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Abstract: This paper uses empirical traffic data collected from three locations in Europe and the
US to reveal a three-phase fundamental diagram with two phases located in the uncongested
regime. Model-based clustering, hypothesis testing and regression analyses are applied to the speed–
flow–occupancy relationship represented in the three-dimensional space to rigorously validate the
three phases and identify their gaps. The finding is consistent across the aforementioned different
geographical locations. Accordingly, we propose a three-phase macroscopic traffic flow model and
a characterization of solutions to the Riemann problems. This work identifies critical structures in
the fundamental diagram that are typically ignored in first- and higher-order models and could
significantly impact travel time estimation on highways.
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1. Introduction

In the last seventy years, many traffic flow models have been developed and re-
searched. Two of the most commonly used macroscopic models are the celebrated first-
order Lighthill–Whitham–Richards (LWR) model, [1,2] and the second-order Aw-Rascle–
Zhang model [3,4]. In both cases, the so-called Fundamental Diagram (FD) provides a
closure of the evolution equations, thus allowing a well-posed theory and well-grounded
simulation tools (see [5]). The FD usually refers to the empirically observed flow-occupancy
curve, which in mathematical terms refers to the functional relationship between flow and
density (modeling counterpart of occupancy) or between average speed of vehicles and
density. For macroscopic fluid-dynamic models, there is a rich discussion on FD (see, e.g.,
[5–10]).

In this article, we focus on the FD for single roads by proposing a new approach to
study the fundamental relationship among flow, density and speed. We propose novel
statistical methodologies to analyze traffic data from fixed sensors, focusing on the three-leg
relationships among the flow, density and speed. In particular, rather than considering the
FD as a two-quantity relationship (flow–density or speed–density), we analyze data in the
three-dimensional space represented by flow, density and speed. This allows us to better
exploit the statistical tools, in particular for the analysis of traffic regimes.
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We recall that, in equilibrium regimes, the fundamental relationship f low = density×
speed dictates that traffic measurement points should lie on a three-dimensional surface
(see, e.g., [11] Figure 4.1). In reality, observed traffic largely deviates from equilibrium
and usually exhibits free and congested phases, with the first corresponding to stable and
regular traffic, while the second reflects delays and congestion. Moreover, in the early
2000s, Kerner [12] introduced a tree-phase traffic theory, based on the distinction among
free flow, synchronized flow and wide-moving jam. The last two phases are associated with
congested traffic.

In this paper, using clustering methodologies, we are able to identify three traffic
regimes, which are distinct in a statistically significant fashion. Interestingly, two regimes
appear in what is commonly referred to as the free flow traffic and the third corresponds to
the congested phase. This analysis does not contradict Kerner’s theory but rather points out
that the static/stationary free-flow condition in the FD could exhibit two distinct phases,
while the distinction of phases in congested traffic (e.g., Kerner’s model) is mainly dynamic.

The second main empirical result of our paper is the clear evidence of the existence of
a gap between the two phases of free flow and the congested one. While the appearance
of such gap is best visualized in the 3D representation of the FD relationships, we use the
classical flow–density relationship to statistically prove the existence of the gap. The main
purpose is to prove the ubiquity (with respect to data collected at different geographical
location and on different road types) of the gap in the classical setting and to enable a
simpler analysis.

Building on the empirical evidence illustrated thus far, we propose a new three-phase
macroscopic model. The LWR model is very popular in the traffic literature due to its simple
mathematical representation. However, it has certain modeling limitations especially when
it comes to describing complex wave structures such as stop and go waves, phantom jam
and capacity drop. To overcome various limitations, Aw-Rascle [3] and independently
Zhang [4] proposed a new model with conservation of a modified momentum. This
so-called Aw-Rascle–Zhang (ARZ) model can be interpreted as part of a general family
called General Second-Order Models (GSOM, see [13]). Such models consist of the usual
conservation of mass and the advective transport of a Lagrangian (or single driver) variable,
which can represent, for instance, the desired speed of drivers. A recently proposed model
of this category is the Collapsed Generalized ARZ model (CGARZ [14]), where the driver
speed depends on the Lagrangian variable only in the congested phase. Another line of
research focuses on models showing two distinct phases, called the phase transition models
[6,8,9].

Our proposed model is a combination of the features offered by the ARZ, CGARZ
and phase transition models. Our three-phase model not only has the characteristics of a
CGARZ model with a gap among phases when analyzed in the flow–density space, but
also exhibits the newly discovered phase when analyzed in the speed–density space. After
showing how our model performs in data fitting, we provide a complete characterization
of the characteristic curves and the solutions of the Riemann problems. The latter are the
building block for solutions to Cauchy problems (see [5]). To sum up, the main novelties
and contributions of our paper are as follows:

• Unlike most studies that focus on traffic data from a single source, we use data from
multiple geographic locations in Europe and the US and analyze the fundamental
relationships among flow, density and speed in the 3D space instead of the commonly
adopted two-variable representation of the FD. In addition, we use a set of statistical
tools including model-based clustering, hypothesis testing and regression to analyze
the traffic data.

• Following the above exercise, we discover three data clusters representing three traffic
regimes, two of which are contained in the free-flow phase and the third corresponds
to the congested phase. Moreover, we are able to detect a statistically significant gap
between the first two regimes and the third one. These findings are validated using
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multiple data sources, and the main features (regimes and gaps) are consistent across
different geographical areas.

• Building on the first two, we propose a new three-phase macroscopic traffic flow model,
which exhibits all the characteristics shown by our data analyses and combines the
features of the ARZ, CGARZ and phase transition models. A complete characterization
of solutions of the Riemann problems is provided.

The article is organized as follows. In Section 2, we introduce the datasets, their
statistical analysis and the results obtained. Moreover, we describe the impacts of these
results on traffic modeling. Lastly, in Section 3, we propose a new three-phase macroscopic
model.

2. Data Analysis

In this section, we describe the data analyzed in the paper and then present the
statistical analysis performed.

2.1. Experimental Data

We consider traffic data collected by static sensors (magnetic coils or radars) located
on urban and extra-urban roads and highways. Sensors capture these traffic data regularly
over a period of time. The sensor data provide the following aggregated quantities which
are measured independently over a short time interval (3–10 min).

• Flux (denoted as f ), also known as flow or volume, is the number of vehicles passing
through a fixed location per unit of time.

• Velocity (denoted as v) is the average speed of vehicles per unit of time.
• Occupancy (denoted as o) is the percentage of time that a vehicle covers the sensor

over the unit time of data collection.

Occupancy acts as a surrogate for the true density of traffic, as true density is practically
difficult to capture, although there is some measurement error involved with its calculation.
It is know that density and occupancy are correlated at lower densities, but this does not
extend to higher densities. The data were collected from three different locations: Rome
(Italy), Las Vegas (NV, USA) and Sophia Antipolis (France). The Rome data were provided
by ATAC S.p.a. [15] (the municipal society for traffic monitoring and control of Rome)
and refer to a road in the city of Rome, Viale del Muro Torto, which links the historical
center with the northern area of the city. Data were collected over a period of a week on
three sensors. Each collected quantity (occupancy, flow and speed) was aggregated on
1 min intervals. The data from Las Vegas were collected by the Regional Transportation
Commission of Southern Nevada (RTC), Freeway and Arterial System of Transportation
(FAST) [16]. The data were collected from 50 urban and freeway sensors over a period
of five years and aggregated on 10 min intervals. The data from Sophia Antipolis were
collected by the Départment des Alpes-Maritimes [17] on two extra-urban sensors over
a period of eight months and aggregated over 6 min intervals. For more details on the
data, we refer the reader to Appendix A. Despite the fact that the data were aggregated at
different intervals, the results, as shown below, are consistent. Since we primarily focused
on the three traffic characteristics of flux, velocity and occupancy, we were conveniently
positioned to analyze the data in three dimensions, a novel concept and approach that is
described in the next section.

2.2. Statistical Tools
2.2.1. Cluster Analysis

Cluster analysis is the classification of data with a previously unknown structure and
the partitioning of a dataset into meaningful subsets. Clustering sheds light on hidden or
non-intuitive relationships between those data and their attributes. Each cluster contains a
group of objects that are more closely related to each other than they would be as objects of
other clusters. The concept of distance is thus inherently crucial in the process of cluster analysis,
as clusters are grouped based on the results of this measure. Distance serves as a way to evaluate
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the closeness, as well as dissimilarity, of pairs of observations. There are at least two options
to conduct cluster analysis for this traffic data: model-based clustering (e.g., mixture of
normals) and non-parametric clustering (e.g., k-means). Although k-means is popular
for complex and high-dimensional data, it is generally used for data involving variables
of the same scale (hence, more suitable for data with spherical clusters, e.g., Euclidean
distance in 3D), whereas our data consist of three variables of different scales. For this
reason, model-based clustering has more flexibility in the shape of clusters; for instance,
mixture models [18] can identify clusters in the traffic data that were ellipsoidal.

Empirical evaluations on the distributions of the three traffic variables through
quantile–quantile (Q-Q) plot, Shapiro test and Box–Cox transformation have suggested that
normal distributions are appropriate. Here, we propose the use of a finite mixture model
with G multivariate normals [18]. Specifically, denote data y with independent trivariate
observations (flux, velocity and occupancy) {y1, y2, . . . , yn} the likelihood for a mixture
model with G components is

`(θ1, θ2, . . . , θG; π1, π2, . . . , πG|y) =
n

∏
i=1

G

∑
k=1

πk fk(yi|θk),

where i stands for ith observation, fk(·) and θk are the density function and model parame-
ters of the kth cluster in the mixture and πk is the probability that an observation belongs
to the kth cluster, subject to the simplex constraint {πk ≥ 0; ∑G

k=1 πk = 1}. Such a model
can be fitted by the expectation-maximization (EM) algorithm and is implemented by the
R package ‘mclust’.

2.2.2. Three Phase Traffic

Figure 1 provides a 3D visualization and cluster analysis result on the Rome dataset,
where observations in different clusters are marked by different colors. Previous knowledge
assumed that traffic involves two clusters: free flow and congestion. Free flow corresponds
to steady traffic flow at high speeds (and low densities), while congestion is characterized
by low flux and reduced speeds. From this new 3D visualization of data, we can identify
a third phase, which we call the “free choice phase” , which corresponds to the situation
of a relatively empty road, whereby drivers choose their speed independently without
influence from or interaction with other vehicles.

Figure 1. 3D visualization and cluster analysis results of Rome data suggest the existence of third
phase (red) in addition to the free flow (blue) and congestion (green) phases.

In the free choice phase, the flow of cars is low while the speed is variable. Model
selection procedures (e.g., Bayesian information criterion (BIC) or adjusted BIC) have been
used to select the number of clusters, and the datasets from Rome, Nevada and Sophia
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Antipolis have consistently suggested the existence of the third phase. Such additional
phase is incorporated into the mathematical modeling.

Notice that our three phases are different from those indicated by Kerner [12]. Indeed,
we have two sub-phases in the free phase cluster opposed to Kerner’s model with two
sub-phases in the congestion phase cluster.

2.2.3. Gap Analysis

We developed and applied a rigorous hypothesis testing procedure to the datasets
to formally investigate the presence of phase transitions. Specifically, investigating the
presence of phase transition can be formulated as testing the existence of a “gap region” at
the upper portion of occupancy in the free phase and its proximity to the lower portion of
occupancy in congestion. As shown in Figure A1 (left) in Appendix A, such gap region
can be potentially masked by isolated points in the gap, which could be in fact due to
measurement errors or random variations in flux and occupancy. To reduce the impact
of these isolated points, we propose to take the upper quantile of the free phase (e.g.,
95th percentile, denoted as ρFP) and the lower quantile of the congested phase (e.g., 5th
percentile, denoted as ρC) and formally test for H0 : ρFP ≥ ρC, i.e., there is no gap, against
Ha : ρFP < ρC, i.e., there is a gap. Figure 2 illustrates these two scenarios of H0 and Ha.

Figure 2. Illustration of hypothesis testing procedure for phase transition.

For given pre-specified percentiles qFP and qC (e.g., 95% and 5%), denote ρ̂FP and ρ̂C
as the corresponding quantiles in the two clusters. The existence of phase transition can be
formally tested by a one-sided test based on the Wald statistic

T = min{ρ̂FP − ρ̂C, 0}/
√

var(ρ̂FP − ρ̂C).

The variance var(ρ̂FP − ρ̂C) can be approximated by

var(ρ̂FP − ρ̂C) = var(ρ̂FP) + var(ρ̂C) ≈
qFP(1− qFP)

nFP{ f (F−1(qFP)}2 +
qC(1− qC)

nC{ f (F−1(qC)}2 ,

where f (·) and F(·) stand for the estimated distribution function and cumulative distri-
bution function of ρ, respectively, and nFP and nC stand for the number of data points
in the free and congestion phases, respectively. The first equality in the calculation of
variance is due to the independence of ρ̂FP and ρ̂C as they are estimated from different sets
of observations. The approximation is due to a standard result for asymptotic variance of
percentile estimates (see [19]). The complete sets of results for the statistical analysis on the
three datasets can be found in Appendix B.
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3. A Macroscopic Second-Order Model Accounting for the 3 Phases

Following the approach of Colombo et al. [7], Fan et al. [14], we propose a new macro-
scopic model accounting for the three phases derived in the previous sections. In conserva-
tion form, the model can be expressed as

∂tρ + ∂x(ρ v(ρ, y/ρ)) = 0,
∂ty + ∂x(y v(ρ, y/ρ)) = 0,

(1)

where the velocity function is chosen such that

v(ρ, y/ρ) =


vFC(ρ, y/ρ), if0 < ρ ≤ ρFC,
vFP(ρ), ifρFC < ρ ≤ ρFP,
vC(ρ, y/ρ), ifρC ≤ ρ ≤ ρmax,

(2)

for some 0 < ρFC < ρFP < ρC < ρmax, and it is continuous at ρFC and ρFP. In (1)–(2),
the quantity w = y/ρ ∈ [wmin, wmax] may represent various traffic characteristics, such
as vehicles classes [20], aggressiveness [21], desired spacing [22] or perturbation from
equilibrium [23], which are transported with the traffic stream. We refer to the variable
y = ρw as a total property [14]. The function v defined in (2) must be:

1. Non-negative: v(ρ, w) ≥ 0 for all ρ ∈ [0, ρmax], w ∈ [wmin, wmax];
2. Continuous: vFC(ρFC, w) = vFP(ρFC) and vC(ρFP, w) = vFP(ρFP) for all

w ∈ [wmin, wmax]
3. Vanishing at maximal density: v(ρmax, w) = vC(ρmax, w) = 0 for all w ∈ [wmin, wmax]

4. Non-decreasing with respect to w:
∂v
∂w

(ρ, w) ≥ 0 for ρ ∈ [0, ρmax]

With the above assumptions, the corresponding flux function q(ρ, w) = ρ v(ρ, w)
satisfies q(0, w) = q(ρmax, w) = 0 for all w.

To take into account the possible presence of a gap, as suggested by our analysis,
we fix the value vmax

C ≤ vmin
FP := vFP(ρFP) of the maximal speed in congestion, and let

ρC ∈ [ρFP, ρmax[ be the density value such that

vC(ρC, wmin) = vmax
C .

Defining the velocity function (see Figure 3) as

vg(ρ, w) =


vFC(ρ, w), if0 < ρ ≤ ρFC,
vFP(ρ), ifρFC < ρ ≤ ρFP,
min

{
vmax

C , vC(ρ, w)
}

, ifρC ≤ ρ ≤ ρmax,

(3)

the corresponding flux function qg(ρ, w) := ρvg(ρ, w) displays the desired gap between
the free-flow and congested phases (see Figure 4).
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Figure 3. An example of speed function.

Figure 4. General (non-concave) fundamental diagram.

3.1. Riemann Solver

To simplify the construction, it is not restrictive to assume that the fundamental
diagram is ρ-differentiable, i.e., we assume that

∂vFC
∂ρ

(ρFC, w) = v′FP(ρFC) for all w ∈ [wmin, wmax]

and
∂vC
∂ρ

(ρFP, w) = v′FP(ρFP) for all w ∈ [wmin, wmax].

System (1) is defined on the invariant domain

Ω = {(ρ, ρw) ∈ [0, ρmax]× [0, ρmaxwmax] : w ∈ [wmin, wmax]}.



Axioms 2021, 10, 17 8 of 20

We note that, under the above assumptions on the velocity function v, (ρ, y) ∈ Ω if
and only if w ∈ [wmin, wmax] and v(ρ, y/ρ) ∈ [0, v(0, wmax)]. The eigenvalues are given by

λ1(ρ, y/ρ) = v(ρ, y/ρ) + ρ
∂

∂ρ
v(ρ, y/ρ) and λ2(ρ, y/ρ) = v(ρ, y/ρ), (4)

so the system is strictly hyperbolic for ρ > 0 as long as ∂ v(ρ, y/ρ)/∂ρ 6= 0. We note that
the second characteristic field is linearly degenerate, giving origin to contact discontinuity
waves, while the first characteristic field is genuinely non-linear if

∂2q
∂ρ2 (ρ, w) = 2

∂v
∂ρ

(ρ, w) + ρ
∂2v
∂ρ2 (ρ, w) < 0, for ρ ∈ [0, ρmax], (5)

holds. Moreover, the Riemann invariants of the systems are given by w and v. In particular,
the iso-values w = const correspond to waves of the first family (we recall that the system
belongs to Temple class, i.e., shock and rarefaction curves coincide) and the contact discon-
tinuities verify v = const. More precisely, in the strictly concave case (5) the elementary
waves are constructed as follows.

• 1-rarefaction waves. Two points (ρl , ρlwl) and (ρr, ρrwr) are connected by a 1-rarefaction
wave if and only if

wl = wr and λ1(ρl , wl) < λ1(ρr, wr).

• 1-shock waves. Two points (ρl , ρlwl) and (ρr, ρrwr) are connected by a 1-shock wave
if and only if

wl = wr and λ1(ρl , wl) > λ1(ρr, wr).

In this case, the jump discontinuity moves with speed

σ =
ρlv(ρl , wl)− ρmv(ρm, wm)

ρl − ρm
.

• 2-contact discontinuity. Two points (ρl , ρlwl) and (ρr, ρrwr) are connected by a 2-
contact wave if and only if

v(ρl , wl) = v(ρr, wr).

In the general (non-concave) case (see Figure 4), the 1-waves consist of a concatenation
of shocks and rarefactions (see ([24] Section 1)).

Based on the above elementary waves, the solution corresponding to general Riemann
data (ρl , ρlwl), (ρr, ρrwr) can be constructed as follows. Let (ρm, ρmwm) be the intermediate
point defined by

wm = wl , v(ρm, wm) = v(ρr, wr).

Setting vwl (ρ) = v(ρ, wl), ρm is given by

ρm =

{
v−1

wl
(v(ρr, wr)), ifv(ρr, wr) < v(0, wl),

0, otherwise.

In the latter case, a vacuum zone appears between the sector

v(0, wl) t < x < v(ρr, wr) t.

The complete solution is then given by a 1-wave connecting (ρl , ρlwl) and (ρm, ρmwm),
followed by a 2-contact discontinuity between (ρ̃m, ρ̃mwm) and (ρr, ρrwr) (eventually sepa-
rated by a vacuum zone if v(ρr, wr) > v(ρm, wl) and ρm = 0).
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The presence of the gap between vmax
C and vmin

FP does not modify the procedure, since
the definition domain

Ωg =
{
(ρ, ρw) ∈ Ω : v(ρ, w) ∈ [0, vmax

C ] ∪ [vmin
FP , v(0, wmax)]

}
is still invariant. We set Ωg = ΩFP ∪ΩC with

ΩFP =
{
(ρ, ρw) ∈ Ω : v(ρ, w) ∈ [vmin

FP , v(0, wmax)]
}

,

ΩC = {(ρ, ρw) ∈ Ω : v(ρ, w) ∈ [0, vmax
C ] }.

We can distinguish the following cases:

• If (ρl , ρlwl) and (ρr, ρrwr) belongs both to ΩFP or ΩC, the Riemann solver is defined
as above.

• If (ρl , ρlwl) ∈ ΩC and (ρr, ρrwr) ∈ ΩFP, the intermediate point (ρm, ρmwm) belongs to
ΩFP. Let (ρc, ρcwc) ∈ ∂ΩC the point defined by

wc = wl , v(ρc, wc) = vmax
C .

The solution is composed by 1-waves connecting (ρl , ρlwl) and (ρc, ρcwl), a phase-
transition jump between (ρc, ρcwl) and (ρFP, ρFPwl) moving with speed

σ =
ρcvmax

C − ρFPvmin
FP

ρc − ρFP
,

followed by 1-waves connecting (ρFP, ρFPwl) and (ρm, ρmwm) and eventually a 2-
contact from (ρm, ρmwm) to (ρr, ρrwr).

• If (ρl , ρlwl) ∈ ΩFP and (ρr, ρrwr) ∈ ΩC, the intermediate point (ρm, ρmwm) belongs to
ΩC. Therefore, the solution always contains a 1-wave (shock phase-transition) from
(ρl , ρlwl) to (ρm, ρmwm), followed by a 2-contact discontinuity. Notice that the solution
may also contain an intermediate 1-wave in the congested phase.

4. Numerical Scheme and Simulations
4.1. Numerical Scheme

For simplicity, let us rewrite problem (1) in compact form:

∂tu + ∂xf(u) = 0 u ∈ ΩFC ∪ΩFP ∪ΩC (6)

where u = (ρ, y) and

f(u) =


(ρvFC, yvFC), if0 < ρ ≤ ρFC,
(ρvFP, yvFP), ifρFP < ρ ≤ ρFP,
(ρvC, yvC), ifρC < ρ ≤ ρmax.

Let us fix constant space step ∆x and time step ∆t and ν = ∆t/∆x. Let us define the
mesh interfaces xj+1/2 = j∆x for j ∈ Z and the intermediate times tn = n∆t for n ∈ N. A
piecewise constant approximated solution uν(x, tn) of u is given by

uν(x, tn) = un
j for all x ∈ Cj = [xj−1/2; xj+1/2[, j ∈ Z, n ∈ N.

In this paper, we use the numerical scheme introduced in [25]. This scheme is a
modified Godunov scheme composed of two steps. The first step looks at the evolution
in time of the Cauchy problem, while the second step projects it onto piecewise constant
functions:
Step 1: Evolution in time.
This step consists in solving the Riemann problem at each cell interface xj+1/2 with initial
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data (un
j , un

j+1), obtaining an exact solution uν(x, tn+1−).
Step 2: Projection to time tn+1

Once all Riemann problems at interfaces are solved, Chalons and Goatin [25] proposed a
new averaging procedure. The idea is that, since the solution can contain states in different
phases, the average is not done on the regular mesh cells but on modified non-uniform
cells that contain only values belonging to the same phase. We denote this modified cells
by Cn

j = [xn
j−1/2, xn

j+1/2[. Afterwards, a sampling strategy allows us to recover a piecewise
constant solution on the initial mesh cells Cj.

We define the new interface xn
j+1/2 at time as tn+1

xn
j+1/2 = xj+1/2 + σn

j+1/2 ∆t, j ∈ Z (7)

and the new space intervals

∆xn
j = xn

j+1/2 − xn
j−1/2, j ∈ Z,

with σn
j+1/2 = σ(un

j , un
j+1)j∈Z the characteristic speeds of propagation of phase transitions

at interfaces. Then, we average the solution of Step 1 on the cells Cn
j , obtaining a piecewise

constant approximate solution un+1
j on a non-uniform mesh with

un+1
j =

1

∆xn
j

∫ xn
j+1/2

xn
j−1/2

uν(x, tn+1−) dt, j ∈ Z.

The modified Godunov scheme then reads:

un+1
j =

∆x
∆xn

j
un

j −
∆t

∆xn
j
(fn,−(un

j , un
j+1)− fn,+(un

j , un
j−1)) for all j ∈ Z, (8)

with

f
n,±

(un
j , un

j+1) = f(RS(σn,±
j+1/2; un

j , un
j+1))− σn

j+1/2RS(σ
n,±
j+1/2; un

j , un
j+1), (9)

andRS the solution to the Riemann problem as given in Section 3.1.
We then project the solution onto the original mesh Cj using a well distributed random

sequence (an) ∈ ]0, 1[ as follows:

un+1
j =


un+1

j−1 if an+1 ∈
]
0, ∆t

∆x max{σn
j−1/2, 0}

[
,

un+1
j if an+1 ∈

[
∆t
∆x max{σn

j−1/2, 0}, 1 + ∆t
∆x min{σn

j+1/2, 0}
[
,

un+1
j+1 if an+1 ∈

[
1 + ∆t

∆x min{σn
j+1/2, 0}, 1

[
.

(10)

Following Chalons and Goatin [25], we consider the van der Corput random sequence
defined by

an =
m

∑
k=0

ik2−(k+1),

where n = ∑m
k=0 ik2k, ik = 0, 1, is the binary expansion of n ∈ N.

4.2. Numerical Simulations

We compared our model (1) to the model in [25] in a simulation on a single road on
length 1 with x ∈ [−0.5, 0.5] with an initial data

ρ(x, 0) =
{

0.1 if x ≤ 0
0.6 if x > 0

(11)



Axioms 2021, 10, 17 11 of 20

We point out that our model is profoundly different from the phase transition models,
even with gap between phases. The main reason is that the second order model (1) admits
phase transitions, i.e., shock waves connecting phases, but as classical first family waves,
and allows different speeds also in free choice for different values of the variable w. This
is well captured by the simulation in Figure 5. An initial condition with one backward
moving shock is perturbed by a boundary datum presenting oscillations in the w variable.
As a result, for large times, small oscillations are visible on the left (free flow) and large
oscillations are propagated through the shock (congested flow). On the other side, the
phase transition model of Chalons and Goatin [25] is insensitive to such oscillations in the
w variable, as shown in Figure 6.
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Figure 5. Evolution of the density for our model on a single road.
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Figure 6. Evolution of the density for a classical phase transition model on a single road.

5. Conclusions

We analyzed three different datasets collected from different locations in Europe
and the US from fixed sensors. Representing data via a three-dimensional fundamental
diagram, we showed the presence of three traffic phases, two in free flow regime and one
in congested flow regime, and of a statistically significant gap between free and congested
flow. Based on these results, we designed a new second-order macroscopic model that
is capable describing analytically the gap and the three different phases. Moreover, a
characterization of Riemann problem solutions and a numerical example are provided,
illustrating the difference with phase transition models.
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Appendix A. Data Description

Our dataset sources are:
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1. Rome: Three sensors over one week (June 2006) aggregated every 1 min
2. Las Vegas: Fifty sensors over five years (2010–2015) aggregated over every 10 min
3. Sophia Antipolis: Four sensors for eight months (January–August 2014) every 6 min

We use the information collected in Rome as the primary example to illustrate the data
structure. The Rome dataset contains data of each minute of the entire day for one week;
thus, 10,080 observations were collected. Since our primary dataset from Rome consists of
one week of observations, we only analyzed data for one week in the other locations as
well. The datasets from Las Vegas and Sophia Antipolis were used to validate the results
from the Rome data.

Figure A1 illustrates the pairwise plots among the three measured variables based
on the dynamic data collected from a sensor located in the road Viale del Muro Torto in
the city of Rome on a Monday. These plots can provide useful insight on the functional
relationship between these variables in two-dimensional space. For instance, the plot of flux
against occupancy suggests a linear relationship with small variation when occupancy is
less than a threshold (known as the free phase) and much larger variation when occupancy
is larger than the threshold (known as the congestion phase). Furthermore, both flux vs.
speed and flux vs. occupancy plots suggest a possible “gap" between free and congestion phases,
which corresponds to phase transition. These are important features that need to be taken into
consideration in the mathematical modeling. Such pairwise plots are useful to generate data-
driven hypotheses that need to be formally tested statistically and validated across different
datasets.

Figure A1. Pairwise scatterplots of Rome Data in the road Viale del Muro Torto: flux vs. occupancy (left); flux vs. speed
(middle); and occupancy vs. speed (right).

Appendix B. Results of Cluster Analysis

We conducted model-based cluster analyses on three datasets. We found statistically
significant gaps between free and congested phases in all three datasets. We also used
regression analysis to demonstrate the existence of free choice phase in explaining the
variability in observed flux.

Table A1 presents the results from the described gap analysis of the Rome, Nevada and
Sophia datasets. After “trimming” a very small percent of data (e.g., 3%) and considering
(97%, 3%) quantiles of free and congestion phases, the test statistics suggested strong
evidence of a gap (indicating phase transition) in the three datasets.
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Table A1. Results of model-based cluster analysis using Rome, Las Vegas and Sophia Antipolis data.
Phase: estimated phase using cluster analysis. FP, free phase; C, congestion phase. Density, estimated
density value at the percentile.

Dataset Percentile (%) Phase Density Test Statistic p-Value

Rome

97.5 FP 10 0 12.50 C 10
97 FP 9 −1.79 0.0373 C 10
95 FP 9 −3.15 <0.0015 C 11

Las Vegas

97.5 FP 12 −0.91 0.182.50 C 13
97 FP 12 −2.17 0.0153 C 14
95 FP 11 −5.75 <0.0015 C 16

Sophia

97.5 FP 5 −2.82 0.0022.50 C 10
97 FP 5 −6.44 <0.0013 C 12
95 FP 4 −5.79 <0.0015 C 12

Graphical representations of the results are illustrated below. To clarify the color code
for the graphs, the region colored in red corresponds to the Free Choice phase, blue to the
Free Flow phase and green to Congestion. The Free Flow phase in this three cluster model
corresponds to the remainder of the original conception of Free Flow without Free Choice.
The Free Choice and Free Flow phases from the three cluster model are collectively referred
to as the Free Phase from here on.

Figure A2 illustrates the clustering performed by ‘mclust’ of the Rome data on a two-
dimensional level. Pairs plots present the data according to each pair of variables: velocity
and flux, occupancy and flux and velocity and occupancy. This type of plot provides insight
on the shape and characteristics of the data in 2D. For instance, we observed some sort of
gap between Free Phase and Congestion, which can be most easily viewed in the pairs plot
of the variables occupancy and flux. Figure 1 is the three-dimensional representation of
the Rome data, a novel approach to visualizing traffic data. Through this 3D plot of data,
the proposed gap between Free Phase and Congestion is even more noticeable, reinforcing
our observations from the 2D case. Specifying ‘mclust’ to filter through the data for two
or three clusters indicated there is some margin of difference between the original Free
Flow phase in the two cluster model and the Free Phase in the three cluster model; the
latter model is generally neater than the former. The disparity is minimal and perhaps
insignificant, although it is worth noting.
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Figure A2. Pairs plot of clustered Rome data.

Cluster analyses using the Las Vegas and Sophia Antipolis data corroborate the results
obtained with the Rome data. Las Vegas data collected from highway sensors 25 and 99,
which we refer to as Nevada 25 and Nevada 99, respectively, clusters into nine phases
through ‘mclust’. However, we forced R to choose only two and three clusters to match the
original two-phase model of traffic flow proposed by the field and the three-phase model
discovered in this study. The results are reported in Figures A3 and A4. The data and
analyses suggest that the three-cluster model was preferred using Bayesian information
criterion (BIC) for model selection [18].

Figure A3. Pairs plot of clustered Las Vegas data.
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Figure A4. 3D plot of clustered Las Vegas data.

The data from Sophia Antipolis also demonstrate the existence of the Free Choice
phase. These two datasets both have a wide range of observed speeds at low levels of
occupancy, as shown in the pairs plots and 3D plots in Figures A5 and A6.

Figure A5. Pairs plot of clustered Sophia Antipolis data.
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Figure A6. 3D plot of clustered Sophia Antipolis data.

Quantifying the Improved Goodness of Fit Through RSS Comparisons

We conducted further analyses by using residual sum of squares (RSS) values to
compare various models considered in this paper. The RSS value was calculated as the sum
of differences between the observed and fitted values of flux, where the fitted values of flux
were obtained from two or three cluster models with or without speed as an additional
predictor in addition to the occupancy. The RSS is an objective measure of the remaining
variability of the flux that has not been explained by a particular model.

With Rome data, we considered a baseline model with two-phase and occupancy as
the only predictor. In other words, this is a 2D and two-phase model as in the existing
literature. We calculated the RSS value for this model and compared with the RSS values
from more complex models. Specifically, we found that adding speed into the model (i.e., a
3D and two-phase model) explained additionally 1.2% of the variability in observed flux,
on top of the baseline 2D and two-phase model. Furthermore, adding the Free Choice
phase alone (i.e., a 2D and three-phase model) reduced 13.6% of the remaining variability.
Adding both speed and the free choice phase to the model (i.e., a 3D and three-phase
model) further reduced 16.0% of the variability in observed flux, compared to the baseline
model.

The results of these comparisons suggest that the three-cluster model is indeed su-
perior to the two-cluster model and that 3D rendering of the data is appropriate. The
percent change for adjustment of number of clusters as well as dimensions both increases
indicates a clear improvement; the three-cluster model is better than the two-cluster model,
3D analysis of data is more informative than that in 2D and the 3D three-cluster model pro-
vides the more favorable RSS value overall. These results are consistent across our datasets
(see Figures A7–A10 and Tables A2–A6). These results have important implications in
understanding traffic flow. They confirm the utility of analyzing this type of data in three
dimensions and reveal the presence of a third phase.

Table A2. RSS analysis with two clusters with flux and occupancy. β0 is the value of the intercept
and β1 the occupancy.

β0 β1 R2 Adj. R2 RSS

Free Phase 77.71 249.18 0.952 0.952 157,765,974

Congestion 2184.09 −11.00 0.09746 0.09676 283,255,197
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Figure A7. Flux vs. occupancy: RSS analysis.

Table A3. RSS analysis with two clusters with flux, occupancy and speed. β0 is the value of the
intercept, β1 the occupancy, and β2 the speed.

β0 β1 β2 R2 Adj. R2 RSS

Free Phase −248.7 253.88 5.48 0.953 0.953 154,308,365

Congestion 1941.54 −8.11 6.64 0.1032 0.1018 281,448,225

Figure A8. Flux vs. occupancy + speed: RSS analysis.

Table A4. RSS analysis with three clusters with flux and occupancy. β0 is the value of the intercept
and β1 the occupancy.

β0 β1 R2 Adj. R2 RSS

Free Choice 79.56 201.3 0.563 0.5628 14,269,933

Free Flow 187.68 231.36 0.9175 0.9175 126,714,084

Congestion 2302.55 −13.87 0.1618 0.1611 240,324,480
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Figure A9. Flux vs. occupancy: RSS analysis.

Table A5. Residual sum squared analysis with three clusters with flux, occupancy and speed. β0 is
the value of the intercept and β1 the occupancy, β2 the speed.

β0 β1 β2 R2 Adj. R2 RSS

Free Choice −153.88 200.36 4.03 0.6033 0.603 12,951,197

Free Flow −316.91 239.01 8.43 0.9193 0.9192 123,984,911

Congestion 2065.61 −11.05 6.5 0.1676 0.1663 283,641,319

Figure A10. Flux vs. occupancy + speed: RSS analysis.

Table A6. RSS improvement.

% RSS Improvement

2 Clusters 3 Clusters

2D
FP: 13.2% FC: 9.2%

FF: 2.2%
C: 15.8% C: 0.7%

3D
FP: 11.3% FC: -

FF: -
C: 15.2% C: -
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