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Abstract

:

A subset A of a semigroup S is called a chain (antichain) if   a b ∈ { a , b }   (  a b ∉ { a , b }  ) for any (distinct) elements   a , b ∈ A  . A semigroup S is called periodic if for every element   x ∈ S   there exists   n ∈ N   such that   x n   is an idempotent. A semigroup S is called (anti)chain-finite if S contains no infinite (anti)chains. We prove that each antichain-finite semigroup S is periodic and for every idempotent e of S the set    e ∞  =  { x ∈ S : ∃ n ∈ N    (  x n  = e )  }    is finite. This property of antichain-finite semigroups is used to prove that a semigroup is finite if and only if it is chain-finite and antichain-finite. Furthermore, we present an example of an antichain-finite semilattice that is not a union of finitely many chains.
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1. Introduction


It is well-known that a partially ordered set X is finite iff all chains and antichains in X are finite. The notions of chain and antichain are well-known in the theory of order (see, e.g., ([1] (O-1.6)) or [2]). In this paper we present a similar characterization of finite semigroups in terms of finite chains and antichains.



Let us recall that a magma is a set S endowed with a binary operation   S × S → S  ,   〈 x , y 〉 ↦ x y  . If the binary operation is associative, then the magma S is called a semigroup. A semilattice is a commutative semigroup whose elements are idempotents. Each semilattice S carries a natural partial order ≤ defined by   x ≤ y   iff   x y = y x = x  . Observe that two elements   x , y   of a semilattice are comparable with respect to the partial order ≤ if and only if   x y ∈ { x , y }  . This observation motivates the following algebraic definition of chains and antichains in any magma.



A subset A of a magma S is defined to be




	
a chain if   x y ∈ { x , y }   for any elements   x , y ∈ A  ;



	
an antichain if   x y ∉ { x , y }   for any distinct elements   x , y ∈ A  .








The definition implies that each chain consists of idempotents.



A magma S is defined to be (anti)chain-finite if it contains no infinite (anti)chains.



Let us note that chain-finite semilattices play an important role in the theory of complete topological semigroups. In [3], Stepp showed that for each homomorphism   f : X → Y   from a chain-finite semilattice X to a Hausdorff topological semigroup Y, the image   f [ X ]   is closed in Y. Banakh and Bardyla [4] extended the result of Stepp to the following characterization:



Theorem 1.

For a semilattice X the following conditions are equivalent:




	
X is chain-finite;



	
X is closed in each Hausdorff topological semigroup containing X as a discrete subsemigroup;



	
For each homomorphism   f : X → Y   into a Hausdorff topological semigroup Y, the image   f [ X ]   is closed;










For other completeness properties of chain-finite semilattices see [4,5,6]. Antichain-finite posets and semilattices were investigated by Yokoyama [7].



The principal result of this note is the following theorem characterizing finite semigroups.



Theorem 2.

A semigroup S is finite if and only if it is chain-finite and antichain-finite.





A crucial step in the proof of this theorem is the following proposition describing the (periodic) structure of antichain-finite semigroups.



A semigroup S is called periodic if for every   x ∈ S   there exists   n ∈ N   such that   x n   is an idempotent of S. In this case


  S =  ⋃  e ∈ E ( S )      e ∞  ,  








where   E ( S ) = { x ∈ S : x x = x }   is the set of idempotents of S and


   e ∞  =  { x ∈ S : ∃ n ∈ N    (  x n  = e )  }   








for   e ∈ E ( S )  .



Proposition 1.

Each antichain-finite semigroup S is periodic and for every   e ∈ E ( S )   the set   e ∞   is finite.





Theorem 2 and Proposition 1 will be proved in the next section.



Remark 1.

Theorem 2 does not generalize to magmas. To see this, consider the set of positive integers  N  endowed with the following binary operation:   n m = n   if   n < m   and   n m = 1   if   n ≥ m  . This magma is infinite but each nonempty chain in the magma is of the form   { 1 , n }   for some   n ∈ N  , and each nonempty antichain in this magma is a singleton.





Next we present a simple example of an antichain-finite semilattice which is not a union of finitely many chains.



Example 1.

Consider the set


   S = { 〈 2 n − 1 , 0 〉 : n ∈ N } ∪ { 〈 2 n , m 〉 : n , m ∈ N ,  m ≤ 2 n }   








endowed with the semilattice binary operation


    〈 x , i 〉  ·  〈 y , j 〉  =      〈 x , i 〉      i f   x = y   a n d   i = j  ;       〈 x − 1 , 0 〉      i f   x = y   a n d   i ≠ j  ;       〈 x , i 〉      i f   x < y  ;       〈 y , j 〉      i f   y < x  .        











It is straightforward to check that the semilattice S has the following properties:




	1.

	
S is antichain-finite;




	2.

	
S has arbitrarily long finite antichains;




	3.

	
S is not a union of finitely many chains;




	4.

	
The subsemilattice   L = { 〈 2 n − 1 , 0 〉 : n ∈ N }   of S is a chain;




	5.

	
S admits a homomorphism   r : S → L   such that    r  − 1    (  〈 x , 0 〉  )  =  {  〈 y , i 〉  ∈ S : y ∈  { x , x + 1 }  }    is finite for every element   〈 x , 0 〉 ∈ L  .











Example 1 motivates the following question.



Question 1.

Let S be an antichain-finite semilattice. Is there a finite-to-one homomorphism   r : S → Y   to a semilattice Y which is a finite union of chains?





A function   f : X → Y   is called finite-to-one if for every   y ∈ Y   the preimage    f  − 1    ( y )    is finite.




2. Proofs of the Main Results


In this section, we prove some lemmas implying Theorem 2 and Proposition 1. More precisely, Proposition 1 follows from Lemmas 1 and 4; Theorem 2 follows from Lemma 5.



The following lemma exploit ideas of Theorem 1.9 from [8].



Lemma 1.

Every antichain-finite semigroup S is periodic.





Proof. 

Given any element   x ∈ S   we should find a natural number   n ∈ N   such that   x n   is an idempotent. First we show that    x n  =  x m    for some   n ≠ m  . Assuming that    x n  ≠  x m    for any distinct numbers   n , m  , we conclude that the set   A = {  x n  : n ∈ N }   is infinite and for any   n , m ∈ N   we have    x n   x m  =  x  n + m   ∉  {  x n  ,  x m  }   , which means that A is an infinite antichain in S. However, such an antichain cannot exist as S is antichain-finite. This contradiction shows that    x n  =  x m    for some numbers   n < m   and then for the number   k = m − n   we have    x  n + k   =  x m  =  x n   . By induction we can prove that    x  n + p k   =  x n    for every   p ∈ N  . Choose any numbers   r , p ∈ N   such that   r + n = p k   and observe that


   x  r + n    x  r + n   =  x  r + n    x  p k   =  x r   x  n + p k   =  x r   x n  =  x  r + n   ,  








which means that   x  r + n    is an idempotent and hence S is periodic. □





An element   1 ∈ S   is called an identity of S if   x 1 = x = 1 x   for all   x ∈ S  . For a semigroup S let    S 1  = S ∪  { 1 }    where 1 is an element such that   x 1 = x = 1 x   for every   x ∈  S 1   . If S contains an identity, then we will assume that 1 is the identity of S and hence    S 1  = S  .



For a set   A ⊆ S   and element   x ∈ S   we put


  x A = { x a : a ∈ A }   and   A x = { a x : a ∈ A } .  











For any element x of a semigroup S, the set


   H x  =  { y ∈ S : y  S 1  = x  S 1   ∧   S 1  y =  S 1  x }   








is called the  H -class of x. By Lemma I.7.9 [9], for every idempotent e its  H -class   H e   coincides with the maximal subgroup of S that contains the idempotent e.



Lemma 2.

If a semigroup S is antichain-finite, then for every idempotent e of S its  H -class   H e   is finite.





Proof. 

Observe that the set    H e  ∖  { e }    is an antichain (this follows from the fact that the left and right shifts in the group   H e   are injective). Since S is antichain-finite, the antichain    H e  ∖  { e }    is finite and so is the set   H e  . □





Lemma 3.

If a semigroup S is antichain-finite, then for every idempotent e in S we have


    (  H e  ·  e ∞  )  ∪  (  e ∞  ·  H e  )  ⊆ H .   













Proof. 

Given any elements   x ∈  e ∞    and   y ∈  H e   , we have to show that   x y ∈  H e    and   y x ∈  H e   . Since   x ∈  e ∞   , there exists a number   n ∈ N   such that    x n  = e  . Then    x  n + 1    S 1  = e x  S 1  ⊆ e  S 1    and   e  S 1  =  x  2 n    S 1  ⊆  x  n + 1    S 1   , and hence   e  S 1  =  x  n + 1   S  . By analogy we can prove that    S 1  e =  S 1   x  n + 1    . Therefore,    x  n + 1   ∈  H e   .



Then   x y = x  ( e y )  =  ( x e )  y =  ( x  x n  )  y =  x  n + 1   y ∈  H e    and   y x =  ( y e )  x = y  ( e x )  = y  x  n + 1   ∈  H e   . □





For each   k ∈ N   by    [ N ]  k   we denote the set of all k-element subsets of  N . The proofs of the next two lemmas essentially use the classical Ramsey Theorem, so let us recall its formulation, see ([10] (p. 16)) for more details.



Theorem 3

(Ramsey). For any   n , k ∈ N   and map   χ :   [ N ]  k  → n =  { 0 , … , n − 1 }    there exists an infinite subset   I ⊆ N   such that   χ    [ I ]  k   =  { c }    for some number   c ∈ n  .





Lemma 4.

If a semigroup S is antichain-finite, then for every idempotent   e ∈ E ( S )   the set   e ∞   is finite.





Proof. 

By Lemma 2, the  H -class   H e   is finite. Assuming that   e ∞   is infinite, we can choose a sequence    (  x n  )   n ∈ ω    of pairwise distinct points of the infinite set    e ∞  ∖  H e   .



Let   P = { 〈 n , m 〉 ∈ ω × ω : n < m }   and   χ : P → 5 = { 0 , 1 , 2 , 3 , 4 }   be the function defined by


  χ  ( n , m )  =     0     if    x n   x m  =  x n   ;      1     if    x m   x n  =  x n   ;      2     if    x n   x m  =  x m   ;      3     if    x m   x n  =  x m   ;      4     otherwise  .       











By the Ramsey Theorem 3, there exists an infinite subset   Ω ⊆ ω   such that   χ [ P ∩ ( Ω × Ω ) ] = { c }   for some   c ∈ { 0 , 1 , 2 , 3 , 4 }  .



If   c = 0  , then    x n   x m  =  x n    for any numbers   n < m   in  Ω . Fix any two numbers   n < m   in  Ω . By induction we can prove that    x n   x m p  =  x n    for every   p ∈ N  . Since    x m  ∈  e ∞   , there exists   p ∈ N   such that    x m p  = e  . Then    x n  =  x n   x m p  =  x n  e ∈  H e    by Lemma 3. However, this contradicts the choice of   x n  .



By analogy we can derive a contradiction in cases   c ∈ { 1 , 2 , 3 }  .



If   c = 4  , then the set   A =   {  x n  }   n ∈ Ω     is an infinite antichain in S, which is not possible as the semigroup S is antichain-finite.



Therefore, in all five cases we obtain a contradiction, which implies that the set   e ∞   is finite. □





Our final lemma implies the non-trivial “if” part of Theorem 2.



Lemma 5.

A semigroup S is finite if it is chain-finite and antichain-finite.





Proof. 

Assume that S is both chain-finite and antichain-finite. By Lemma 1, the semigroup S is periodic and hence   S =  ⋃  e ∈ E ( S )      e ∞   . By Lemma 4, for every idempotent   e ∈ E ( S )   the set   e ∞   is finite. Now it suffices to prove that the set   E ( S )   is finite.



To derive a contradiction, assume that   E ( S )   is infinite and choose a sequence of pairwise distinct idempotents    (  e n  )   n ∈ ω    in S. Let   P = { 〈 n , m 〉 ∈ ω × ω : n < m }   and   χ : P → { 0 , 1 , 2 , 3 , 4 , 5 }   be the function defined by the formula


  χ  ( n , m )  =     0     if    e n   e m  ∈  {  e n  ,  e m  }    and    e m   e n  ∈  {  e n  ,  e m  }   ;      1     if    e n   e m  =  e n    and    e m   e n  ∉  {  e n  ,  e m  }   ;      2     if    e n   e m  =  e m    and    e m   e n  ∉  {  e n  ,  e m  }   ;      3     if    e n   e m  ∉  {  e n  ,  e m  }    and    e m   e n  =  e n   ;      4     if  e n   e m  ∉  {  e n  ,  e m  }    and    e m   e n  =  e m   ;      5     if    e n   e m  ∉  {  e n  ,  e m  }    and    e m   e n  ∉  {  e n  ,  e m  }   .       











The Ramsey Theorem 3 yields an infinite subset   Ω ⊆ ω   such that   χ [ P ∩ ( Ω × Ω ) ] = { c }   for some   c ∈ { 0 , 1 , 2 , 3 , 4 , 5 }  .



Depending on the value of c, we shall consider six cases.



If   c = 0   (resp.   c = 5  ), then    {  e n  }   n ∈ ω    is an infinite (anti)chain in S, which is forbidden by our assumption.



Next, assume that   c = 1  . Then    e n   e m  =  e n    and    e m   e n  ∉  {  e n  ,  e m  }    for any numbers   n < m   in  Ω . For any number   k ∈ Ω  , consider the set    Z k  =  {  e n   e k  : k < n ∈ Ω }   . Observe that for any    e n   e k  ,  e m   e k  ∈  Z k    we have


   (  e n   e k  )   (  e m   e k  )  =  e n   (  e k   e m  )   e k  =  e n   e k   e k  =  e n   e k  ,  








which means that   Z k   is a chain. Since S is chain-finite, the chain   Z k   is finite.



By induction we can construct a sequence of points     (  z k  )   k ∈ ω   ∈  ∏  k ∈ ω    Z k    and a decreasing sequence of infinite sets    (  Ω k  )   k ∈ ω    such that    Ω 0  ⊆ Ω   and for every   k ∈ ω   and   n ∈  Ω k    we have    e n   e k  =  z k    and   n > k  . Choose an increasing sequence of numbers    (  k i  )   i ∈ ω    such that    k 0  ∈  Ω 0    and    k i  ∈  Ω  k  i − 1      for every   i ∈ N  . We claim that the set   Z = {  z  k i   : i ∈ ω }   is a chain. Take any numbers   i , j ∈ ω   and choose any number   n ∈  Ω  k i   ∩  Ω  k j    .



If   i ≤ j  , then


   z  k i    z  k j   =  (  e n   e  k i   )   (  e n   e  k j   )  =  e n   (  e  k i    e n  )   e  k j   =  e n   e  k i    e  k j   =  e n   e  k i   =  z  k i   .  











If   i > j  , then    k i  ∈  Ω  k  i − 1    ⊆  Ω  k j     and hence


   z  k i    z  k j   =  (  e n   e  k i   )   (  e n   e  k j   )  =  e n   (  e  k i    e n  )   e  k j   =  e n   (  e  k i    e  k j   )  =  e n   z  k j   =  e n   (  e n   e  k j   )  =  e n   e  k j   =  z  k j   .  











In both cases we obtain that    z  k i    z  k j   ∈  {  z  k i   ,  z  k j   }   , which means that the set   Z = {  z  k i   : i ∈ ω }   is a chain. Since S is chain-finite, the set Z is finite. Consequently, there exists   z ∈ Z   such that the set   Λ = { i ∈ ω :  z  k i   = z }   is infinite. Choose any numbers   i < j   in the set  Λ  and then choose any number   n ∈  Ω  k j   ⊆  Ω  k i    . Observe that    k j  ∈  Ω  k  j − 1    ⊆  Ω  k i     and hence    e  k j    e  k i   =  z  k i   = z  . Then


   e  k j   =  e  k j    e  k j   =  (  e  k j    e n  )   e  k j   =  e  k j    (  e n   e  k j   )  =  e  k j    z  k j   =  e  k j   z =  e  k j    z  k i   =  e  k j    (  e  k j    e  k i   )  =  e  k j    e  k i   ∉  {  e  k j   ,  e  k j   }   








as   c = 1  .



By analogy we can prove that the assumption   c ∈ { 2 , 3 , 4 }   also leads to a contradiction. □
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