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Abstract: The study of functional connectivity from magnetoecenphalographic (MEG) data consists
of quantifying the statistical dependencies among time series describing the activity of different
neural sources from the magnetic field recorded outside the scalp. This problem can be addressed
by utilizing connectivity measures whose computation in the frequency domain often relies on the
evaluation of the cross-power spectrum of the neural time series estimated by solving the MEG inverse
problem. Recent studies have focused on the optimal determination of the cross-power spectrum in
the framework of regularization theory for ill-posed inverse problems, providing indications that,
rather surprisingly, the regularization process that leads to the optimal estimate of the neural activity
does not lead to the optimal estimate of the corresponding functional connectivity. Along these
lines, the present paper utilizes synthetic time series simulating the neural activity recorded by an
MEG device to show that the regularization of the cross-power spectrum is significantly correlated
with the signal-to-noise ratio of the measurements and that, as a consequence, this regularization
correspondingly depends on the spectral complexity of the neural activity.

Keywords: regularization theory; multivariate stochastic processes; cross-power spectrum; magne-
toencephalography; MEG; functional connectivity; spectral complexity

1. Introduction

Magnetoencephalography (MEG) provides high temporal resolution measurements of
the magnetic field associated to neural currents. The MEG device relies on superconducting
sensors, named SQUIDs, organized in a helmet array close and around the scalp. MEG
experimental time series can be used essentially to address two neuroscientific problems,
whose solution requires both an accurate mathematical modelization based on Maxwell’s
equations, and the numerical reduction of such formal models [1].

The first problem is concerned with the dynamical ill-posed inverse problem of
estimating parameters associated with the neural sources inducing the magnetic field
signal [2–8]. The second problem is concerned with the quantification of the interactions
among neural sources located in different cortical areas and intertwined by means of either
anatomical or functional connectivity [9–14].

In particular, the connectivity problem can be addressed by either computing proper
connectivity metrics directly from the experimental time series provided by the MEG
sensors or searching for connections in the source space, i.e., among the neural time series
estimated as solutions of the inversion process. This second approach has the advantages
of reducing the impact of volume conduction and providing results that can be more
easily interpreted in the framework of neuroscientific models [15–17]. Several approaches
for identifying connectivity paths rely on physiological models assuming that the func-
tional communication between different brain areas is regulated by the synchronization of
their activity at specific temporal frequencies [18,19]. This implies that, for these models,
the frequency domain represents the natural computational framework where to perform
the connectivity analysis. This is the reason why, in the present paper, we focus on the
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analysis of the cross-power spectrum, which is the mathematical quantity of reference for
the computation of most frequency-domain connectivity measures [11,20,21]. From an
operational viewpoint, the computation of the cross-power spectrum in the source space
typically relies on a two-step procedure: first the neural activity is estimated by applying
a regularized inversion method on the recorded time series and then the cross-power
spectrum is computed from the Fourier transform of the estimated neural time series [22].

This paper investigates how to optimally select the regularization parameter in the
inversion procedure in order to obtain the best possible estimate of the neural cross-power
spectrum. In fact, we consider the Tikhonov method (better known as Minimum Norm
Estimation (MNE) in the MEG world [2]) as it is one of the most commonly used inverse
methods in connectivity studies [23–25]; we study the interplay between the regularization
parameter providing the reconstructed neural time series minimizing the relative error
in `2-norm, and the one that allows the optimal estimate of the cross-power spectrum
according to the normalized Frobenius norm. The conceptual motivation of this problem
is illustrated in Figure 1, which tentatively sketches the result of recent investigations in
MEG-based connectivity research, i.e., that the regularization parameter leading to the
optimal estimate of the neural activity may not lead to the optimal estimate of the cross-
power spectrum and vice versa. In fact, in [26] the authors used numerical simulations to
compare the parameter that provides the best estimate of the power spectrum with the
one that provides the best estimate of coherence and showed that the latter is in general
two orders of magnitude smaller than the former. More recently, Vallarino et al. [27]
addressed an analogous problem via analytical computations, considering a simplified
model. Specifically, under the assumption that the neural time series are realizations of
white Gaussian processes, the authors proved that the parameter providing the best neural
activity estimate is more than twice as large as the one providing the best estimate of the
cross-power spectrum.

MEG data

λx X
Neural activity

estimation

7
Cross spectrum

estimation

λS 7
Neural activity

estimation

X
Cross spectrum

estimation

Figure 1. Schematic representation of the differences between the regularization parameter providing
the best time series estimate (λx) and the one providing the best cross-power spectrum estimate
(λS). The first one provides an optimal reconstruction of the neural activity, but it may not lead to an
optimal estimate of the cross-power spectrum; vice versa, λS provides an optimal reconstruction of
the cross-power spectrum at the expense of a sub-optimal estimate of the time series.

The present paper focuses on an analysis of the impact of spectral complexity of the
actual neural signal on the value of the two regularization parameters. Specifically, we
simulate synthetic MEG signals and discuss how the optimal parameter for the reconstruc-
tion of the cross-power spectrum depends on its signal-to-noise ratio and how this latter
quantity is related to the spectral richness of the neural sources. To this aim, we considered
a simulation setting in which the signal is modeled as a multivariate autoregressive process.

This paper is structured as follows. Section 2 introduces the problem in a formal way.
Section 3 describes how the synthetic data are simulated and analyzed. Section 4 presents
the results of the analysis. Our conclusions are offered in Section 5.
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2. Definition of the Problem
2.1. Forward Model

Let X(t) = (X1(t), . . . , XN(t))> ∈ RN be a multivariate stationary stochastic process
whose realizations x(t) can not be observed and let Y(t) = (Y1(t), . . . , YM(t))> ∈ RM be
the process whose realizations y(t) are used to infer information on x(t). Let Y(t) and X(t)
be related by the following equation

Y(t) = GX(t) + N(t) , (1)

where G ∈ RM×N is the forward matrix and N(t) = (N1(t), . . . , NM(t))> ∈ RM is the
measurement noise, that is here assumed to be a white Gaussian process with zero mean
and covariance matrix α2I, i.e., N(t) ∼ N (0, α2I), independent from X(t).

2.2. Cross-Power Spectrum

We are interested in reconstructing the cross-power spectrum of X(t), which de-
scribes the statistical dependencies between each pair of time series (Xj(t), Xk(t))j,k∈{1,...,N}.
The cross-power spectrum is a one parameter family of N × N matrices SX( f ), whose
(j, k)-th element is defined as

SX
j,k( f ) = lim

T→∞

1
T

E[X̂j( f , T)X̂k( f , T)H ], (2)

where X̂j( f , T) is the Fourier transform of Xj(t) over the interval [0, T], defined as

X̂j( f , T) =
∫ T

0
Xj(t)e−2πi f tdt (3)

and XH is the Hermitian transpose of X [28].
Given a realization x(t) of the process X(t), the cross-power spectrum SX( f ) can

be estimated via the Welch method [29], which consists in partitioning the data in P
overlapping segments multiplied by a window function, {w(t)xp(t)}P

p=1, computing their

discrete Fourier transform x̂p( f ) = 1
L ∑L−1

t=0 xp(t)w(t)e
−2πit f

L and averaging:

Sx( f ) =
L

PW

P

∑
p=1

x̂p( f )x̂p( f )H , f = 0, . . . , L− 1, (4)

where L is the length of each segment and W = 1
L ∑L−1

t=0 w(t)2.
It is often the case that the data reach a high dimension, and visual inspection of the

cross-power spectrum is not doable. In such cases a metric that describes the spectral
properties of the signals would be useful. Here we use the spectral complexity coefficient,
defined as follows.

Definition 1. Given a realization x(t) of the process X(t), and the corresponding cross-power
spectrum Sx( f ), we define the spectral complexity coefficient as the average of the elements of
the upper triangular part of the matrix obtained by computing the squared `2−norm over the
frequencies of Sx

j,k( f ), j, k = 1, . . . , N, that is

c =
2

N(N + 1)

N

∑
j=1

N

∑
k=j

∑
f

∣∣∣Sx
j,k( f )

∣∣∣2. (5)

The spectral complexity coefficient assumes small values if the elements of the cross-
power spectrum are flat, that is when time series do not present any periodic trend and no
dependencies among the pairs of time series are present. On the contrary, it assumes large
values if the elements of the cross-power spectrum are peaked, that is when time series
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present periodic trends and complex relations among them. Finally, we observe that in
Definition 1 only the elements on the upper triangular part of Sx( f ) are considered because
Sx( f ) is Hermitian.

2.3. Two-Step Approach for Cross-Power Spectrum Estimation

Let us now consider a realization of Equation (1). Further than an estimate of the
hidden data x(t), an estimate of the cross-power spectrum can be obtained from y(t). Such
estimate can be achieved through a two-step process [22]:

i. First, a regularized estimate xλ(t) of x(t) is obtained by solving the inverse problem
associated to Equation (1). Here we consider the Tikhonov regularized solution [30]
of the problem which is defined as

xλ(t) = arg min
x(t)

{
‖Gx(t)− y(t)‖2

2 + λ‖x(t)‖2
2

}
; (6)

where λ is a proper regularization parameter and ‖ · ‖2 is the `2-norm.
ii. Then, the corresponding estimate of the cross-power spectrum Sxλ( f ) is computed

from the reconstructed time series using the Welch method, as described in the
previous section.

Remark 1. In many applied fields, Tikhonov regularization with an `2 penalty term has been
outdated by more modern techniques that use sparsity-inducing penalization terms such as `1
or `p with 0 < p < 1. Indeed, also in the M/EEG literature there has been considerable effort
in developing `1 solutions [31,32], and mixed norm solutions [33]; both these approaches have
proved to provide superior performances in terms of localization of neural activity. However, these
newer methods are seldom used in connectivity studies, for good reasons: `1 solutions computed
independently at each time point produce extremely jittering reconstructions, resulting in highly
sparse time courses that are not suitable for computing connectivity metrics. Mixed norms, that
have been developed precisely to overcome this jittering problem, are computationally very expensive,
and this actually prevents their use with the large datasets typically involved in connectivity studies.

When applying the described two-step process, the regularization parameter λ in
Equation (6) has to be set for the computation of xλ(t). Thus, the problem naturally arises
of the choice of such parameter, which can be set in order to optimally reconstruct either
xλ(t) or Sxλ( f ). We define optimality through the minimization of the normalized norm
of the discrepancy between the true and the reconstructed time series and cross-power
spectra as follows.

Definition 2. Given the regularized solution (6) and the cross-power spectrum (4), we define the
optimal regularization parameter for the reconstruction of x(t) as

λ∗x = arg min
λ

εx(λ) with εx(λ) =
∑t‖xλ(t)− x(t)‖2

2

∑t‖xλ(t)‖2
2 + ∑t‖x(t)‖

2
2

; (7)

and the optimal parameter for the reconstruction of Sx( f ) as

λ∗S = arg min
λ

εS(λ) with εS(λ) =
∑ f ‖Sxλ( f )− Sx( f )‖2

F

∑ f ‖Sxλ( f )‖2
F + ∑ f ‖Sx( f )‖2

F

; (8)

where ‖ · ‖F is the Frobenius norm; εx(λ) and εS(λ) will be called reconstruction errors.

The reconstruction errors range from 0 to 1 and penalize both a too small and a too
large value of λ. In fact, they assume their maximum value when either λ is very high and
thus xλ(t) is negligible with respect to x(t), or when λ is too small and thus, vice versa, x(t)
is negligible with respect to xλ(t). This definition may appear overly complex compared to,
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e.g., a mere `2-norm of the difference; however, in the presence of sparse data where only a
few time series are non-zero, the simple `2-norm would prefer a very high regularization
parameter in order to minimize the error on the null time series, at the expense of the
error on the non-zero ones; our definition aims to cope with this limitation of the `2-norm.
A similar definition has been introduced in [34].

In experimental contexts, where x(t) is not known, the choice of the optimal regular-
ization parameter is crucial. This matter is widely discussed in literature [35–38], and many
criteria have been proposed. Such criteria apply to Equation (1) and can be used to set the
regularization parameter λx. A possibility is to set the regularization parameter as a func-
tion of the signal-to-noise ratio (SNR), which describes the level of the desired signal with
respect to that of the measurement noise; for Equation (1) the SNR is defined as follows.

Definition 3. Consider the linear model (1). We define the signal-to-noise ratio of X(t) related to
such model as

SNRX = 10 log10

(
∑t‖GX(t)‖2

2

∑t‖N(t)‖2
2

)
. (9)

To the best of our knowledge, the choice of the optimal regularization parameter for
the reconstruction of the cross-power spectrum has never been related to the signal-to-noise
ratio. This relation is presented in Section 4; however we first need to relate the cross-power
spectrum of the unknown SX( f ) with that of the data SY( f ).

By computing the cross-power spectrum of both sides of Equation (1) and from the
linearity of the Fourier transform it follows that

SY( f ) = GSX( f )G> + SN( f ), (10)

where the mixed terms SXN( f ) and SNX( f ) are negligible thanks to the independence
between X(t) and N(t). Just like for Equation (1), we can define the signal-to-noise ratio
for Equation (10) as follows.

Definition 4. Consider the linear model (10). We define the signal-to-noise ratio of SX( f ) related
to such model as

SNRS = 10 log10

∑ f
∥∥GSX( f )G>

∥∥2
F

∑ f ‖SN( f )‖2
F

. (11)

This definition is in line with the definition of SNRX for the signal, the main difference
being in the use of the Frobenius norm rather than the `2-norm, motivated by the fact that
we are working with matrices rather than vectors.

2.4. Multivariate Autoregressive Models

To model the statistical relationships between the different components of the stochas-
tic process X(t), in this work the latter is assumed to follow a stable multivariate autore-
gressive model of order P [39].

Definition 5. A zero-mean stochastic process X(t) ∈ RN is said to follow a multivariate autore-
gressive (MVAR) model of order P if

X(t) =
P

∑
k=1

A(k)X(t− k) + ε(t) ∀t , (12)

where A(k) ∈ RN×N are fixed coefficient matrices, and ε(t) ∈ RN is a white Gaussian noise
process.
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Moreover, the MVAR model described by Equation (12) is said to be stable if

det(I−
P

∑
k=1

A(k)zk) 6= 0 ∀ z ∈ C s.t. |z| ≤ 1, (13)

where I is the identity matrix of size N.

Remark 2. From Equation (12) it can be easily seen that the process X(t) is uniquely determined
by the process ε(t) and by the first P time points, X(0), . . . , X(P− 1). Indeed, consider for example
an MVAR model of order 1 (a similar proof holds for the general case P > 1 and can be found
in [39]); then, for each time point t

X(t) = A(1)X(t− 1) + ε(t)

= A(1)2X(t− 2) + A(1)ε(t− 1) + ε(t)

= A(1)tX(0) +
t−1

∑
k=0

A(1)kε(t− k) .

Such a model satisfies the stability condition defined in Equation (13) if all the eigenvalues
of the coefficient matrix A(1) have a modulus of less then one, the condition that guarantees the
sequence of exponential matrices

{
A(1)k

}
k

is absolutely summable.

According to Equation (12), if the process X(t) follows an MVAR model, then at each
time point the value of X(t) can be derived as a weighted sum of the values of the process
at the previous P time points, X(t − 1), . . . , X(t − P), plus a random perturbation ε(t).
In particular, the (i, j)-th elements of the coefficient matrices, aij(1), . . . , aij(P), describe
how the value of the i-th component of the process depends on the past of the j-th com-
ponent. Different connectivity patterns, with various levels of complexity, can thus be
obtained by tuning the off-diagonal values of the coefficient matrices. Due to their flexibility
and simplicity, MVAR models have been used by various authors in the framework of
MEG functional connectivity estimation as a benchmark for testing and comparing differ-
ent connectivity metrics [21,23,34,40–43]. Other models have been proposed to simulate
different connectivity patterns, such as coherent sinusoidal time series [26], neural mass
models [44,45], or Kuramoto models [46,47]. However a comprehensive comparison of all
possible generative models is beyond the scope of this work.

3. Generation and Analysis Pipeline of the MEG Simulated Data

In this section we describe the numerical simulation that led to the main results of our
study. First we introduce the continuous MEG forward problem and its discretized version,
then we describe how we generated the data and, finally, we describe the inverse model
and how we numerically computed the optimal regularization parameters.

3.1. MEG Forward Model

The MEG forward problem aims at computing the magnetic field produced outside
the head by an electric current that flows inside the brain. The quasi static approximation
of Maxwell’s equations provides the local relationship between the recorded magnetic field
and the neural currents [1,48,49]. The two equations that are of interest here read as

∇× E(r, t) = 0 (14)

∇× B(r, t) = µ0J(r, t); (15)
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where E(r, t) and B(r, t) are the electric and magnetic fields at location r and time t, µ0
is the magnetic permeability in vacuum and J(r, t) is the total electric current that flows
inside the brain. The latter is the sum of two contributions

J(r, t) = Jp(r, t) + Jv(r, t), (16)

Jp(r, t) being the primary current directly related to the brain activity, while Jv(r, t) =
−σ(r)∇V(r, t) is the induced volume current due the non-null conductivity σ(r) of the
brain, V(r, t) being the electric scalar potential.

The manipulation of Maxwell’s Equations leads to the Biot–Savart Equation

B(r, t) = B0(r, t)− µ0

4π

∫
Ω

σ(r′)∇′V(r′, t)× r− r′

|r− r′|3 dv′, (17)

where Ω is the volume occupied by the brain, the first term B0(r, t) = µ0
4π

∫
Ω J(r′, t) r−r′

|r−r′ |3 dv′

is the magnetic field induced by the primary current, whereas the second term is related to
the volume current.

Solving the forward problem requires the computation of these two contributions
knowing the primary current. Although for the first one straightforward numerical in-
tegration is feasible, for the second one it is common to model the head as the union of
nested homogeneous volumes {Ωj}j=1,...,J and to replace volume integration with surface
integration. In this way, the Biot–Savart equation becomes

B(r, t) = B0(r, t) +
µ0

4π ∑
i,j
(σi − σj)

∫
∂Ωi,j

V(r′, t)
r− r′

|r− r′|3 × ni,j(r′)ds′, (18)

where ∂Ωi,j is the contact surface between regions Ωi and Ωj and ni,j(r′) is the unit vector
normal to the surface ∂Ωi,j at r′ from region i to region j.

The forward problem can now be solved by computing the second term at the right
hand side of Equation (18) after having computed V(r, t) by solving the equation

∇ · Jp(r, t)−∇ · (σ(r)∇V(r, t)) = 0 , (19)

which follows from Equation (15) by applying the divergence.
For further details on the MEG forward problem, we refer the reader to [1].

3.2. The Leadfield Matrix

Experimental contexts require the discretization of the forward problem. This involves
a discretization of both the volume occupied by the brain and the volume outside the head.

When using a distributed model for the primary current Jp, the brain volume is
uniformly divided in N small parcels. If N is sufficiently big and thus each parcel has
a sufficient small area, the activity in each brain parcel is approximated by a point-like
source, henceforth denoted as dipole. From a mathematical point of view, each dipole is a
vector whose strength and direction represent the intensity and orientation of the primary
current in the corresponding brain area [1].

As for the volume outside the brain, it is natural to discretize it in correspondence of
the MEG sensors. Let us denote the measured magnetic field as y(t) = (y1(t), . . . , yM(t)).
Now, observing that the magnetic field B depends linearly on the primary current Jp,
the magnetic field in correspondence of the sensors of the instrument is

y(t) =
N

∑
k=1

G(rk)qk(t) + n(t), (20)

where rk, k = 1, . . . , N, is the location of the k-th brain parcel, G(rk) ∈ RM×3 is the
corresponding leadfield matrix, and {qk(t)}k=1,...,N are the electric current intensities



Axioms 2021, 10, 35 8 of 15

along the three orthogonal direction of the N dipoles within the brain at time t and
n(t) is the measurement noise. The l-th column of G(rk) contains the measurement at a
sensor level when a unit current dipole is placed at location rk and oriented along the l-th
orthogonal direction.

In this work, we assume dipoles to be located only on the brain cortical mantle and
their orientation to be normal to the local cortical surface [50]. In this case, the electric
current intensities are scalar quantities (we refer to them as {qk}k=1,...,N) and the leadfield
matrices are column vectors (we refer to them as {Gk}k=1,...,N).

Let us define
x(t) := (q1(t), . . . , qN(t)) (21)

and
G := [G1, . . . , GN ] ∈ RM×N ; (22)

reassembling Equations (21) and (22) in to Equation (20), we get

y(t) = Gx(t) + n(t), (23)

which can be interpreted as a realization of Equation (1). From now on we refer to G as to
the leadfield matrix.

For the simulation presented in this work, we used the leadfield matrix available
in the sample dataset of MNE Python [51]. We selected magnetometers and set a fixed
orientation. For computational reasons, the available source space, containing 1884 sources,
was uniformly down-sampled to obtain 274 sources. Thus, our model has M = 102 sensors
and N = 274 dipole sources.

3.3. Data Generation

We simulated Nmod = 10 pairs of active sources, (z1(t), z2(t))>, with unidirectional
coupling from the first to the second; their time series follow a multivariate autoregressive
(MVAR) model of order P = 5 [39,43](

z1(t)
z2(t)

)
=

P

∑
k=1

(
a1,1(k) 0
a2,1(k) a2,2(k)

)(
z1(t− k)
z2(t− k)

)
+

(
ε1(t)
ε2(t)

)
, t = P, . . . , T. (24)

The non-zero elements ai,j(k) of the coefficient matrices were drawn from a normal
distribution of zero mean and standard deviation γ, and T = 10,000. We retained only coeffi-
cient matrices providing (i) a stable MVAR model [39] and (ii) pairs of signals (z1(t), z2(t))>

such that the `2-norm of the strongest one was less than three times the `2-norm of the
weakest one. In order to obtain time series with different spectral complexity coefficients
we set γ to Nmod different values randomly drawn in the interval [0.1, 1]. The values of the
spectral complexity coefficient of the Nmod simulated time series are reported in Table 1.
Finally, the resulting time series (z1(t), z2(t))> were normalized by the mean of their stan-
dard deviations over time, so that pairs of time series drawn from different models had
similar magnitude. Figure 2 shows a sample of the the cross-power spectra among the
simulated pairs of time series. The figure shows that for increasing values of the spectral
complexity coefficient the cross-power spectrum of the corresponding time series becomes
more peaked. Each pair of simulated time series was then assigned to Nloc = 20 pairs of
point like sources randomly chosen in the source space, so that the ratio of the norms of
the corresponding columns of the leadfield matrix was close to one, i.e., they had similar
intensity at a sensor level, and their distance was grater than 7 cm. The remaining N − 2
sources were set to have null activity.

Source space activity was then projected to sensor level by multiplying the simulated
source activity by the leadfield matrix and white Gaussian noise was added to obtain
Nsnr = 6 levels of SNRX evenly spaced in the interval [−20 dB, 5 dB].
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Summarizing, we generated Nmod · Nloc · Nsnr = 1200 different sensor level configura-
tions. The green box in Figure 3 shows a visual representation of the simulation pipeline.

Table 1. The table reports the values of the spectral complexity coefficients, cj, associated to each simulated multivariate
autoregressive (MVAR) model, mj, j = 1, . . . , Nmod.

Model 1 2 3 4 5 6 7 8 9 10

Spectral complexity coefficient 1.41 1.96 2.14 3.10 3.44 4.17 4.64 5.67 6.69 8.67

Figure 2. Real and imaginary part of the cross–power spectra of three simulated time series. Higher
values of spectral complexity correspond to more peaked spectra.

MVAR
time–courses
simulation

Assign time–courses
to sources in
the brain

Projection to
sensor level

Add sensor
noise

MEG data

Neural activity
estimation

Cross-power spectrum
estimation

Inverse problem:
λ has to be chosen

Step 1

Compute cross–power spectrum:
keep the same λ

Step 2

Forward problem

Inverse problem

Figure 3. Pipeline of the simulation of the data (green box) and of the estimation of the cross–power
spectrum (blue box).
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3.4. Inverse Model

Source space time series were reconstructed using the Tikhonov method, also known
as the minimum norm estimate (MNE) [2] within the MEG community. For each combi-
nation of source time series, source locations, and SNRX level, we computed the optimal
regularization parameters λ∗x and λ∗S by minimizing the reconstruction errors εx(λ) and
εS(λ), defined in Definition 2. The minimization procedure was achieved by using the
Matlab built in function fminsearch that implements an iterative procedure based on the
simplex method developed by Lagarias and colleagues [52]. In more detail, λ∗x and λ∗S have
been obtained by applying such procedure to εx(λ) and εS(λ), respectively; in both cases

the starting point of the simplex method was set equal to 10
(
− SNRX

10

)
, which corresponds to

the optimal value of λx in the case of white Gaussian signals [27]. The blue box in Figure 3
describes the inverse procedure to obtain an estimate of the cross-power spectrum and
stresses the role of the regularization parameter in the two-step process.

4. Results

In this section we illustrate the results of our analysis. We begin with the description
of the analytical dependence between SNRX and SNRS, then we highlight how the optimal
parameter for the reconstruction of the cross-power spectrum depends on SNRS and how
this implies that the spectral complexity of the signal is behind such dependence. Finally we
show how the reconstruction error εS(λ) behaves for different values of the regularization
parameters. As a byproduct, this analysis also confirms the results of Vallarino et al. [27] in
the case of a more complex setting.

4.1. Analytical Relation between SNRX and SNRS

From Equations (9) and (11) and reminding that N(t) ∼ N (0, α2I) it follows that

SNRX = 10 log10

(
∑t‖GX(t)‖2

2
MTα2

)
; (25)

and

SNRS = 10 log10

∑ f
∥∥GSX( f )G>

∥∥2
F

MN f α2

, (26)

where T is the number of time points and N f is the number of frequencies used to compute
the cross-power spectrum. Observe that to derive Equation (26) we used the fact that the
cross-power spectrum of a white noise Gaussian process of zero mean and covariance
matrix α2I is SN( f ) = α2I.

By isolating α2 from Equation (25) and substituting in Equation (26) we obtain

SNRS = 10 log10

T2M ∑ f
∥∥GSX( f )G>

∥∥2
F

N f ∑t‖GX(t)‖4
2

+ 2SNRX. (27)

Equation (27) relates the signal-to-noise ratio of X(t) with that of SX( f ). It shows
that, for same levels of SNRX, SNRS changes with the spectral complexity coefficient of
the signals. In fact, the higher the spectral complexity coefficient, the higher the quantity∥∥GSX( f )G>

∥∥2
F. Intuitively, this happens because when the signal has a higher spectral

complexity coefficient its cross-power spectrum is more peaked and thus it is stronger
over the cross-power spectrum of the noise with respect to a signal with a lower spectral
complexity coefficient.
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4.2. Dependence of λ∗S on SNRS

As described in Section 3 we simulated several sensor level configurations, based
on different combinations of spectral complexity coefficients, source locations, and SNRX

levels. For each configuration, we collected the two optimal parameters λ∗x and λ∗S and we
investigated their dependence on the signal-to-noise-ratio. In accordance with classical
results from inverse theory [36], we found that λ∗x depends on the signal-to-noise ratio.
What is novel here is the relation between λ∗S and both SNRX and SNRS. Indeed, for
increasing SNRX, less regularization is needed, but such dependence varies with the
MVAR models. On the other side, the dependence of λ∗S on SNRS is neater and does not
depend on the models. Figure 4 shows this result; on the left the regularization parameters
for the cross-power spectrum reconstruction versus SNRX are shown, while on the right the
same parameters are shown with respect to SNRS. For the ease of presentation the figure
shows the parameters related to one source location; while on the left lines corresponding
to different MVAR models have different heights, on the right they overlap.

Figure 4. Optimal regularization parameters for the reconstruction of the cross–power spectrum
(λ∗S) as a function of SNRX (left) and SNRS (right). Different colors correspond to different MVAR
models. On the left, the lines have different heights, while on the right they overlap, meaning that
the dependence of λ∗S on SNRS is neater with respect to SNRX.

4.3. λ∗S < λ∗x and Dependency from the Spectral Complexity

We also investigated the relation between the two optimal regularization parameters.

Figure 5 shows the ratio λ∗S
λ∗X

versus SNRX for the simulated MVAR models. The ratio

between the two parameters is always smaller than 1
2 , meaning that λ∗S < 1

2 λ∗x, as it was
analytically proved in a simplified case in [27]. Further to this, the figure shows that
for increasing spectral complexity coefficients this ratio gets smaller. This latter result
is directly related to Equation (27). In fact, for same levels of SNRX, signals with higher
spectral complexity have higher SNRS and, thus, need less regularization.

4.4. The Reconstruction Errors

To show the benefit of using a value of the regularization parameter different from
λ∗x when estimating the cross-power spectrum, in Figure 6 we plotted the reconstruction
errors εS(λ) as a function of the regularization parameter (normalized by λ∗x) obtained
when considering two illustrative realizations of the simulated sensor data. Specifically, we
fixed the locations and time courses of the pair of interacting sources and we considered
the corresponding simulated MEG data for two levels of SNRX, namely SNRX = −20 dB
and SNRX = 5 dB. Similar results where obtained when considered the other source con-
figurations.
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Figure 5. Ratio between the optimal parameters ( λ∗S
λ∗x

) as a function of SNRX. Different colors
correspond to MVAR model with different spectral complexities. Dashed lines are the mean of
the ratio over the different sources location; solid colors correspond to the standard deviation of
the mean.

Figure 6. Reconstruction error εS(λ) for two simulated data mimicking MEG signals with SNRX =

−20 dB (lowest considered signal–to–noise ratio (SNR), left panel) and SNRX = 5 dB (highest
considered SNR, right panel). In each panel, black and red vertical lines highlight the values of εS(λ)

in correspondence of λ∗S and λ∗x , respectively.

As shown by Figure 6, for both the values of SNRX the value of the reconstruction error
significantly decreases when λ∗S is used instead of λ∗x . Specifically in this simulation, εS(λ)

drops from 0.99 to 0.96 when SNRX = −20 dB, and from 0.92 to 0.77 when SNRX = 5 dB.
Notably, one may observe that the relative reconstruction errors shown in Figure 6

are rather large, being above 90% in the low-SNR case and remaining above 75% even in
the high-SNR scenario. We point out that this fact is mainly due to the combined effect of
two factors: first, Tikhonov regularization tends to produce reconstructions that are small
but non-zero almost everywhere, as it reduces but does not cancel entirely backprojection
of noise; second, in our simulations the true activity is zero everywhere but in two points.
These two facts inevitably lead to large relative errors that, however, pleasantly decrease
for increasing values of SNRX.
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5. Discussion and Conclusions

In the present work, we investigated the role of the spectral complexity of a time
series, x(t), in the design of an optimal inverse technique for estimating its cross-power
spectrum, Sx( f ), from indirect measurements of the time series itself. Motivated by an
analysis pipeline widely used for estimating brain functional connectivity from MEG data,
we reconstructed the cross-power spectrum in two steps: first, we estimated the unknown
time series by using the Tikhonov method, then, we computed the cross-power spectrum of
the reconstructed time series. In the present work, we used numerical simulations to study
how the spectral complexity of x(t) impacts the value of the regularization parameter that
provides the best reconstruction of the cross-power spectrum.

As a first analytical result, we related SNRX to SNRS, i.e., the signal-to-noise ratio
of the time series and the signal-to-noise ratio of the corresponding cross-power spectra.
The obtained formula suggests that, for a fixed level of SNRX, SNRS depends on the
spectral complexity of x(t): the higher the spectral complexity coefficient the higher SNRS.
Intuitively this happens because a higher value of the spectral complexity coefficient
corresponds to a more peaked cross-power spectrum that will emerge over the cross-power
spectrum of the noise.

To test the effect of this result on the choice of the Tikohonov regularization parameter
in a practical scenario, we simulated a large set of MEG data and applied the described
two-step approach for estimating the cross-power spectrum of the underlying neural
sources. In details, we simulated 1200 synthetic MEG data with varying SNRX generated
by pairs of coupled point-like sources at varying locations and with different spectral
complexities. For each simulated data, we computed the two parameters providing the
best estimates of the time series (λ∗x) and of the cross-power spectrum (λ∗S), defined as
the ones minimizing the relative `2 norm of the difference between the true and the
reconstructed time series/cross-power spectrum according to Definition 2. As shown by
Figure 4, the results of our simulations highlighted a high correlation between the values
of λ∗S and of SNRS.

Eventually, we focused on the relationship between the two parameters λ∗x and λ∗S,
whose ratio is shown in Figure 5. The figure points out that this ratio depends on the
spectral complexity of the simulated time series. This fact may be understood in lights
of the previous results, as λ∗S depends on SNRS that in turns depends on the spectral

complexity coefficient. Additionally, we found that, for all the simulated data, λ∗S
λ∗x

< 1
2 ,

in line with the results shown in [27] for a simplified model where the neural time series
were assumed to be white Gaussian processes. Moreover, when the spectral complexity
coefficient increases (c > 5 in our simulations) the ratio between the two parameters
approaches 0.01. This agrees with the results shown in [26] where, by simulating sinusoidal
signals, the authors suggested to use for connectivity estimation a parameter of two orders
of magnitude lower. In fact, our numerical results indicate that the use of λ∗S results in a
substantially lower reconstruction error on the cross-power spectrum, particularly when
the data have a high SNR.

The present work focuses on the cross-power spectrum as a connectivity metric.
Even though the cross-power spectrum is the starting point for the computation of many
connectivity metrics it would be interesting to directly investigate the behavior of the
Thikonov regularization parameters when using such metrics. Future works will be
devoted to this. It is also worth noticing that the definition of optimality when defining
the regularization parameters is not univocal, since many metrics can be used. A common
example is the area under the curve (AUC), which is the metric that was used in [26].
The use of different metrics would firstly strengthen our results and would also allow a
more straightforward comparison with the results of [26]. Finally, the dependence of λ∗S on
SNRS suggests that an analysis of such dependence could be considered for the definition
of a rule for choosing λ∗S in practical scenarios.
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