n

for every l = 0, 1, . . . , N − 1 and n ∈ N. Let {αn} be a real sequence in ]0, 1[ such that
limn→∞ αn = 0 and ∑∞

n=0 αn = ∞. For given points u, x1 ∈ X, let {xn} be the sequence in
X generated by

xn+1 = αnu⊕ (1− αn)U0
nxn

for n ∈ N. Suppose that one of the following conditions holds:

(a) supv,v′∈X d(v, v′) < π/2;
(b) d(u, PCu) < π/4 and d(u, PCu) + d(x0, PCu) < π/2;
(c) ∑∞

n=0 α2
n = ∞.

Then {xn} converges to PCu.
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6. Conclusions

We proposed a new type of iterative scheme for the problem of finding a com-
mon minimizer of finitely many convex functions defined on a complete CAT(1) space.
We considered the resolvent operators for proper lower semicontinuous convex functions
defined on a complete CAT(1) space and their convex combination. As the convex combi-
nation on a CAT(1) space is defined only between two points, we need to take it repeatedly
for three or more points.

In the first result (Theorem 1), we adopted a Mann-type sequence defined by the
following iterative formula: x1 ∈ X is given and

xn+1 = αnxn ⊕ (1− αn)U0
nxn

for n ∈ N, where a mapping U0
n is defined by the convex combination of finitely many

resolvents. Then, {xn} is ∆-convergent to a solution to our problem.
In the second result (Theorem 2), we used a Halpern-type sequence defined as follows:

u, x1 ∈ X is given and
xn+1 = αnu⊕ (1− αn)U0

nxn

for n ∈ N. Then, it converges to PFu, the nearest point of the solution set F to u.
Further, we showed that these results can be applied to the image recovery problem.
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