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1. Introduction

Eulerian polynomials An(t) for n ≥ 0 can be generated ([1], p. 2) by

1− t
eu(t−1) − t

=
∞

∑
n=0

An(t)
un

n!
, t 6= 1

and higher-order Eulerian polynomials A(α)
n (t) can be generated ([2], p. 206) by[

1− t
eu(t−1) − t

]α

=
∞

∑
n=0

A(α)
n (t)

un

n!
, t 6= 1,

where α > 0. In [3], among other things, Eulerian polynomials An(t) and higher-order
Eulerian polynomials A(α)

n (t) were expressed by

An(t) =
n

∑
k=0

k!S(n, k)(t− 1)n−k (1)

and

A(α)
n (t) =

1
Γ(α)

n

∑
k=0

Γ(α + k)S(n, k)(t− 1)n−k, (2)

where S(n, k) for n ≥ k ≥ 0 denotes the Stirling numbers of the second kind

S(n, k) =
1
k!

k

∑
`=1

(−1)k−`
(

k
`

)
`n
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and can be generated by
(ex − 1)k

k!
=

∞

∑
n=k

S(n, k)
xn

n!
. (3)

See [2] (p. 202, Theorem A; p. 206, Theorem A) and [4].
In [5], among other things, it was proven that Eulerian polynomials An(t) and higher-

order Eulerian polynomials A(α)
k (t) satisfy

n

∑
k=0

s(n, k)
(t− 1)k Ak(t) =

n!
(t− 1)n (4)

and
n

∑
k=0

s(n, k)
(t− 1)k A(α)

k (t) =
Γ(n + α)

Γ(α)
1

(t− 1)n , (5)

where s(n, k), which can be generated (see [6,7]) by

[ln(1 + x)]k

k!
=

∞

∑
n=k

s(n, k)
xn

n!
, |x| < 1,

stands for the Stirling numbers of the first kind. Formulas (1) and (4) are inversions of each
other, while Formulas (2) and (5) are also inversions of each other.

In ([8], pp. 328–329), a determinantal expression

An(t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1
1−t 0 0 · · · 0 0 0

0 1 1
1−t 0 · · · 0 0 0

0 1 (2
1)

1
1−t · · · 0 0 0

0 1 (3
1) (3

2) · · · 0 0 0

· · · · · · · · · · · · . . . · · · · · · · · ·
0 1 (n−2

1 ) (n−2
2 ) · · · (n−2

n−3)
1

1−t 0
0 1 (n−1

1 ) (n−1
2 ) · · · (n−1

n−3) (n−1
n−2)

1
1−t

0 1 (n
1) (n

2) · · · ( n
n−3) ( n

n−2) ( n
n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, n ≥ 0

and two recurrence relations

An(t) = (t− 1)n−1
n−1

∑
r=0

(
n
r

)
Ar(t)
(t− 1)r , n ∈ N,

An(t) = (−1)n+1(t− 1)n−1t

[
1− t +

n−1

∑
k=0

(−1)k
(

n
k

)
Ak(t)
(t− 1)k

]
, n ≥ 0

were derived.
In [9], Eulerian polynomials An(t) were generalized as Tn(t, a, d), which can be gener-

ated ([9], Lemma 12) by

(t− 1)eau(t−1)

t− edu(t−1)
=

∞

∑
n=0

Tn(t, a, d)
un

n!
. (6)

The first four expressions of Tn(t, a, d) are

T0(t, a, d) = 1, T1(t, a, d) = d + a(t− 1),

T2(t, a, d) = a2(t− 1)2 + 2ad(t− 1) + d2(t + 1),

and
T3(t, a, d) = a3(t− 1)3 + 3a2d(t− 1)2 + 3ad2(t2 − 1

)
+ d3(t2 + 4t + 1

)
.
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In this paper, as in the papers [10–12], by virtue of the Faà di Bruno formula (see
Lemma 1 below), with the help of two properties of the Bell polynomials of the second
kind (see Lemmas 2 and 3 below), and by means of a general formula for derivatives of
the ratio between two differentiable functions (see Lemma 4 below), we establish explicit,
determinantal, and recurrent formulas for generalized Eulerian polynomials Tn(t, a, d) (see
Theorems 1–3 below).

2. Lemmas

To prove our main results, we need the following lemmas.

Lemma 1 ([2] (pp. 134 and 139) and [13]). The Bell polynomials of the second kind, or say,
partial Bell polynomials, denoted by Bn,k(x1, x2, . . . , xn−k+1) for n ≥ k ≥ 0, are defined by

Bn,k(x1, x2, . . . , xn−k+1) =
∞

∑
1≤i≤n,`i∈{0}∪N

∑n
i=1 i`i=n,∑n

i=1 `i=k

n!

∏`−k+1
i=1 `i!

`−k+1

∏
i=1

(
xi
i!

)`i

.

The Faà di Bruno formula can be described in terms of the Bell polynomials of the second kind
Bn,k by

dn

d tn f ◦ h(t) =
n

∑
k=0

f (k)(h(t))Bn,k
(
h′(t), h′′(t), . . . , h(n−k+1)(t)

)
. (7)

Lemma 2 ([2] (p. 135) and [13]). For n ≥ k ≥ 0, we have

Bn,k
(
abx1, ab2x2, . . . , abn−k+1xn−k+1

)
= akbnBn,k(x1, x2, . . . , xn−k+1), (8)

where a and b are complex numbers.

Lemma 3 ([2], p. 135). For n ≥ k ≥ 0, we have

Bn,k(1, 1, . . . , 1) = S(n, k). (9)

Lemma 4 ([14], p. 40, Entry 5). For k ≥ 0 and two differentiable functions p(x) and q(x) 6= 0,
we have

dk

d xk

[
p(x)
q(x)

]
=

(−1)k

qk+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p q 0 · · · 0 0
p′ q′ q · · · 0 0
p′′ q′′ (2

1)q
′ · · · 0 0

...
...

...
. . .

...
...

p(k−2) q(k−2) (k−2
1 )q(k−3) · · · q 0

p(k−1) q(k−1) (k−1
1 )q(k−2) · · · (k−1

k−2)q
′ q

p(k) q(k) (k
1)q

(k−1) · · · ( k
k−2)q

′′ ( k
k−1)q

′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (10)

In other words, Formula (10) can be represented as

dk

d xk

[
p(x)
q(x)

]
=

(−1)k

qk+1(x)
|W(k+1)×(k+1)(x)|,

where |W(k+1)×(k+1)(x)| denotes the determinant of the matrix

W(k+1)×(k+1)(x) =
[
U(k+1)×1(x) V(k+1)×k(x)

]
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such that U(k+1)×1(x) has elements u`,1(x) = p(`−1)(x) for 1 ≤ ` ≤ k + 1 and V(k+1)×k(x) has
entries of the form

vi,j(x) =


(

i− 1
j− 1

)
q(i−j)(x), i− j ≥ 0

0, i− j < 0

for 1 ≤ i ≤ k + 1 and 1 ≤ j ≤ k.

3. Explicit, Determinantal, and Recurrent Formulas

In this section, we establish explicit, determinantal, and recurrent formulas for gener-
alized Eulerian polynomials Tn(t, a, d).

Theorem 1. For n ≥ 0, the generalized Eulerian polynomials Tn(t, a, d) can be explicitly com-
puted by

Tn(t, a, d) = (t− 1)n
n

∑
k=0

(
n
k

)
dkan−k

k

∑
i=0

i!
(t− 1)i S(k, i). (11)

Proof. This is the first proof. Applying the functions f (v) = 1
v and v = g(u) = t− edu(t−1)

to the Faà di Bruno Formula (7) and using the identities (8) and (9) yield that

dk

d uk

[
1

t− edu(t−1)

]
=

k

∑
i=0

(
1
v

)(i)

Bk,i
(
−d(t− 1)edu(t−1),−d2(t− 1)2edu(t−1),

. . . ,−dk−i+1(t− 1)k−i+1edu(t−1))
=

k

∑
i=0

(−1)ii!
vi+1 (−1)idk(t− 1)keidu(t−1)Bk,i(1, 1, . . . , 1)

= dk(t− 1)k
k

∑
i=0

i![
t− edu(t−1)

]i+1 eidu(t−1)S(k, i).

Hence, we obtain that

lim
u→0

dk

d uk

[
1

t− edu(t−1)

]
= dk(t− 1)k

k

∑
i=0

i!
(t− 1)i+1 S(k, i).

On the other hand, it is easy to see that

lim
u→0

[
eau(t−1)](k) = lim

u→0

[
ak(t− 1)keau(t−1)] = ak(t− 1)k.

Using Leibnitz’s formula for the nth derivative of the product of two functions gives

dn

d un

[
(t− 1)eau(t−1)

t− edu(t−1)

]
= (t− 1)

n

∑
k=0

(
n
k

)
dk

d uk

[
1

t− edu(t−1)

][
eau(t−1)](n−k)

= (t− 1)n+1
n

∑
k=0

(
n
k

)
dk

k

∑
i=0

i![
t− edu(t−1)

]i+1 eidu(t−1)S(k, i)
[
an−keau(t−1)].

Accordingly, it follows that

lim
u→0

dn

d un

[
(t− 1)eau(t−1)

t− edu(t−1)

]
=

n

∑
k=0

(
n
k

)
dk(t− 1)k

k

∑
i=0

i!
(t− 1)i S(k, i)an−k(t− 1)n−k

= (t− 1)n
n

∑
k=0

(
n
k

)
dkan−k

k

∑
i=0

i!
(t− 1)i S(k, i).
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Considering the generating function (6) leads to (11). The proof of Theorem 1 is
complete.

Proof. This is the second proof. Lemma 11 in [9] reads that

Tn(t, a, d) =
n

∑
j=0

(
n
j

)
dj Aj(t)(at− a)n−j.

Substituting Formula (1) in ([3],Theorem 1) into the above formula results in the
explicit Formula (11).

Proof. This is the third proof. By virtue of the generating function (3), it is easy to see that

t− 1
t− edu(t−1)

=
t− 1

t− 1− [edu(t−1) − 1]
=

1

1− edu(t−1)−1
t−1

=
∞

∑
i=0

[
edu(t−1) − 1

t− 1

]i

=
∞

∑
i=0

i!
(t− 1)i

∞

∑
k=i

S(k, i)
[du(t− 1)]k

k!
.

Then, it is not difficult to see that

∞

∑
n=0

Tn(t, a, d)
un

n!
=

(t− 1)
t− edu(t−1)

eau(t−1)

=

[
∞

∑
i=0

i!
(t− 1)i

∞

∑
k=i

S(k, i)
[du(t− 1)]k

k!

][
∞

∑
i=0

[au(t− 1)]i

i!

]

=

[
∞

∑
i=0

(
i

∑
j=0

S(i, j)
j!

(t− 1)j

)
[d(t− 1)]iui

i!

][
∞

∑
i=0

[a(t− 1)]iui

i!

]

=
∞

∑
n=0

[
(t− 1)n

n

∑
k=0

(
n
k

)
dkan−k

k

∑
i=0

i!
(t− 1)i S(k, i)

]
un

n!
.

Equating coefficients of un

n! leads to the explicit Formula (11).

Remark 1. The second and third proofs of Theorem 1 are observed by two anonymous referees for
avoiding direct and explicit differentiations.

Theorem 2. For n ≥ 0, the generalized Eulerian polynomials Tn(t, a, d) can be determinantally
represented as

Tn(t, a, d) =∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 0 · · · 0 0
a(t− 1) d −1 · · · 0 0

a2(t− 1)2 d2(t− 1) (2
1)d · · · 0 0

...
...

...
. . .

...
...

an−1(t− 1)n−1 dn−1(t− 1)n−2 (n−1
1 )dn−2(t− 1)n−3 · · · (n−1

n−2)d −1
an(t− 1)n dn(t− 1)n−1 (n

1)d
n−1(t− 1)n−2 · · · ( n

n−2)d
2(t− 1) ( n

n−1)d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (12)

Proof. Using Lemma 4 for p(u) = (t− 1)eau(t−1) and q(u) = t− edu(t−1) gives



Axioms 2021, 10, 37 6 of 9

dn

d un

[
(t− 1)eau(t−1)

t− edu(t−1)

]
=

(−1)n[
t− edu(t−1)

](n+1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(t− 1)eau(t−1)

a(t− 1)2eau(t−1)

a2(t− 1)3eau(t−1)

...
an−1(t− 1)neau(t−1)

an(t− 1)n+1eau(t−1)

t− edu(t−1) 0
−d(t− 1)edu(t−1) t− edu(t−1)

−d2(t− 1)2edu(t−1) −(2
1)d(t− 1)edu(t−1)

...
...

−dn−1(t− 1)n−1edu(t−1) −(n−1
1 )dn−2(t− 1)n−2edu(t−1)

−dn(t− 1)nedu(t−1) −(n
1)d

n−1(t− 1)n−1edu(t−1)

· · · 0 0
· · · 0 0
· · · 0 0
. . .

...
...

· · · −(n−1
n−2)d(t− 1)edu(t−1) t− edu(t−1)

· · · −( n
n−2)d

2(t− 1)2edu(t−1) −( n
n−1)d(t− 1)edu(t−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Therefore, we acquire

lim
u→0

dn

d un

[
(t− 1)eau(t−1)

t− edu(t−1)

]

=
(−1)n

(t− 1)(n+1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t− 1 t− 1 0
a(t− 1)2 −d(t− 1) t− 1
a2(t− 1)3 −d2(t− 1)2 −(2

1)d(t− 1)
...

...
...

an−1(t− 1)n −dn−1(t− 1)n−1 −(n−1
1 )dn−2(t− 1)n−2

an(t− 1)n+1 −dn(t− 1)n −(n
1)d

n−1(t− 1)n−1

· · · 0 0
· · · 0 0
· · · 0 0
. . .

...
...

· · · −(n−1
n−2)d(t− 1) t− 1

· · · −( n
n−2)d

2(t− 1)2 −( n
n−1)d(t− 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 0 · · · 0 0
a(t− 1) d −1 · · · 0 0

a2(t− 1)2 d2(t− 1) (2
1)d · · · 0 0

...
...

...
. . .

...
...

an−1(t− 1)n−1 dn−1(t− 1)n−2 (n−1
1 )dn−2(t− 1)n−3 · · · (n−1

n−2)d −1
an(t− 1)n dn(t− 1)n−1 (n

1)d
n−1(t− 1)n−2 · · · ( n

n−2)d
2(t− 1) ( n

n−1)d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Considering the generating function (6) of Tn(t, a, d), we finish the proof of Theorem
2.

Theorem 3. For n ≥ 0, the generalized Eulerian polynomials Tn(t, a, d) possess the recurrence
formula

Tn(t, a, d) = an(t− 1)n +
n−1

∑
k=0

(
n
k

)
dn−k(t− 1)n−k−1Tk(t, a, d), (13)
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where an empty sum is understood to be 0.

Proof. This is the first proof. Since

[
t− edu(t−1)][ (t− 1)eau(t−1)

t− edu(t−1)

]
= (t− 1)eau(t−1), (14)

by differentiating n times with respect to u on both sides, we obtain

n

∑
k=0

(
n
k

)
∂n−k

∂un−k

[
t− edu(t−1)] ∂k

∂uk

[
(t− 1)eau(t−1)

t− edu(t−1)

]
=
[
t− edu(t−1)] ∂n

∂un

[
(t− 1)eau(t−1)

t− edu(t−1)

]
−

n−1

∑
k=0

(
n
k

)
dn−k(t− 1)n−kedu(t−1) ∂k

∂uk

[
(t− 1)eau(t−1)

t− edu(t−1)

]
= an(t− 1)n+1eau(t−1).

Letting u → 0 and taking into account the generating function (6) of generalized
Eulerian polynomials Tn(t, a, d) yield

(t− 1)Tn(t, a, d)−
n−1

∑
k=0

(
n
k

)
dn−k(t− 1)n−kTk(t, a, d) = an(t− 1)n+1

which can be rewritten as (13). The proof of Theorem 3 is complete.

Proof. This is the second proof. Substituting the power series expansions

t− edu(t−1) = t−
∞

∑
k=0

[du(t− 1)]k

k!
= t− 1−

∞

∑
k=1

[d(t− 1)]k
uk

k!

and (6) into the left-hand side of (14) yields

[
t− edu(t−1)][ (t− 1)eau(t−1)

t− edu(t−1)

]
=

[
t− 1−

∞

∑
k=1

[d(t− 1)]k
uk

k!

]
∞

∑
n=0

Tn(t, a, d)
un

n!

= (t− 1)
∞

∑
n=0

Tn(t, a, d)
un

n!
−
[

∞

∑
k=0

[d(t− 1)]k+1 uk+1

(k + 1)!

]
∞

∑
n=0

Tn(t, a, d)
un

n!

= (t− 1)
∞

∑
n=0

Tn(t, a, d)
un

n!
−

∞

∑
n=0

[
n

∑
k=0

[d(t− 1)]n−k+1

(n− k + 1)!
Tk(t, a, d)

k!

]
un+1

= (t− 1)
∞

∑
n=0

Tn(t, a, d)
un

n!
−

∞

∑
n=0

[
n

∑
k=0

(
n + 1

k

)
[d(t− 1)]n−k+1Tk(t, a, d)

]
un+1

(n + 1)!

= (t− 1)
∞

∑
n=0

Tn(t, a, d)
un

n!
−

∞

∑
n=1

[
n−1

∑
k=0

(
n
k

)
[d(t− 1)]n−kTk(t, a, d)

]
un

n!

= (t− 1)T0(t, a, d) +
∞

∑
n=1

[
(t− 1)Tn(t, a, d)−

n−1

∑
k=0

(
n
k

)
[d(t− 1)]n−kTk(t, a, d)

]
un

n!
.

On the other hand, the right-hand side of (14) can be expanded as

(t− 1)eau(t−1) =
∞

∑
n=0

an(t− 1)n+1 un

n!
.
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Therefore, we obtain

(t− 1)T0(t, a, d) +
∞

∑
n=1

[
(t− 1)Tn(t, a, d)−

n−1

∑
k=0

(
n
k

)
[d(t− 1)]n−kTk(t, a, d)

]
un

n!

=
∞

∑
n=0

an(t− 1)n+1 un

n!
.

Equating the coefficients of un

n! arrives at (t− 1)T0(t, a, d) = t− 1 and

(t− 1)Tn(t, a, d)−
n−1

∑
k=0

(
n
k

)
[d(t− 1)]n−kTk(t, a, d) = an(t− 1)n+1.

The recursive Formula (13) is thus proven.

Remark 2. The second proof of Theorem 3 is observed by an anonymous referee for avoiding direct
and explicit differentiations.

4. Conclusions

The theory of polynomials is important in mathematics and mathematical sciences.
Series expansions can be regarded as polynomials of infinite terms. Special polynomials
such as the Bernoulli polynomials, the Euler polynomials, and the Stirling polynomials are
particularly important and interesting. For studying a special sequence of polynomials, one
aspect should be to discover its closed-form expressions or recurrent relations. Explicit and
determinantal expressions are possibly two forms of closed-form expressions. Especially,
finding determinantal expressions of special polynomials are generally difficult and inter-
esting in mathematics. In recent years, the fourth author of this paper gave and applied a
general, comparatively effective, comparatively easy, comparatively simple method to set
up determinantal expressions and recursive relations of some special polynomials, includ-
ing the above-mentioned famous Bernoulli numbers and polynomials [15], Euler numbers
and polynomials [16,17], and Stirling numbers and polynomials [18], by considering their
generating functions. In this paper, after the papers [1,3,7,8] in which Eulerian polynomials
An(x) and higher order Eulerian polynomials A(α)

n (t) were investigated, the authors of
this paper further considered the generalization Tn(t, a, d) in [9] of the sequence of Eulerian
polynomials An(x) and established explicit, determinantal, and recursive formulas of the
generalized Eulerian polynomials Tn(t, a, d). Concretely speaking, in this paper, by virtue
of the Faà di Bruno formula (7), with the aid of the identities (8) and (9), and by means
of a general formula (10) for derivatives of the ratio between two differentiable functions,
we established an explicit formula (11), a determinantal formula (12), and a recurrent
formula (13) for generalized Eulerian polynomials Tn(t, a, d) generated in (6).
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