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Abstract: There are many sub-tour elimination constraint (SEC) formulations for the traveling
salesman problem (TSP). Among the different methods found in articles, usually three apply more
than others. This study examines the Danzig–Fulkerson–Johnson (DFJ), Miller–Tucker–Zemlin (MTZ),
and Gavish–Graves (GG) formulations to select the best asymmetric traveling salesman problem
(ATSP) formulation. The study introduces five criteria as the number of constraints, number of
variables, type of variables, time of solving, and differences between the optimum and the relaxed
value for comparing these constraints. The reason for selecting these criteria is that they have the
most significant impact on the mathematical problem-solving complexity. A new and well-known
multiple-criteria decision making (MCDM) method, the simultaneous evaluation of the criteria
and alternatives (SECA) method was applied to analyze these criteria. To use the SECA method
for ranking the alternatives and extracting information about the criteria from constraints needs
computational computing. In this research, we use CPLEX 12.8 software to compute the criteria value
and LINGO 11 software to solve the SECA method. Finally, we conclude that the Gavish–Graves
(GG) formulation is the best. The new web-based software was used for testing the results.

Keywords: sub-tour elimination constraint (SEC); asymmetric traveling salesman problem (ATSP);
multiple-criteria decision making (MCDM); simultaneous evaluation of criteria and alternatives
(SECA)

1. Introduction

The traveling salesman problem (TSP) is one of the most well-known combinational
optimization problems studied in the operation research literature. It consists of determin-
ing a tour that starts and ends at a given base node after visiting a set of nodes exactly
once while minimizing the total distance [1]. Solving the TSP problem is crucial because
it belongs to the class of non-polynomial (NP)-complete. In this class of problems, no
polynomial–time algorithm has been discovered. If someone finds an efficient TSP algo-
rithm, it can be extended to other NP-complete class issues. Unfortunately, to date, no one
has been able to do it. The TSP is divided into two categories, symmetric and asymmetric,
based on the distance between any two nodes. In asymmetric TSP (ATSP), the distance
from one node to another is different from the inverse distance, and in symmetric TSP
(STSP), this distance is the same. As previously mentioned, the TSP consists of determining
a minimum-distance circuit passing through each vertex once and only once. Such a circuit
is known as a tour or Hamiltonian circuit (or cycle) [2].

A large number of exact algorithms have been proposed to solve the TSP problem.
In addition to exact algorithms, some heuristic algorithms are used to provide high-quality
solutions, but not necessarily optimal. The importance of identifying effective heuristics
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to solve large-scale TSP problems prompted the ‘8th DIMACS Implementation Challenge,
organized by Johnson et al. [3] and solely dedicated to TSP algorithms [4]. Lin and
Kernighan’s heuristic algorithm appears so far to be the most effective in terms of solution
quality, particularly with the variant proposed by Helsgaun (2000) [5]. Potvin (1996) [6]
proposed a genetic algorithm to the TSP, and Aarts et al. (1988) [7] analyzed the TSP
problem with the simulated annealing algorithm [8]. All of the traveling salesman problems
have a similar structure by one difference. The basic model is as follows:

min
n

∑
i=1

n

∑
j=1

cij ∗ yij (1)

subject to Equation (2)
n

∑
i=1

yij = 1, i = 1, . . . , n (2)

n

∑
j=1

yij = 1, j = 1, . . . , n (3)

yij ∈ {0, 1}, i, j = 1, . . . , n (4)

In this formulation, Equation (1) is the objective function that minimizes the to-
tal distance and cij is distance or weight of arc (i,j), Equations (2) and (3) are the as-
signment constraint, which ensures that each node is visited and left exactly once, and
Equations (4) and (5) indicate that yij is a binary variable and equals to 1 if arc (i,j) partici-
pates in the tours.

The basic model that is mentioned above is not complete because it does not support
the Hamiltonian circuit. Suppose there are six nodes and a traveler wants to visit all of
them, he can do this in the two ways shown in Figure 1:

Axioms 2021, 10, x FOR PEER REVIEW 2 of 15 
 

A large number of exact algorithms have been proposed to solve the TSP problem. 
In addition to exact algorithms, some heuristic algorithms are used to provide 
high-quality solutions, but not necessarily optimal. The importance of identifying effec-
tive heuristics to solve large-scale TSP problems prompted the ‘8th DIMACS Implemen-
tation Challenge, organized by Johnson et al. [3] and solely dedicated to TSP algorithms 
[4]. Lin and Kernighan’s heuristic algorithm appears so far to be the most effective in 
terms of solution quality, particularly with the variant proposed by Helsgaun (2000) [5]. 
Potvin (1996) [6] proposed a genetic algorithm to the TSP, and Aarts et al. (1988) [7] an-
alyzed the TSP problem with the simulated annealing algorithm [8]. All of the traveling 
salesman problems have a similar structure by one difference. The basic model is as fol-
lows: 

1 1
min *

n n

ij ij
i j

c y
= =
  (1)

subject to Equation (2) 

1
1,

n

ij
i
y

=

=              i = 1, …, n (2)

1
1,

n

ij
j
y

=

=               j = 1, …, n (3)

{0,1}ijy ∈ ,            i, j = 1, … , n (4)

In this formulation, Equation (1) is the objective function that minimizes the total 
distance and ijc  is distance or weight of arc (i,j), Equations (2) and (3) are the assignment 
constraint, which ensures that each node is visited and left exactly once, and Equations 
(4) and (5) indicate that ijy  is a binary variable and equals to 1 if arc (i,j) participates in 
the tours. 

The basic model that is mentioned above is not complete because it does not support 
the Hamiltonian circuit. Suppose there are six nodes and a traveler wants to visit all of 
them, he can do this in the two ways shown in Figure 1:  

 
Figure 1. Number (1) does not have a Hamiltonian circuit, and number (2) has a Hamiltonian cir-
cuit. 

In the above graphs (1 and 2), all of the nodes are visited, but in (1), we do not have a 
Hamiltonian circuit. This figure indicates that the basic formulation is not complete and 
should use a constraint that omits graph (1). For that, researchers add a constraint to the 
basic formulation for eliminating these sub-tours. Researchers have proposed many 
constraints for sub-tour breaking, but it is not clear which one is better. Therefore, in this 
research, an attempt has been made to compare the three methods most used in articles. 
This study used a multi-criteria decision-making method for the evaluation and com-

Figure 1. Number (1) does not have a Hamiltonian circuit, and number (2) has a Hamiltonian circuit.

In the above graphs (1 and 2), all of the nodes are visited, but in (1), we do not have
a Hamiltonian circuit. This figure indicates that the basic formulation is not complete
and should use a constraint that omits graph (1). For that, researchers add a constraint to
the basic formulation for eliminating these sub-tours. Researchers have proposed many
constraints for sub-tour breaking, but it is not clear which one is better. Therefore, in
this research, an attempt has been made to compare the three methods most used in
articles. This study used a multi-criteria decision-making method for the evaluation and
comparison of these three constraints. Since the purpose of the research is to survey
the three formulations, it is proposed to use the simultaneous evaluation of criteria and
alternatives (SECA) method for decision making and ranking. One of this method’s
properties is that it does not need experts’ opinions for weighting criteria. The SECA
method can compute weights of criteria by mathematical methods.
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2. Description of Three Sub-Tour Elimination Constraints (SECs)
2.1. The Danzig–Fulkerson–Johnson (DFJ) Formulation

Danzig, Fulkerson, and Johnson proposed the first integer linear programming (ILP)
formulation in 1954 as an SEC [9]. The DFJ constraints are

∑
i∈Q

∑
j∈Q

yij ≤ |Q| − 1 for all Q ⊂ {1, 2, . . . , n} and 2 < |Q| ≤ n− 1 (5)

In each subset Q, sub-tours are prevented, ensuring that the number of arcs selected in
Q is smaller than the number of Q nodes [10]. yij is a binary variable and is equal to 1 when
the nodes of i,j are visited. Q is a set of vertices whose cardinalities are between 3 and n − 1
because two nodes cannot take a tour, and the minimum number for making a tour is 3.

2.2. The Miller–Tucker–Zemlin (MTZ) Formulation

The earliest known extended formulation of the TSP was proposed by Miller in
1960 [11]. It was initially proposed for a vehicle routing problem (VRP), where each
route’s number of vertices is limited [12]. The VRP can be simply defined as the problem
of designing least-cost delivery routes from a depot to a set of geographically scattered
customers, subject to side constraints. This problem is central to distribution management
and must be routinely solved by carriers. In practice, several variants of the problem
exist because of the diversity of operating rules and constraints encountered in real-life
applications [13]. The capacitated vehicle routing problem (CVRP) is one of the variants of
the VRP. The CVRP consists, in its basic version, of designing a set of minimum cost-routes
for several identical vehicles having a fixed capacity to serve a set of customers with known
demands [14]. The MTZ constraints are

ui − uj + nyij ≤ n− 1 for all j 6= 1 and i 6= j (6)

In this formulation ui and uj are integer variables that define the order of vertices
visited on a tour. yij is a binary variable and is equal to 1 when the nodes of i,j are visited.
Constraint acts on the basis of node labeling. This means each node receives a number
label, and these numbers should be sequential. Figure 2 shows that each number is greater
than the previous one except in the last one (1 is not greater than 4). This simple rule helps
prevent the TSP from making arc i,l and eliminate taking a tour.
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2.3. The Gavish–Graves (GG) Formulation

A large class of extended ATSP formulations is known as commodity flow formu-
lations, where the additional variables represent commodity flows through the arcs and
satisfy additional flow conservation constraints. These models belong to three classes:
single-commodity flow (SCF), two-commodity flow (TCF), and multi-commodity flow
(MCF) formulations. The earliest SCF formulation is due to Gavish and Graves. The ad-
ditional continuous non-negative variables zij describe a single commodity’s flow vertex
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1 from every other vertex [12]. The GG [15] formulation for a single commodity problem
that has sub-tour elimination constraints in it is

∑
j=1

zij −∑
j 6=1

zij = 1 i = 2, . . . , n (7)

zij ≤ (n− 1)yij, i = 2, . . . , n and j = 1, . . . , n (8)

zij ≥ 0 for all i, j (9)

In this formulation, z is a positive variable. yij is a binary variable and is equal to 1
when the nodes of i,j are visited. Constraint (7) ensures that the flow variable (Zij) exists
between nodes with one unit following. Constraint (8) assures that a flow is possible when
the nodes are connected (yij = 1).

3. Research Gap

As indicated, there are many SECs of the TSP formulation in literature. Researchers
prefer using one of them based on their previous experiences. Consequently, if someone
enters this field, they do not know which one is more related to their work. Sometimes
new researchers use one method that is not proper for their research. For example, when
the number of nodes increases, using the DFJ method is not suitable because it is an
exponential growth of constraints that make it complicated for the software to achieve a
result. Nevertheless, some researchers use the DFJ method in problems with a high number
of nodes. However, there has been no research attending to all aspects or details. Some
researchers select SECs just for their lower constraints or variables. Others work on the
relaxation to get better answers, which are nearer to the optimum. So far, researchers have
not considered all related criteria that impact the selection of SECs. This study attempted
to cover the criteria that have the most impact on the selection of SECs. Consider someone
who wants to use SECs for sub-tour elimination. He faces DFJ and realizes that DFJ gets an
answer nearer to an optimum value, but it has many constraints and needs more time for
running, and for the exponential growth of constraints, it needs a more powerful computer.
With these properties of DFJ, is its selection suitable or not? The MTZ method gets results
comparable to an optimum value, but it generates integer variables and incredibly increases
the problem’s complexity. The GG method does not get a result near the optimum value,
but it has fewer constraints than DFJ and has no integer variable. With these properties,
which one of them is better than the others?

Accordingly, it was decided to convey three SECs used more than others in research
and determine which of them is better and related to our work.

4. Methodology

The core of operations research is the development of approaches for optimal decision
making. A prominent class of such problems is multi-criteria decision making (MCDM) [16].
There are many MCDM methods in the literature. These approaches are classified according
to the type of data (deterministic, stochastic, and fuzzy) and to the number of decision-
makers (single, group). In the decision-making process, usually three steps are followed
for numerical analysis of alternatives:

(1) Specifying the relevant criteria and alternatives
(2) Assigning numerical measures to the criteria under the impact of alternatives
(3) Ranking each alternative

According to these steps, various methods have been proposed. In continuation, some
prevalent MCDM methods introduced recently are explained.

The best–worst method (BWM) was proposed by Rezaee (2015). In this method,
decision-makers first determine some decision criteria and then identify the best (most
desirable) and the worst (least desirable). These criteria (best and worst) are compared to
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other criteria (pairwise comparison). A maximin problem is then formulated and solved to
determine the weights of different criteria [17].

With the aid of some aggregation strategies, Yazdani et al. (2018) introduced a new
method, which is a combined compromise decision-making algorithm [18]. They called
it CoCoSo, which is an abbreviation of combined compromise solution. This method
is used to compromise normalization, which was proposed by Zeleny (1973) [19]. The
CoCoSo weight of alternatives is determined by three equations achieved by the aggregated
multiplication rule.

Stevic et al. (2019) proposed a new method: measurement alternatives and ranking
according to compromise solution (MARCOS). This method is based on defining the
relationship between alternatives and reference values (ideal and anti-ideal alternatives).
Based on the defined relationships, the utility functions of alternatives are determined
and compromise ranking is made in relation to ideal and anti-ideal solutions. Decision
preferences are defined on the basis of utility functions. Utility functions represent the
position of an alternative concerning an ideal and anti-ideal solution. The best alternative is
the one that is closest to the ideal and at the same time furthest from the anti-ideal reference
point [20].

This study uses the SECA method for decision making and ranking [21]. One of the
reasons for selecting this method is that experts, like most other methods, do not need to
allocate weights of criteria. This study compares three mathematical constraints and does
not need expert opinion for scoring the criteria. It recommends two reference points (the
standard deviation and correlation) and then minimizes the deviation of criteria weights
from the reference point. The score of each alternative and the weight of each criterion are
determined with software. The SECA model is multi-objective non-linear programming,
which uses some techniques for optimization, and the formulation is equal to

maxz = λa − β(λb + λc) (10)

subject to
λa ≤ Si, ∀i ∈ {1, 2, . . . , n} (11)

Si =
m

∑
j=1

wjxij
N , ∀i ∈ {1, 2, . . . , n} (12)

λb =
m

∑
j=1

(wj − σj
N)

2
(13)

λc =
m

∑
j=1

(wj − πj
N)

2
(14)

m

∑
j=1

wj = 1, (15)

wj ≤ 1, ∀j ∈ {1, 2, . . . , m} (16)

wj ≥ ε ∀j ∈ {1, 2, . . . , m} (17)

where xij denotes the performance value of i-th alternative on j criterion and wj is the
weight of each unknown criterion. Moreover,σj, each vector elements’ standard deviation
πj, shows the degree of conflict between j-th criterion and other criteria. In addition, ε,
a small positive parameter, is equal to 10−3 as a lower bound for criteria weights. The
coefficient β is used for minimizing deviation from reference points. In the source paper,
it is mentioned that when the values of β are greater than 3 (β ≥ 3), the performance of
alternatives is more stable. Therefore, β is taken to be 3 in this study. Si shows the overall
performance score of each alternative.
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The SECA method also is used in the evaluation of sustainable manufacturing strate-
gies. In this decision model, SECA is combined with a weighted aggregated sum product
assessment (WASPAS) [22].

5. Selection of Related Criteria by Reviewing Articles

Defining related criteria is the essence of using the MCDM methods. The MCDM
methods indeed evaluate multiple conflicting criteria, but this does not mean that the
criteria are not related to the issue. So, selecting proper criteria is an essential step in
decision making. There are two ways to choose criteria. One way is to review some articles
and convey on them to select the right criteria. The other way is to consult with experts
and use what they opt for. This study used both methods for selecting related criteria.
Further research that deals with this issue was undertaken, and a summary is provided in
the following content.

ATSP formulations are shown in Table 1, and the order of their variables and con-
straints will be determined like this [12]:

Table 1. Classification of asymmetric traveling salesman problem (ATSP) formulations.

Category Formulations Variables Constraints

Exponential size DFJ O (n2) O (2n)

Miller–Tucker–Zemlin-based MTZ O (n2) O (n2)

Single commodity flow GG O (n2) O (n2)
DFJ, Danzig–Fulkerson–Johnson; MTZ, Miller–Tucker–Zemlin; and GG, Gavish–Graves.

To complete their comparative study, they tested the LP relaxation of these models.
The result of this comparison shows that DFJ is better than GG, and GG is better than MTZ,
which means the result of LP relaxation of the DFJ model is closer to the optimal value.
Their results are similar to Wong’s research [23].

Orman and Williams classified models into four groups: conventional (C), sequential
(S), flow-based (F), and time-staged (T) [24]. They extracted the following information:

(1) DFJ is located in the C group, and the combination of the base model with this sub-
tour elimination has 2n + 2n− 2 constraints and n(n − 1) 0–1 variables, because the
exponential number of constraints cannot solve this practically.

(2) MTZ is located in the S group, and the combination of the base model with this
sub-tour elimination has n2 − n + 2 constraints, n(n − 1) 0–1 variables, and (n − 1)
continuous variables.

(3) GG is located in the F1 group, and the combination of the base model with this
sub-tour elimination has n(n + 2) constraints, n(n − 1) 0–1 variables, and n(n − 1)
continues variables.

(4) To demonstrate the relative strengths of LP relaxations of these SECs, they provide
the following results (Table 2) for 10 cities’ TSP.

Table 2. Computational results.

Model Size LP.obj Iterations Time (s) IP.obj Nodes Time (s)

C 502 × 90 766 37 1 766 0 1
S 92 × 99 773.6 77 3 881 665 16

F1 120 × 180 794.22 148 1 881 449 13

Benhida and Mir [25] compared DFJ and MTZ sub-tour elimination and declared that
the DFJ formulation of the TSP contains n(n− 1) variables and 2n + 2n− 2 constraints. MTZ
contains (n − 1)(n + 1) variables and n2 − n + 2 constraints. To compare this method, they
randomly generated 10 complete graphs from 10 to 950 nodes. These nodes were randomly
taken between 0 and 99 coordinates. The distances between the nodes are Euclidean
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distances (d), and they calculated the relaxation value (R) by relaxing the integrality
constraints. They reported the results in a table and showed the R values of DFJ and MTZ
for 10 to 950 nodes. This final result of the research was that the DFJ relaxation value is
better than the MTZ relaxation value, and MTZ is charming because it is easy to implement
but gives a low continuous relaxation.

By reviewing the above articles and consulting with experts, six criteria that have a
significant impact on the selection of SECs are chosen and listed below:

(1) Number of constraints: when this criterion increases, the time to solve increases, too.
(2) Number of variables: these criteria affect the solution time.
(3) Relaxation value: whatever is closer to an optimum value is better.
(4) Number of nodes: it affects solution time and SEC performance.
(5) Type of variable: integer variables increase the complexity of a problem.
(6) Time in second: the time to find a solution is a significant issue in selecting a method.

6. Computational Results

After defining related criteria, the three sub-tour elimination constraints should be
evaluated. In this evaluation, the number of nodes is considered constant in each step
of comparison. Optimization software is needed to assess these SECs. This study uses
CPLEX 12.8 for coding these three sub-tour eliminations (codes attached in Appendix A).
In this code, we calculated the optimal answer for different nodes with a random distance
(rand (10) + rand (200)), and we reported the results in Table 3. When the number of
nodes increases, the difficulty of a problem also increases. In mathematical optimization,
relaxation is a modeling strategy. Solving problems by a relaxation variable provided
useful information about the original problem. DFJ relaxation gets the best answer from
others because it has one type of variable (binary). MTZ gets the worst solution for its two
types of variables (integer and binary).

For relaxation in CPLEX, we changed the type of variable to float+ and added a
constraint (0 ≤ yij ≤ 1).

Table 3. Results reported by CPLEX.

Instances SEC Constraints Variables Type-V Time (s) Vopt R

Inst-10 DFJ 987 100 B 0 462 462

Inst-10 MTZ 111 100 + 10 B + I 0 462 462

Inst-10 GG 119 100 + 90 B + P 0 462 462

Inst-15 DFJ 32,676 225 B 5 371 371

Inst-15 MTZ 241 225 + 15 B + I 0 371 354.73

Inst-15 GG 254 225 + 210 B + P 0 371 369.57

Inst-16 DFJ 65,430 256 B 11 425 425

Inst-16 MTZ 273 256 + 16 B + I 0 425 425

Inst-16 GG 287 256 + 240 B + P 0 425 425

Inst-17 DFJ 130,951 289 B 34 451 450

Inst-17 MTZ 307 289 + 17 B + I 0 451 416.4

Inst-17 GG 322 289 + 272 B + P 0 451 416.56

Inst-18 DFJ 262,007 324 B 72 352 352

Inst-18 MTZ 343 324 + 18 B + I 0 352 335

Inst-18 GG 359 324 + 306 B + P 0 352 336.76

Inst-19 DFJ 524,134 361 B - - 421

Inst-19 MTZ 381 361 + 19 B + I 0 421 394.68

Inst-19 GG 398 361 + 342 B + P 0 421 394.78
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Table 3. Cont.

Instances SEC Constraints Variables Type-V Time (s) Vopt R

Inst-20 DFJ 1,048,194 400 B - - -

Inst-20 MTZ 421 400 + 20 B + I 0 399 350.6

Inst-20 GG 439 400 + 380 B + P 0 399 350.68

Inst-50 DFJ - - - - - -

Inst-50 MTZ 2551 2500 + 50 B + I 0 516 502.16

Inst-50 GG 2599 2500 + 2450 B + P 1 516 502.25

Inst-100 DFJ - - - - - -

Inst-100 MTZ 10,100 10,000 + 100 B + I 2 665 656.08

Inst-100 GG 10,119 10,000 + 9900 B + P 8 665 656.08

Inst-500 DFJ - - - - - -

Inst-500 MTZ 250,501 250,000 + 500 B + I 44 1173 1173

Inst-500 GG 250,999 250,000 + 249,500 B + P 115 1173 1173

SEC, sub-tour elimination constraint; B, binary; I, integer; P, positive; S, second; and R, the objective value when variables were relaxed.

7. Using the SECA Method for Ranking Computational Results

With the information in Table 4, which is achieved by comparing the criteria, it is
possible to use the MCDM method. As mentioned before, among the decision-making
methods, SECA is selected in this research. Now, in this section, we implement the stages
of this method. At first, like other MCDM methods, define a decision matrix for a problem
and normalize it. In the decision matrix, xij denotes the performance value of alternatives (i)
on each criterion column (j). Use linear normalization for normalizing. In this, the criteria
are divided into two sets, beneficial and non-beneficial. Linear normalization formulation is

xN
ij =


xij

maxkxkj
I f j ie Bene f icia

minkxkj
xij

I f j ie Non−
(18)

Table 4. Decision matrix.

Nodes = 15 Constraint Variable Type Time Gap

NB NB NB NB NB
DFJ 32,676 225 1 6 1

MTZ 241 240 16 1 16.27
GG 254 435 1 1 1.43

NB, non-beneficial.

After normalization, this formulation should be used to calculate the degree of conflict
between the criteria. rjl is the correlation between j and l vectors.

πj =
m

∑
l=1

(1− rjl) (19)

After calculating the standard deviation of the elements of each vector (σj), we nor-
malize πj and σj by these formulations:

πj
N =

πj
m
∑

l=1
πl

(20)
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σj
N =

σj
m
∑

l=1
σl

(21)

In our problem, there are three alternatives and five criteria. The score of the nodes
should be calculated for the ranking of alternatives. It should be considered that it is
not possible to use xij = 0 in the SECA model. For this reason, the cells that are zero are
converted to 1. One may ask why it is allowed to substitute 0 with 1 in the decision matrix.
As mentioned above, the minimum amount of x in SECA method is 1 and cannot use a
smaller number. The significant number of nodes (100 and 500) in which there are no
criteria values less than 1 are calculated to confirm this research result. In the table given
below, gap is the difference between the optimal and the relaxed value, and the less the
value, the better and beneficial it is. An example of the decision matrix is used to show the
case of Node = 15 in Table 4.

After implementing the stages for calculating σ and π (the steps are provided in
Appendix B), each alternative’s computing score should be calculated using optimization
software. This work used LINGO 11 software for coding the SECA optimization model
(exist in Appendix C). We got the following results for each node (Table 5). Their ranking is
shown in Table 6.

Table 5. Scoring alternatives by LINGO 11.

Node 10 15 16 17 18 19 20 50 100 500

DFJ 0.6655 0.6233 0.37 0.605 0.6 - - - - -
MTZ 0.6655 0.6233 0.81 0.605 0.6 0.62 0.67 0.64 0.59 0.57
GG 0.84 0.8356 0.88 0.685 0.7 0.85 0.84 0.85 0.69 0.73

Table 6. Ranking of alternatives.

Node 10 15 16 17 18 19 20 50 100 500

DFJ 2 2 3 2 2 - - - - -
MTZ 2 2 2 2 2 2 2 2 2 2
GG 1 1 1 1 1 1 1 1 1 1

By looking at the ranking table, we understand that GG is the best method between
the three SEC formulations. For testing, the SECA method’s scoring used the website
www.mcdm.app (accessed on 25 December 2020), which has a powerful calculation engine
and covers many MCDM methodologies. As seen, the GG method has some features that
lead it to the first place. One reason making it better from the MTZ method is the type of
variables. GG has no integer variable that increases the complexity of a problem. When
the number of nodes increases, the DFJ method’s constraints extend exponentially, and an
optimum computing value is more challenging for a computer. As we see in the above
tables, when the number of nodes is more significant than 19, typically, personal computers
will not be able to compute an optimum value for DFJ and to report the result, because
estimating this large volume of calculations, personal computers run out of random access
memory (RAM). RAM is short-term storage that holds programs and processes running
on a computer. Behinda and Mir calculated the DFJ method for many cities, which is in
contrast to the paper’s result. This may occur for several reasons; for example, they might
use powerful computers with high RAM (they do not refer to the system’s information).
This study uses a usual computer (the system used for this research had an 8 GB RAM
and a CPU with seven cores). One of the reasons may be due to the ATSP, because in this
type of problem, the route between two cities is different from the return route, and this
issue increased the complexity of the solution. Using parallel computing or changing the
amount of rand can get an answer for many cities. For these reasons, the codes used in this
study are attached in the Appendix C for readers.

www.mcdm.app
www.mcdm.app
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Applegate et al. [26] decided to solve various TSP instances and constructed a library
named TSPLIB. They used DFJ sub-tour elimination. The size of cities ranged from 17 to
85,900. For the largest, of 85,900 nodes, they used 96 workstations for a total of 139 years of
CPU time [8].

8. Conclusions

One of the usual problems for a researcher in using TSP formulation is to select the
best sub-tour elimination constraint. As everyone may know, many SEC formulations are
presented, but it is not specified which of them is most suited to our work. So, they should
be compared to each other to determine which of them is superior. This study analyzes
three SECs of the TSP formulation (DFJ, MTZ, and GG), which are used more than others
in research. For comparison using MCDM methods, some criteria needed to be introduced.
By reviewing research papers, five criteria were concluded: the number of constraints,
the number of variables, type of variables, time of solving, and the differences between
optimum and relaxed value, and that was the main research gap of the study. These SEC
formulations are non-linear. When the number of nodes rises, solving problems with
non-linear variables is hard. For this reason, these variables are turned into linear variables,
because linear problems are solved quickly. This conversion is named LP relaxation.
Therefore, the lower value of the gap is more suitable because the relaxation value is closer
to its optimum value. It should be mentioned that the relaxation value gets a lower bound
of a problem. Whenever this lower bound is more comparable to an optimum value, the
result reaches the optimum by fewer iterations in the optimization software.

This research aimed to analyze the three sub-tour elimination formulations of the
ATSP by an MCDM method. This study used the simultaneous evaluation of criteria and
alternatives (SECA) method for multiple decision making and ranking the alternatives.
The computation of this method shows that GG SEC is better than others. Comparison
between DFJ and MTZ does not show a distinct difference, but as shown, the DFJ SEC’s
computing is time-consuming because, as the number of nodes increases, the constraints
grow exponentially. This particular reason drives us to use MTZ SEC in the ATSP problem,
especially when the number of nodes increases.

If we look at Table 4, we may ask why GG is better than MTZ, while MTZ has fewer
variables and constraints and takes less time to solve. To answer this question, it is better
said, as mentioned before, that MTZ has a charming face. One of the criteria considered in
this study is the type of variables. MTZ generates integer variables, and as we know, these
variables increase the complexity of solving. The real traveling salesman problem could
not reach the exact answer in polynomial time because this is an NP_hard problem.

Thus, researchers used heuristic methods to obtain an upper bound and relaxation to
earn a lower bound for these problems. They know the answer is in this interval. Relaxation
of the MTZ constraint should get two types of variables, binary and integer. Most of the
times, the relaxation variable is not an integer, and other methods should be used to convert
it into an integer, but GG does not have this problem because it has binary and positive
variables and gets a relaxation value that is closer to the optimum value. Therefore, the
type of variable is a crucial criterion and significantly affects the ranking of alternatives. So,
the main reason for this ranking is this criterion. Covering all aspects, this study proposes
that GG is the best sub-tour elimination.
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Appendix A

CPLEX code:
DFJ:
//define number of nodes
int nbnode=10; // define parameter
range nodes=1..nbnode; // define index

//c is the distance between nodes
float c[i in nodes][j in nodes]=rand(10)+rand(200);

//in this section define set and subset
range ss = 1..ftoi(round(2ˆnbnode));
{int} sub [s in ss] = {i | i in 1..nbnode: (s div ftoi(2ˆ(i-1))) mod 2 == 1};

//model
dvar boolean y[nodes][nodes]; // y is decision variable
which

is binary.
minimize sum(i,j in nodes)c[i][j]*y[i][j]; //objective function
subject
to{ //constraints
forall (j in nodes) sum(i in nodes)y[i][j]==1;
forall (i in nodes) sum(j in nodes)y[i][j]==1;
forall (s in ss: 2<card(sub[s])<nbnode) sum(i, j in sub[s]) y[i][j] <= card(sub[s])-1;

}
MTZ:
//define number of nodes
int nbnode=10; // define parameter
range nodes=1..nbnode; // define index

//c is the distance between nodes
float c[i in nodes][j in nodes]=rand(10)+rand(200);

//model
dvar boolean y[nodes][nodes]; //y is binary variable
dvar int+ u[nodes]; // u is integer variable

minimize sum(i,j in nodes)c[i][j]*x[i][j]; //objective function
subject
to{ //constraints
forall (j in nodes) sum(i in nodes)y[i][j]==1;
forall (i in nodes) sum(j in nodes)y[i][j]==1;
forall (i,j in nodes: j!=1) u[i]-u[j]+nbnode*y[i][j]<=nbnode-1;
}
GG:
//define number of nodes
int nbnode=10; // define parameter
range nodes=1..nbnode; // define index
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//c is the distance between nodes
float c[i in nodes][j in nodes]=rand(10)+rand(200);

//model
dvar boolean y[nodes][nodes]; //y is binary variable
dvar float+ z[nodes][nodes]; //z is positive variable

minimize sum(i,j in nodes)c[i][j]*y[i][j]; //objective function
subject
to{ //constraints
forall (j in nodes) sum(i in nodes)y[i][j]==1;
forall (i in nodes) sum(j in nodes)y[i][j]==1;
forall (i in nodes: i>=2 ) sum(j in nodes)z[i][j]-sum(j in nodes: j!=1)z[j][i]==1;
forall (i,j in nodes: i!=1) z[i][j]<=(nbnode-1)*y[i][j];

}

Appendix B

Table A1. Normalized decision matrix.

Normalize Constraint Variable Type Time Gap

DFJ 0.007375 1 1 0.166667 1
MTZ 1 0.9375 0.0625 1 0.061463
GG 0.948819 0.517241 1 1 0.699301

Table A2. Standard deviation of criteria.

STD 0.456343 0.214367 0.441942 0.392837 0.39131

STD-N 0.240598 0.113021 0.233006 0.207116 0.206311

Table A3. Correlation of criteria.

rij Constraint Variable Type Time Gap

Constraint 1 −0.5622 −0.53913 0.998951 −0.77613
Variable −0.56225 1 −0.39336 −0.59953 −0.08508

Type −0.53913 −0.3933 1 −0.5 0.949517
Time 0.998951 −0.5995 −0.5 1 −0.74644
Gap −0.77613 −0.0850 0.949517 −0.74644 1

Table A4. Calculate π = Σ (1 − rij).

1 − rij Constraint Variable Type Time Gap Sum Each Row Πn

Constraint 0 1.562251 1.539128 0.001049 1.77613 4.878559 0.199069
Variable 1.56225 0 1.393365 1.599526 1.085082 5.640223 0.230148

Type 1.53913 1.39336 0 1.5 0.050483 4.482973 0.182927
Time 0.001049 1.59953 1.5 0 1.746444 4.847023 0.197782
Gap 1.77613 1.08508 0.050483 1.74644 0 4.658133 0.190074

Table A5. Ranking of alternatives by score.

SCORE Ranking

DFJ 0.6233 2
MTZ 0.6233 2
GG 0.8356 1
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Appendix C

Code of SECA in LINGO 11 for node=15:
MODEL:

SETS:
AL/1..3/:S; #AL is alternatives and s is score
CR/1..5/: W,zig,p; # CR is criteria
LINK (AL, CR): X; # X denoted the performance value of

alternatives on each criterion column
ENDSETS

#read data from excel file
DATA:
B=3; #B is beta in the SECA method
#zig is the normalization of standard deviation
#p is the normalization of sum (1- correlation) of each row
X, zig, p=@OLE(‘C:\MATRIX.XLSX’,‘DECISION’,‘SIG’,‘PI’);
ENDDATA

@FOR (AL (I):
s(I)=@SUM (CR(J):W(J)*X(I,J));
LA <=S (I);

);
@FOR(CR (J):

W (J) <=1;
W (J) >=0.001; # W shouldn’t be zero

);

@sum(CR(J):W(J))=1;

LB=@SUM (CR (J):((W (J)- zig (J))ˆ2 ));

LC=@SUM(CR(J):((W (J)- p (J))ˆ2 ));

Z=LA-(B*(LB+LC)); #x2003; #objective function

@FREE(Z); #x2003; # Z is free variable

MAX=Z;

END
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