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Abstract: The main purpose of the present paper is to define the concept of an e-distance (as a general-
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1. Introduction and Preliminaries

In 1942, Menger [1] introduced Menger probabilistic metric spaces as an extension of
metric spaces. After that, Sehgal and Bharucha-Reid [2,3] studied some fixed point results
for different classes of probabilistic contractions (also, see and references in the citation).
Moreover, in 2009, Saadati et al. [4] introduced the concept of r-distance on this space.

Throughout this paper, the set of all Menger distance distribution functions are de-
noted by D™

Definition 1 ([5], page 1). A binary mapping T : [0,1] x [0,1] — [0,1] is called t-norm if the
following propertied are held:

(a) T is commutative and associative;

(b) T is continuous;

() T(a1)=aifac0,1];

(d) T(a,b) <T(cd)ifa<candb <d foreverya,b,c,dec [0,1]

Definition 2 ([4]). A t-norm T is called an H-type I if for € € (0,1), there exist 6 € (0,1) so
that T™(1—6,..,1—8) > 1 — e for each m € N, where T™ recursively defined by T' = T and
T™(t1,to, e tm1) = T(T" Nt to, oo tm), timgr) form = 2,3, -+ and t; € [0,1].

All t-norms in the sequel are from class of H-type I.

From another point of view, Mustafa and Sims [6] defined G-metric spaces as another
extension of metric spaces, analyzed the structure of this space, and continued the theory of
fixed point in such spaces. In 2014, Zhou et al. [7], by combining Menger P M-spaces and G-
metric spaces, defined Menger probabilistic generalized metric space (shortly, Menger PGM
space). Other researchers extended several fixed point theorems in [8-10] and references
contained therein.

Definition 3 ([7]). Assume that X is a nonempty set, T is a continuous t-normand G : X3 — Dt
is a mapping satisfying the following properties for all x,y,z,a € X and s, t > 0:
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(PG1) Gy (t) = lifand only if x =y = z;
(PG2) Gyxy(t) > Guy,z(t), where z #— v
(PG3) Gx/yz(t) - XZ,y(t) Gy,x,z(t) =y
(PG4) Gyy(t +5) > T (Graa(s), Gayz(t)).
Then (X, G, T) is named a Menger PGM space.

For the definitions of convergent, completeness, closedness and some theorems by
regarding these concepts in such spaces, one can see [7]. In 2004, Ran and Reurings [11]
discussed on fixed point results for comparable elements of a metric space (X, d) provided
with a partial order. Then, Bhaskar and Lakshmikantham [12] presented several fixed point
results for a mapping having mixed monotone property in such spaces (see [13,14]).

Definition 4 ([12]). Consider a ordered set (X, =) and a mapping F : X? — X. The mapping F
is told to be have mixed monotone property if

x1 = xp implies that F(x1,y) = F(x2,y) Vxq,x € X,
~F

y1 X yo implies that F(x,y1) = F(x,y2) Yy, 12 € X.

for every x,y € X.

Here we introduce an e-distance on Menger PGM spaces and some of its properties.
Then we obtain some coupled fixed point results in the quasi-ordered version of such
spaces. The subject of the paper offers novelties compared to the related background
literature since a new distance in Menger spaces is defined while some of its properties are
revisited and extended.

2. Main Results

Here, we consider an e-distance on a Menger PGM space, which is an extension of
r-distance introduced by Saadati et al. [4].

Definition 5. Consider a Menger PGM space (X, G, T ). Then the function g : X3 x [0, 0] —

[0, 1] is called an e-distance, if for all x,y,z,a € X and s, t > 0 the following are held:

(r1) gx,y,z(t + S) > T(gx,u,u(5>/ gﬂ,y,z<t));

(r2) gy, (t) and gx, ,(t) are continuous;

(r3) for each € > 0, there exists 6 > 0 provided that g,,,.(t) > 1 — 06 and gxaa(s) > 1 -6
conclude that Gy, (t +s) > 1 —e.

Lemma 1. Each Menger PGM is an e-distance on X.

Proof. Clearly, (r1) and (12) are true. Only, we prove that (r3) is true. Assume € > 0 and
select 6 > 0sothat 7(1—09,1—06) > 1—e. Then, for Ggy(t) > 1 —0and Gya(s) > 179,
we get

Gx,y,z(t + S) > T(Ga,y,z(t)/ Gx,a,a(5)> > T(l —-9J,1— 5) >1-—e.
]

Example 1. Assume (X,G,T) is a Menger PGM space. Define a function g : X3 x [0, 0] —
[0,1] by gx,y,2(t) =1 —c foreach x,y,z € X and t > O with c € (0,1). Then g is an e-distance.

Lemma 2. Consider a Menger PGM space with a continuous mapping A on X and a function
g X3 x[0,00] = [0,1] by gxy,z(t) = min{Gyyz(t), Gaxay,az(t)} for each x,y,z € X and
t > 0. Then g is an e-distance on X.

Proof. The condition (r2) is clearly established. To prove (rl), consider x,y,z,a € X and
t,s > 0. Then, we have two following cases:
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Case 1: if Gyyz () = min{Gyy,2(t), Gax,ay,4:(t) }, then

gx,y,z(t + S) = Gx,y,z(t + S)
> T (Gxaa(t), Ga,y,z (s))
> T (min{Gxa,a(t), Gax,Aq,40(t) }, min{Ga,y,2(s), Gagay,42(5) })
> T (8xaa(t) 8ayz(5))-

Case 2: if G4y, ay,Az (t) = min{Gx,y,z (1), GAax,Ay,Az (t)}, then

Suyz(t+5) = Gay ayaz(t +5)
> T(Gax,A0,A0(t), Gag,ay,42(5))
> T (min{Gx,a,a(t), Gax,aa,40(t)}, Min{Gayz(5), Gag,ay,42(5)})
> T (gxaa(t), gayz(s))-

Therefore, (r1) is established. Now, assume € > 0 and select § > 0 so that 7 (1 —4,1—0J) >
1 —e. Using gra4(t) > 1 -6 and g4y,2(s) > 1 -9, we get

min{Gya4(t), Gax,A0,4a(t)} = Sxaa(t) >
min{Ga,y,z (s), GAu,Ay,Az(S)} = ga,y,Z(S) >

7

> O

- Y

which induces that

Gx,y,z(t + 5) > T(Gx,u,a (t)/ Gu,y,z (5))
> T(min{Gx,u,a (t), GAx,Au,Au (t) }/ min{ Ga,y,z (5)/ GAa,Ay,Az (s) })
=T (8xaa(t), 8ayz(s)) >T(1—=6,1-6)>1—e€.

Thus, (13) is established. This completes the proof. [

Lemma 3. Consider an e-distance g on (X, G,T ) with two sequences {x,} and {y,} in X.
Suppose that {a, } and {B,} are two non-negative sequences converging to 0. Then for x,y,z € X
and t,s > 0 the following assertions are established:

Q) Szyxn(t) > 1 —ayand gy x, x,(t) > 1 — By for any n € Nimply x = y = z. Specially,
Sxaal(t) =1land gz -(s) = Limplyx =y = z;

(i) Qyunun(t) > 1 —ay and gx, y,,2(t) > 1= By for all m > n with m,n € N imply
Gypymz(t+8) = lasn — oo;

(iii) let §x, xpx, (£) > 1 —ay forall n,m,l € N, where | > m > n. Then {x,} is a Cauchy
sequence;

(iv) let gy (t) > 1 —ay foralln € N. Then {x,} is a Cauchy sequence.

Proof. To prove (ii), assume € > 0. By applying the definition of e-distance, there exists
0 > 0so that g4,,2(f) > 1 -0 and gx,4,4(s) > 1 — 6 induce Gy (t +5) > 1 — €. Select
ny € Nprovided thata, < dand B, < ¢ foreachn > ng. Then gy, x,x, (t) > 1 =0y >1-96
and gy, y,z(t) > 1 =By > 10 for any n > ny and hence Gy, y,,(t +5) > 1 —e.
Therefore, {y,} converges to z. Now, using (ii), (i) is established. To prove (iii), assume
€ > 0. Similar to the proof of (ii), select § > 0 and ng € N. Then, for all n,m,l > ng+1,
we get gx, x5, () = 1 —any > 1—6and gx, x,x,(t) = 1 —ay, > 1—0. Therefore,
Guyxmx; (1) = 1 — €. Hence, {x,} is a Cauchy sequence. Now, it follows from (iii) that (iv)
is true. O

Lemma 4. Consider an e-distance g on (X, G, T ). Suppose that E) o : X° — Rt U {0} is introduced
by Erg(x,y,2z) = inf{t > 0: gxy2(t) > 1= A} forany x,y,z € X and A € (0,1). Then
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(1) forallyu € (0,1), there exists A € (0,1) so that
Eyg(x1,%1,%n) < Epg(x1,%1,%2) + Ep g(x2, X2, X3) + -+ + Ep g (Xn—1, X1, Xn)

foreach xq, -+ ,x, € X;
(2)  for every sequence {xy } in X, g, xx(t) — Liff Ex ¢(xn, x,x) — 0. Further, the sequence
{xn} is Cauchy w.r.t. g iff it is Cauchy with E) .

Proof.

(1) For every u € (0,1), we can gain A € (0,1) provided that 7" 1(1—A,..,1 - A) >
1 — u. Now, for every 6 > 0, we have

Sy (Erg (X1, X1, %2) 4+ Ep g (X2, X2, %3) + -+ + Ep g (X1, Xn—1, Xn) + 1)
> 7! (8x1,x1,%2 (EA,g(xlf X1, %2) + 0), 8x3,x2,%3 (E/\/g(xz’ x2,%3) +0)
8% 11X (E;\,g(xn_l, Xn—1, xn) + 5))
>T Y 1-A,1-A)>1—u

which induces that
Eyg(x1,x1,%n) < Epg(x1,%1,%2) + Epg(x2,X2,X3) + - + Ep g (X1, X1, Xn) + 10.
Since 6 > 0 is optional, we obtain

Epg(x1,x1,%n) < Epg(x1,X1,%2) + Epg(%2,X%2,X3) + - - + Ep g (X0 -1, X1, Xn).-

(2) Note that gy, xx(7) — 1 —Aasn — coiff Ey o(xy,x,x) < 1 foreachn € Nand 7 > 0.
O

In the sequel, we establish some coupled fixed point theorems by regarding an e-
distance on a quasi-ordered complete PGM space.

Theorem 1. Let (X, G, T, <) be a quasi-ordered complete Menger PGM space with T of Hadzi¢-
type 1, g be an e-distance and f : X — X be a mapping having the mixed monotone property on
X. Assume that there exists a k € [0,1) such that

1 t t
gf(x,y),f(u,v),f(w,z)(t) i(gxuw(E) +gy,v2(k)) (1)
forall x,y,z,u,v,w € X withx = u > wandy < z, where either u # w or v # z and
Sup{T(gX,y,Z(t)rgx,y,f(x,y)(t)) Xy e X} <1l (2)

forall z € X, where z # f(z,q) for all ¢ € X. If there exist xo,yo € X so that xog = f(x0,Y0)
and yo = f(yo, xo), then f have a coupled fixed point in X2

Proof. Since there exist xp, 19 € X with xo =< f(x0,y0) and yo > f(yo,%0), and f has
the mixed monotone property, we can construct Bhaskar-Lakshmikantham type iterative
as follow:

23230212, YoryiZY2m o m Ypp =

for alln > 0, where

X1 = 7 (x0,y0) = F(f" (x0,90), f™ (vo, %0)),
Yyne1 = 7 (vo, x0) = F(f" (yo, x0), f* (X0, ¥0))-
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If (X1, Ynt+1) = (%n,yn), then f has a coupled fixed point. Otherwise, assume (X, 11, ¥,+1) 7

(X4, yn) for each n > 0; that is, either x,,11 = f(Xn, Yn) # Xun OF Y1 = f(Yn, Xn) # Yn.
Now, by induction and (1), we obtain

Y

7)),
7))

gxn/xnrxwrl (t) (gxo X0,X1 ( ) + gyo Yo,¥1 (

v

N = N =
i
»‘,,_»‘W

gyn,yn/ynJrl (t) (gyo Yo.Y1 ( ) + ng X0,X1 (

for each n > 0 which induces that g, x, v, (t) = 38x0x0x () and gy, i () >
2gyo vou: (). Therefore,

Epg(Xn,xn, Xni1) = inf{t > 0 g,y 0,0 (£) > 1= A}
. 1 t
<inf{t >0: ngo/xo,x1(k7) >1-—A}

= anE/\,g(xO/ X0, X])-
Thus, for m > nand A € (0,1), there exists ¢y € (0,1) so that

2k"
E/\,g(xn/ Xn, Xm) < Ery,g(xn/ Xp, Xpg1) + o+ E’y,g(xm—lx X1, %m) < kE'yg(XO/ X0, X1)-

- 1-

Now, there exists g € N so that for each n > ng, Ej ¢(xn, Xn, Xm) — 0. By Lemmas 3
and 4, {x,} is a Cauchy sequence. Thus, using Lemma 4 (ii), there exit n; € N and a
sequence 6, — 0 so that gy, x,x, (t) > 1 — 0, for n > max{ngp, n;}. Since X is complete,
{x} converges to a point p € X. Similarly, {y, } is convergent to a point g € X'. By (r2), we
obtain gy, v, »(t) = imu—eo Sx,,x0,1, (£) > 1 — 0y for n > max{ng, n1}. Moreover, we get
Sxntni1nin () = 1 — 0. Now, we show that f has a coupled fixed point. Let p # f(p,q).
Then, by (2), we obtain

1> Sup{T(gX,y,]ﬂ(t)'gx,y,f(x,y)(t)) tX Y€ X}

> sup{ T (§xuxup(£)s §xnxniran: (£)) : 1 € N}
> sup{7T(1—0,,1—08,):n € N} =1,

which is a contradiction. Consequently, we get p = f(p,q). Similarly, we obtain f(g, p) = g.
Here, the proof ends. O

Theorem 2. Assume the assumptions of Theorem 1 are held and consider the continuity of f
instead of relation (2). Then f has a coupled fixed point.

Proof. As in the proof of Theorem 1, construct {x,} and {y,}, where x, = p, y» — q,
Xp+1 = f(Xn, yn). Now, by the continuity of f and by taking the limit as n — oo, we get
f(p,q) = p. Analogously, we can obtain f(g, p) = q. Therefore, (p,q) is a coupled fixed
pointof f. O

Example 2. Assume that X = [0,00), “ < " is a quasi-ordered on X and T (a,b) = min{a,b}.
Deﬁne a constant function f : X — X by f(a,b) = pand G : X3 — DT by Gy (t) =
W with G*(x,y,z) = |x —y| + |x —z| + |y — z| for each x,y,z € X. Clearly, G
satisfies (PG1)-(PG4). Consider gx,y-(t) = 1 —c, where ¢ € (0,1). Then g is an e-distance
on X. Clearly, for all x,y,z,u,v,w € X and for any t > 0, we have gy ) f(u,0),f(w, () >

(g, ww(f) + 8y0z(%)). Moreover, there exist xg = 0 and yo = 1o that 0 = xo < f(x0,Y0)
tmd 1=vyo > f(yo, xo) = 1. Therefore, all of the hypothesis of Theorem 2 are held. Clearly, (p, p)
is a coupled fixed point the function f.
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3. Application

Consider the following system of integral equations:

{x(t) = fab M(t,5)K(s, x(s),y(s))ds,
y(t) = [} M(t,5)K(s,y(s), x(s))ds,

forallt € I = [a,b], whereb >a, M € C(I x I,[0,00)) and K € C(I x R x R, R).

Let C(I,R) be the Banach space of every real continuous functions on I with ||x||e =
maxgcy |x(f)] forall x € C(I,R) and C(I x I x C(I,R),R) be the space of every continuous
functions on I x I x C(I,R). Define a mapping G : C(I,R) x C(I,R) — D" by Gy,2(t) =
x5 = (Jlx = ylloo + |x — z|leo + ||y — z||e0)) forall x,y,z € C(I,R) and t > 0, where

~fo if t<o0
X(t)_{l if >0

®)

Then, (C(I,R),G,T) with T (a,b) = min{a, b} is a complete Menger PGM space ([7]).
Consider an e-distance on X' by gy y - () = min{Gy,2(t), Gax,ay,4:(t) }, Wwhere A : C(I,R) —
C(I,R) and Ax = 5. Moreover, we define the relation “ < ”“ on C(I,LR) by x X y &
[|%||oo < ||y]]oo forall x,y € C(I,R). Clearly the relation “ < ” is a quasi-order relation on
C(I,R) and (C(I,R),G, T, =) is a quasi-ordered complete PGM space.

Theorem 3. Let (C(I,R),G, T, =) be a quasi-ordered complete Menger PGM space and f :
C(I,R) x C(I,R) — C(I,R) be a operator defined by f(x,y)(t) = fﬂb M(t,s)K(s, x(s),y(s))ds,
where M € C(I x 1,]0,00)) and K € C(I x R x R, R) are two operators. Assume the following
properties are held:

(@) K]l = SUPser, x,yeC(LR) [K(s,x(s),y(s))| < oo

(ii)  for every x,y € C(I,R) and every t,s € I, we have

[[K(s, x(s),y(s)) = K(s,u(s),v(s)) o < %(max [x(s) — u(s)| +max]y(s) —v(s)|);

(iii) maxseg fuh M(t,s)ds < 1.
Then, the system (3) have a solution in C(I,R) x C(I,R).

Proof. Forallx,y € C(I,R),let [|x — y||co = maxier(|x(t) —y(t)]). Then, forallx,y,z,u,v,w €

C(I,R), we have
1) — £, o < max [ M(3) K(s, x(5)y()) — K5 (), 0(3)) s
< max((1x(5) — u(9) + ly(s) ()} max [ M(t5)ds
< max(i(\x(S) —u(s)| + ly(s) —v(s)])-

We consider two following cases:
Case 1. Let

8F(xy),f(up),f(w,z) (t) = min{Gf(x,y),f(u,v),f(w,z) (t), GAf(X/y),Af(u,v),Af(w,z) (t)}
= G (ay) fu),f(wz) (F)-



Axioms 2021, 10, 3 70f8

Then, we obtain

8F ey fuo), f(wz) () = Grlxy), fluo),flwz) ()
= X(% —(If(xy) = f(u,0)][e0 + (I f(x,y) = f(w,2) |l + || f(w,0) = f(w,2)]|e0))

> x(5 — (max( 5 (Ix(s) — u(s)| + Iy(s) — o(s)])
) -

+max (7 (|x(s) — w(s)] + [y(s) —z(s)]))
+max(i(lu(s) ()] + [v(s) —z(s)1))))
= x(t— %(max((lx(s) —u(s)| + ly(s) —v(s)]))
+ max( —w(s)|+[v(s) —z(s)]))))

—
=
—~
V2]
~—
|
g
—~~
v5)
~—
+
=
~— —~
V2]
~—
|
N
—~
V2]
~—
-
~—
+
o))
X
—~
—
=
—~
~—

2 %(X(t — (max([x(s) —u(s)| +[x(s) —w(s)| + |u(s) —w(s)[)))
+x(t = (max(|y(s) —o(s)| + |y(s) —z(s)[ + |v(s) —z(s)]))))

1

1
= E(Gx,u,w(Zt) + Gyo,z(2t)) > E(gx,u,w (2t) + 8y,02(2t)).

Case 2. Let

8f(x),f (o) flwz) () = I Grixy) f(u,0),f(,2) () Caf(xy), Afu0),Af(wz) (D)}
GAf(XJ) Af(u,0),Af (w,z) (t)

By Ax = %, we have
8F(xy) flu).f(wz) () = GAf(x ¥),Af(10),Af (wz) ()
= x(* - %(Hf(x y) = f(w,0)]lo + [ f(x,y) = f(w,2)loo + || f (1, 0) = f(w,2)]|e0))
> X(% —(If(xy) = f(w,0)llo + | f(x,y) = f(w,2) [l + [| f(,0) = f(w,2)|0))
(Jx(s) = u(s)[ +y(s) —v(s)]))

+ max( X (1x(s) — w(s)| + [y(s) - 2(5)]))

4
+ma><(%(|u(5)*MS)HIU(S)*Z(S)I))))
=x(t—%(ma><((|x() u(s)|+ ly(s) —o(s)[))

+ max(([x(s) -

)
w(s) +[y(s) —2(s)[)) +max(([u(s) —w(s)| + |v(s) —z(s)]))))
> ;(X(t— (max([x(s) —u(s)| +[x(s) —w(s)| + |u(s) —w(s)[)))

+x(t— (max([y(s) — o(5)| + [y(s) — 2(5)| + [o(s) — 2()))))
= 2 Grano@) + Gz (20)) > 5 ($ra0(26) + gy0(21))

forall x,y,z,u,v,w € C(I,R). Therefore, by Theorem 2 with k = 1 forall x, Y,2,U,0,w €
C(I,R) and t > 0, we deduce that the operator f has a coupled fixed point which is the
solution of the system of the integral equations. [

4. Conclusions

The new concept of e-distance, which is a generalization of r-distance in PGM space
has been introduced. Moreover, some of properties of e-distance have been discussed. In
addition, we obtained several new coupled fixed point results. Ultimately, to illustrate the
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usability of the main theorem, the existence of a solution for a system of integral equations
is proved.
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