A Weak Turnpike Property for Perturbed Dynamical Systems with a Lyapunov Function

Alexander J. Zaslavski

Citation: Zaslavski, A.J. A Weak Turnpike Property for Perturbed Dynamical Systems with a Lyapunov Function. Axioms 2021, 10, 45. https://doi.org/10.3390/axioms 10020045

Academic Editor: Valery Y. Glizer

Received: 12 February 2021
Accepted: 27 March 2021
Published: 29 March 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:/ / creativecommons.org/licenses/by/ 4.0/).

Department of Mathematics, Technion-Israel Institute of Technology, Haifa 32000, Israel; ajzasl@technion.ac.il

Abstract

In this work, we obtain a weak version of the turnpike property of trajectories of perturbed

 discrete disperse dynamical systems, which have a prototype in mathematical economics.Keywords: compact metric space; global attractor; Lyapunov function; set-valued mapping; turnpike
MSC: 37B25; 49J53; 54E35; 93D30

1. Introduction

In [1,2], A. M. Rubinov introduced a discrete dispersive dynamical system, which was investigated in [1-7]. This dynamical system is determined by a set-valued mapping and has a prototype in the economic growth theory $[1,8,9]$. Our dynamical system is described by a compact metric space of states and a transition operator, which is set-valued. Usually in the dynamical systems theory a transition operator is single-valued. In [1-7] and in the present paper we study dynamical systems with a set-valued transition operator. Such dynamical systems correspond to certain models of economic dynamics [1,8,9].

Let (X, ρ) be a compact metric space and let $a: X \rightarrow 2^{X} \backslash\{\varnothing\}$ be a set-valued mapping of which the graph

$$
\operatorname{graph}(a)=\{(x, y) \in X \times X: y \in a(x)\}
$$

is a closed subset of $X \times X$. For each nonempty subset $E \subset X$ set

$$
a(E)=\cup\{a(x): x \in E\} \text { and } a^{0}(E)=E .
$$

By induction we define $a^{n}(E)$ for any positive integer n and any nonempty subset $E \subset X$ as follows:

$$
a^{n}(E)=a\left(a^{n-1}(E)\right) .
$$

In the present work we investigate convergence and structure of trajectories of the perturbed dynamical system determined by the set-valued mapping a. Following [1,2] this system is called a discrete dispersive dynamical system.

A sequence $\left\{x_{t}\right\}_{t=0}^{\infty} \subset X$ is called a trajectory of a (or just a trajectory if the mapping a is understood) if $x_{t+1} \in a\left(x_{t}\right)$ for all nonnegative integers t.

Let $T_{2}>T_{1}$ be integers. A sequence $\left\{x_{t}\right\}_{t=T_{1}}^{T_{2}} \subset X$ is called a finite trajectory of a (or just a trajectory if the mapping a is understood) if $x_{t+1} \in a\left(x_{t}\right)$ for all integers $t \in\left\{T_{1}, \ldots, T_{2}-1\right\}$.

Define

$$
\begin{aligned}
& \Omega(a)=\left\{z \in X: \text { for very positive number } \epsilon \text { there exists a trajectory }\left\{x_{t}\right\}_{t=0}^{\infty}\right. \\
& \text { for which } \left.\liminf _{t \rightarrow \infty} \rho\left(z, x_{t}\right) \leq \epsilon\right\}
\end{aligned}
$$

By the compactness of $X, \Omega(a)$ is a nonempty closed subset of the metric space (X, ρ). In the dynamical systems theory the set $\Omega(a)$ is called a global attractor of a. In [1,2] $\Omega(a)$ is called a turnpike set of a. This terminology is motivated by economic growth theory $[1,8,9]$.

For each $x \in X$ and each nonempty closed subset $E \subset X$ put

$$
\rho(x, E)=\inf \{\rho(x, y): y \in E\} .
$$

Evidently, for every trajectory $\left\{x_{t}\right\}_{t=0}^{\infty}$,

$$
\lim _{t \rightarrow \infty} \rho\left(x_{t}, \Omega(a)\right)=0
$$

Let $\phi: X \rightarrow R^{1}$ be a continuous function such that

$$
\begin{gathered}
\phi(z) \geq 0 \text { for all } z \in X \\
\phi(y) \leq \phi(x) \text { for all } x \in X \text { and all } y \in a(x) .
\end{gathered}
$$

Evidently, the function ϕ is a Lyapunov function for the dynamical system generated by the mapping a. In economic growth theory usually X is a subset of the finite-dimensional Euclidean space and ϕ is a linear functional on this space [1,8,9]. Our goal in [7] was to study approximate solutions of the problem

$$
\begin{gathered}
\phi\left(x_{T}\right) \rightarrow \max \\
\left\{x_{t}\right\}_{t=0}^{T} \text { is a trajectory satisfying } x_{0}=x
\end{gathered}
$$

where $x \in X$ and a natural number T are given.
The following theorem was obtained in [7].
Theorem 1. The following properties are equivalent:
(1) If a sequence $\left\{x_{t}\right\}_{t=-\infty}^{\infty} \subset X$ satisfies $x_{t+1} \in a\left(x_{t}\right)$ and $\phi\left(x_{t+1}\right)=\phi\left(x_{t}\right)$ for all integers t, then

$$
\left\{x_{t}\right\}_{t=-\infty}^{\infty} \subset \Omega(a)
$$

(2) For every positive number ϵ there exists a positive integer $T(\epsilon)$ such that for every trajectory $\left\{x_{t}\right\}_{t=0}^{\infty} \subset X$ satisfying $\phi\left(x_{t}\right)=\phi\left(x_{t+1}\right)$ for all integers $t \geq 0$ the relation $\rho\left(x_{t}, \Omega(a)\right) \leq \epsilon$ is valid for all integers $t \geq T(\epsilon)$.

Our results are obtained under the assumption that property (1) holds. This property indeed holds for models of economic dynamics, which are prototypes of our dynamical system [1,8,9].

For each bounded function $\psi: X \rightarrow R^{1}$ set

$$
\|\psi\|=\sup \{|\psi(z)|: z \in X\}
$$

We denote by $\operatorname{Card}(A)$ the cardinality of a set A and suppose that the sum over empty set is zero.

For every point $\left(x_{1}, x_{1}\right),\left(y_{1}, y_{2}\right) \in X \times X$ put

$$
\rho_{1}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\rho\left(x_{1}, y_{1}\right)+\rho\left(x_{2}, y_{2}\right)
$$

For every point $\left(x_{1}, x_{2}\right) \in X \times X$ and every nonempty closed subset $E \subset X \times X$ set

$$
\rho_{1}\left(\left(x_{1}, x_{2}\right), E\right)=\inf \left\{\rho_{1}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right):\left(y_{1}, y_{2}\right) \in E\right\}
$$

In [7] we established the turnpike properties for approximate solutions of the problem

$$
\begin{gathered}
\phi\left(x_{T}\right) \rightarrow \text { max } \\
\left\{x_{t}\right\}_{t=0}^{T} \text { is a trajectory satisfying } x_{0}=x
\end{gathered}
$$

where $x \in X$ and a positive integer T are given. In [10] we established a weak version of the turnpike property that holds for all finite trajectories of our dynamical system, which are of a sufficient length and which are not necessarily approximate solutions of the problem above. This turnpike result usually holds for models of economic dynamics [1,8,9].

More precisely, in [10] we prove the following result.
Theorem 2. Assume that property (1) of Theorem 1 holds and that $\epsilon>0$. Then there exists a natural number L such that for each integer $T>L$ and each finite trajectory $\left\{x_{t}\right\}_{t=0}^{T}$ the following inequality holds:

$$
\operatorname{Card}\left(\left\{t \in\{0, \ldots, T\}: \rho\left(x_{t}, \Omega(a)\right)>\epsilon\right\}\right) \leq L
$$

In this paper we show that a weak version of the turnpike property established in Theorem 2 is stable under small perturbations.

Turnpike properties are well known in mathematical economics. See, for example, references [$2,8,9,11$] and the references mentioned there. Recently it was shown that the turnpike phenomenon holds for many important classes of problems arising in various areas of research [12-20]. For related infinite horizon problems see [9,21-28].

2. The Main Results

For every pair of nonempty sets $A, B \subset X$ set

$$
H(A, B)=\max \{\sup \{\rho(x, B): x \in A\}, \sup \{\rho(y, A): y \in B\}\}
$$

We assume that the following assumption is true:
(A) for every positive number ϵ there is a positive number δ such that for every pair of points $x, y \in X$ satisfying $\rho(x, y) \leq \delta$,

$$
H(a(x), a(y)) \leq \epsilon
$$

We also assume that property (1) of Theorem 1 is true and obtain the following two theorems.

Theorem 3. Let ϵ be a positive number. Then there is a positive integer L_{0} such that for every natural number $L>L_{0}$ there is a positive number δ such that for each sequence $\left\{x_{t}\right\}_{t=0}^{L} \subset X$ satisfying

$$
\rho_{1}\left(\left(x_{t}, x_{t+1}\right), \operatorname{graph}(a)\right) \leq \delta, t=0, \ldots, T-1
$$

the following relation holds:

$$
\operatorname{Card}\left(\left\{t \in\{0, \ldots, L\}: \rho\left(x_{t}, \Omega(a)\right)>\epsilon\right\}\right) \leq L_{0}
$$

Theorem 4. Let ϵ be a positive number. Then there is a positive integer L_{1} and a positive number δ such that for every integer $T>L_{1}$ and every sequence $\left\{x_{t}\right\}_{t=0}^{T} \subset X$ satisfying

$$
\rho_{1}\left(\left(x_{t}, x_{t+1}\right), \operatorname{graph}(a)\right) \leq \delta, t=0, \ldots, T-1
$$

the following relation holds:

$$
T^{-1} \operatorname{Card}\left(\left\{t \in\{0, \ldots, T\}: \rho\left(x_{t}, \Omega(a)\right)>\epsilon\right\}\right) \leq \epsilon
$$

In Theorems 3 and 4 we deal with the structure of inexact trajectories of our dynamical system. They are important because in the real world applications computational errors and errors of measurements always take place.

3. An Auxiliary Result

The following lemma shows that our dynamical system has the so-called shadowing property [29,30].

Lemma 1. Let $\epsilon>0$ and L be a positive integer. Then there is a positive number δ such that for every sequence $\left\{x_{t}\right\}_{t=0}^{L} \subset X$ satisfying for all integers $t=0, \ldots, L-1$,

$$
\rho_{1}\left(\left(x_{t}, x_{t+1}\right), \operatorname{graph}(a)\right) \leq \delta
$$

there is a finite trajectory $\left\{y_{t}\right\}_{t=0}^{L} \subset X$ for which

$$
\begin{gathered}
y_{0}=x_{0} \\
\rho\left(x_{t}, y_{t}\right) \leq \epsilon, t=0, \ldots, L
\end{gathered}
$$

Proof. Let

$$
\begin{equation*}
\delta_{L}=\epsilon / 4 \tag{1}
\end{equation*}
$$

By induction and assumption (A), we define positive numbers $\delta_{i}>0, i=0, \ldots, L-1$ such that for every integer $i \in\{1, \ldots, L\}$

$$
\begin{equation*}
\delta_{i-1}<\delta_{i} / 8 \tag{2}
\end{equation*}
$$

and for every pair of points $x, y \in X$ for which $\rho(x, y) \leq \delta_{i-1}$ we have

$$
\begin{equation*}
H(a(x), a(y))<\delta_{i} / 8 \tag{3}
\end{equation*}
$$

Set

$$
\begin{equation*}
\delta=\delta_{0} \tag{4}
\end{equation*}
$$

Assume that $\left\{x_{t}\right\}_{t=0}^{L} \subset X$ satisfies

$$
\begin{equation*}
\rho_{1}\left(\left(x_{t}, x_{t+1}\right), \operatorname{graph}(a)\right) \leq \delta, t=0, \ldots, L-1 \tag{5}
\end{equation*}
$$

Set

$$
\begin{equation*}
x_{0}=y_{0} . \tag{6}
\end{equation*}
$$

In view of (5) and (6),

$$
\begin{equation*}
\rho_{1}\left(\left(y_{0}, x_{1}\right), \operatorname{graph}(a)\right) \leq \delta . \tag{7}
\end{equation*}
$$

By (7), there exists

$$
\begin{equation*}
\left(z_{0}, z_{1}\right) \in \operatorname{graph}(a) \tag{8}
\end{equation*}
$$

such that

$$
\begin{equation*}
\rho\left(y_{0}, z_{0}\right) \leq \delta, \rho\left(x_{1}, z_{1}\right) \leq \delta . \tag{9}
\end{equation*}
$$

It follows from (3), (4) and (9) that

$$
\begin{equation*}
H\left(a\left(y_{0}\right), a\left(z_{0}\right)\right) \leq \delta_{1} / 8 \tag{10}
\end{equation*}
$$

Equations (8) and (10) imply that

$$
\begin{equation*}
\rho\left(z_{1}, a\left(y_{0}\right)\right) \leq \delta_{1} / 8 \tag{11}
\end{equation*}
$$

Equation (11) implies that there is

$$
\begin{equation*}
y_{1} \in a\left(y_{0}\right) \tag{12}
\end{equation*}
$$

for which

$$
\begin{equation*}
\rho\left(y_{1}, z_{1}\right) \leq \delta_{1} / 4 \tag{13}
\end{equation*}
$$

It follows from (2), (4), (9) and (13) that

$$
\rho\left(y_{1}, x_{1}\right) \leq \delta+\delta_{1} / 4<\delta_{1} / 2
$$

Suppose that an integer $k \in\{1, \ldots, L\} \backslash\{L\}$ and that we have already defined a trajectory $\left\{y_{i}\right\}_{i=1}^{k}$ such that

$$
y_{0}=x_{0}
$$

and that for integers $i=1, \ldots, k$,

$$
\begin{equation*}
\rho\left(x_{i}, y_{i}\right)<\delta_{i} / 2 \tag{15}
\end{equation*}
$$

(In view of (6), (12) and (14), our assumption is valid for $k=1$). Equation (5) implies that there is a point

$$
\begin{equation*}
\left(\xi_{k}, \xi_{k+1}\right) \in \operatorname{graph}(a) \tag{16}
\end{equation*}
$$

for which

$$
\rho_{1}\left(\left(x_{k}, x_{k+1}\right),\left(\xi_{k}, \xi_{k+1}\right)\right) \leq \delta .
$$

This implies that

$$
\begin{equation*}
\rho\left(x_{k}, \xi_{k}\right) \leq \delta, \rho\left(x_{k+1}, \xi_{k+1}\right) \leq \delta . \tag{17}
\end{equation*}
$$

Equations (2), (4), (15) and (17) imply that

$$
\begin{equation*}
\rho\left(\xi_{k}, y_{k}\right) \leq \rho\left(\xi_{k}, x_{k}\right)+\rho\left(x_{k}, y_{k}\right) \leq \delta+\delta_{k} / 2 \leq \delta_{k} / 8+\delta_{k} / 2 . \tag{18}
\end{equation*}
$$

By (3) and (18),

$$
\begin{equation*}
H\left(a\left(\xi_{k}\right), a\left(y_{k}\right)\right) \leq \delta_{k+1} / 8 . \tag{19}
\end{equation*}
$$

Equations (16) and (19) imply that

$$
\begin{equation*}
\rho\left(\xi_{k+1}, a\left(y_{k}\right)\right) \leq \delta_{k+1} / 8 \tag{20}
\end{equation*}
$$

In view of (20), there exists

$$
\begin{equation*}
y_{k+1} \in a\left(y_{k}\right) \tag{21}
\end{equation*}
$$

such that

$$
\begin{equation*}
\rho\left(\xi_{k+1}, y_{k+1}\right) \leq \delta_{k+1} / 4 \tag{22}
\end{equation*}
$$

It follows from (2), (4), (17) and (22) that

$$
\rho\left(y_{k+1}, x_{k+1}\right) \leq \rho\left(y_{k+1}, \xi_{k+1}\right)+\rho\left(\xi_{k+1}, x_{k+1}\right) \leq \delta+\delta_{k+1} / 4<\delta_{k+1} / 2
$$

Thus the assumption made for k is also true for $k+1$. Therefore by induction we constructed the trajectory $\left\{y_{t}\right\}_{t=0}^{L} \subset X$ such that

$$
\begin{gathered}
y_{0}=x_{0} \\
\rho\left(x_{t}, y_{t}\right) \leq \epsilon, t=0, \ldots, L .
\end{gathered}
$$

This completes the proof of Lemma.
Proof of Theorem 3. Theorem 2 implies that there is a positive integer L_{0} for which the following property is valid:
(i) for every integer $T>L_{0}$ and every finite trajectory $\left\{x_{t}\right\}_{t=0}^{T}$,

$$
\operatorname{Card}\left(\left\{t \in\{0, \ldots, T\}: \rho\left(x_{t}, \Omega(a)\right)>\epsilon / 2\right\}\right) \leq L_{0} .
$$

Let $L>L_{0}$ be an integer. By Lemma 1 , there is a positive number δ such that the following property is valid:
(ii) for every sequence $\left\{x_{t}\right\}_{t=0}^{L} \subset X$, which satisfies

$$
\begin{equation*}
\rho_{1}\left(\left(x_{t}, x_{t+1}\right), \operatorname{graph}(a)\right) \leq \delta, t=0, \ldots, L-1 \tag{23}
\end{equation*}
$$

there is a finite trajectory $\left\{y_{t}\right\}_{t=0}^{L} \subset X$ for which

$$
\begin{gather*}
y_{0}=x_{0} \\
\rho\left(x_{t}, y_{t}\right) \leq \epsilon / 4, t=0, \ldots, L . \tag{24}
\end{gather*}
$$

Assume that $\left\{x_{t}\right\}_{t=0}^{L} \subset X$ satisfies (23). Property (ii) and (23) imply that there exists a finite trajectory $\left\{y_{t}\right\}_{t=0}^{L}$ satisfying (24). Property (i) implies that

$$
\begin{equation*}
\operatorname{Card}\left(\left\{t \in\{0, \ldots, L\}: \rho\left(y_{t}, \Omega(a)\right)>\epsilon / 2\right\}\right) \leq L_{0} \tag{25}
\end{equation*}
$$

In view of (24), for integers $t=0, \ldots, L$,

$$
\rho\left(x_{t}, \Omega(a)\right) \leq \rho\left(x_{t}, y_{t}\right)+\rho\left(y_{t}, \Omega(a)\right) \leq \epsilon / 4+\rho\left(y_{t}, \Omega(a)\right)
$$

and if

$$
\rho\left(x_{t}, \Omega(a)\right)>\epsilon
$$

then

$$
\rho\left(y_{t}, \Omega(a)\right)>\epsilon / 2
$$

Together with (25) this implies that

$$
\begin{gathered}
\operatorname{Card}\left(\left\{t \in\{0, \ldots, L\}: \rho\left(x_{t}, \Omega(a)\right)>\epsilon\right\}\right) \\
\leq \operatorname{Card}\left(\left\{t \in\{0, \ldots, L\}: \rho\left(y_{t}, \Omega(a)\right)>\epsilon / 2\right\}\right) \leq L_{0}
\end{gathered}
$$

This completes the proof of Theorem 3.
Proof of Theorem 4. We may assume without loss of generality that $\epsilon<1$. Theorem 3 implies that there is a positive integer L_{0} for which the following property is valid:
(i) for every integer $L>L_{0}$ there is a positive number δ such that for every sequence $\left\{x_{t}\right\}_{t=0}^{L}$ satisfying

$$
\rho_{1}\left(\left(x_{t}, x_{t+1}\right), \operatorname{graph}(a)\right) \leq \delta, t=0, \ldots, T-1
$$

the relation

$$
\operatorname{Card}\left(\left\{t \in\{0, \ldots, L\}: \rho\left(x_{t}, \Omega(a)\right)>\epsilon\right\}\right) \leq L_{0}
$$

is true.
Fix a natural number

$$
\begin{equation*}
L>4 L_{0} \epsilon^{-1} . \tag{26}
\end{equation*}
$$

Let a positive number δ be as guaranteed by property (i). Choose a natural number

$$
\begin{equation*}
k_{0}>4 \epsilon^{-1} \tag{27}
\end{equation*}
$$

Set

$$
\begin{equation*}
L_{1}=k_{0} L \tag{28}
\end{equation*}
$$

Assume that $T>L_{1}$ is an integer and that a sequence $\left\{x_{t}\right\}_{t=0}^{T}$ satisfies

$$
\begin{equation*}
\rho_{1}\left(\left(x_{t}, x_{t+1}\right), \operatorname{graph}(a)\right) \leq \delta, t=0, \ldots, T-1 \tag{29}
\end{equation*}
$$

There is an integer $k_{1} \geq 1$ for which

$$
\begin{equation*}
k_{1} L \leq T<\left(k_{1}+1\right) L \tag{30}
\end{equation*}
$$

By (28) and (30),

$$
\begin{equation*}
k_{1}>k_{0} \tag{31}
\end{equation*}
$$

Property (i), (29) and (30) imply that for integers $i=0, \ldots, k_{1}-1$,

$$
\operatorname{Card}\left(\left\{t \in\{i L, \ldots,(i+1) L\}: \rho\left(x_{t}, \Omega(a)\right)>\epsilon\right\}\right) \leq L_{0} .
$$

Combined with (30) the equation above implies that

$$
\operatorname{Card}\left(\left\{t \in\{0, \ldots, T\}: \rho\left(x_{t}, \Omega(a)\right)>\epsilon\right\}\right) \leq k_{1} L_{0}+L
$$

Combined with (26), (27), (30) and (31) the equation above implies that

$$
\begin{aligned}
& T^{-1} \operatorname{Card}\left(\left\{t \in\{0, \ldots, T\}: \rho\left(x_{t}, \Omega(a)\right)>\epsilon\right\}\right) \\
& \quad \leq k_{1} L_{0} T^{-1}+L T^{-1} \leq L_{0} L^{-1}+k_{0}^{-1}<\epsilon .
\end{aligned}
$$

Theorem 4 is proved.
Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Conflicts of Interest: The author declares no conflict of interest.

References

1. Rubinov, A.M. Turnpike sets in discrete disperse dynamical systems. Sib. Math. J. 1980, 21, 136-146.
2. Rubinov, A.M. Multivalued Mappings and Their Applications in Economic Mathematical Problems; Nauka: Leningrad, Russia, 1980.
3. Dzalilov, Z.; Zaslavski, A.J. Global attractors for discrete disperse dynamical systems. J. Nonlinear Convex Anal. 2009, 10, 191-198.
4. Zaslavski, A.J. Turnpike sets of continuous transformations in compact metric spaces. Sib. Math. J. 1982, 23, 136-146. [CrossRef]
5. Zaslavski, A.J. Uniform convergence to global attractors for discrete disperse dynamical systems. Nonlinear Dyn. Syst. Theory 2007, 4, 315-325.
6. Zaslavski, A.J. Convergence of trajectories of discrete dispersive dynamical systems. Commun. Math. Anal. 2008, 4, 10-19.
7. Zaslavski, A.J. Structure of trajectories of discrete dispersive dynamical systems. Commun. Math. Anal. 2009, 6, 1-9.
8. VMakarov, V.L.; Rubinov, A.M. Mathematical theory of economic dynamics and equilibria; Springer: New York, NY, USA, 1977.
9. Zaslavski, A.J. Turnpike Properties in the Calculus of Variations and Optimal Control; Springer Optimization and Its Applications: New York, NY, USA, 2006.
10. Zaslavski, A.J. A turnpike property of trajectories of dynamical systems with a Lyapunov function. Games 2020, 11, 63. [CrossRef]
11. Samuelson, P.A. A catenary turnpike theorem involving consumption and the golden rule. Am. Econ. Rev. 1965, 55, 486-496.
12. Damm, T.; Grüne, L.; Stieler, M.; Worthmann, K. An Exponential Turnpike Theorem for Dissipative Discrete Time Optimal Control Problems. SIAM J. Control. Optim. 2014, 52, 1935-1957. [CrossRef]
13. Gugat, M. A turnpike result for convex hyperbolic optimal boundary control problems. Pure Appl. Funct. Anal. 2019, 4, 849-866.
14. Gugat, M.; Trélat, E.; Zuazua, E. Optimal Neumann control for the 1D wave equation: Finite horizon, infinite horizon, boundary tracking terms and the turnpike property. Syst. Control. Lett. 2016, 90, 61-70. [CrossRef]
15. Khan, M.A.; Zaslavski, A.J. On two classical turnpike results for the Robinson-Solow-Srinivisan (RSS) model. Adv. Math. Econ. 2010, 13, 47-97.
16. Mammadov, M.A. Turnpike Theorem for an Infinite Horizon Optimal Control Problem with Time Delay. SIAM J. Control. Optim. 2014, 52, 420-438. [CrossRef]
17. Porretta, A.; Zuazua, E. Long Time versus Steady State Optimal Control. SIAM J. Control. Optim. 2013, 51, 4242-4273. [CrossRef]
18. Trelat, E.; Zhang, C.; Zuazua, E. Optimal shape design for 2D heat equations in large time. Pure Appl. Funct. Anal. 2018, 3, 255-269.
19. Trélat, E.; Zuazua, E. The turnpike property in finite-dimensional nonlinear optimal control. J. Differ. Equ. 2015, 258, 81-114. [CrossRef]
20. Zaslavski, A.J. Turnpike Theory of Continuous-Time Linear Optimal Control Problems; Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2015.
21. Aseev, S.M.; Krastanov, M.I.; Veliov, V.M. Optimality conditions for discrete-time optimal control on infinite horizon. Pure Appl. Funct. Anal. 2017, 2, 395-409.
22. Bachir, M.; Blot, J. Infinite Dimensional Infinite-horizon Pontryagin Principles for Discrete-time Problems. Set-Valued Var. Anal. 2014, 23, 43-54. [CrossRef]
23. Bachir, M.; Blot, J. Infinite dimensional multipliers and Pontryagin principles for discrete-time problems. Pure Appl. Funct. Anal. 2017, 2, 411-426.
24. Blot, J.; Hayek, N. Infinite-Horizon Optimal Control in the Discrete-Time Framework; Springer Briefs in Optimization: New York, NY, USA, 2014.
25. Carlson, D.A.; Haurie, A.; Leizarowitz, A. Infinite Horizon Optimal Control; Springer: Berlin, Germany, 1991.
26. Gaitsgory, V.; Grüne, L.; Thatcher, N. Stabilization with discounted optimal control. Syst. Control. Lett. 2015, 82, 91-98. [CrossRef]
27. Gaitsgory, V.; Mammadov, M.; Manic, L. On stability under perturbations of long-run average optimal control problems. Pure Appl. Funct. Anal. 2017, 2, 461-476.
28. Sagara, N. Recursive variational problems in nonreflexive Banach spaces with an infinite horizon: An existence result. Discret. Contin. Dyn. Syst. S 2018, 11, 1219-1232. [CrossRef]
29. Bielecki, A.; Ombach, J. Dynamical Properties of a Perceptron Learning Process: Structural Stability Under Numerics and Shadowing. J. Nonlinear Sci. 2011, 21, 579-593. [CrossRef]
30. Pilyugin, S.Y. Shadowing in Dynamical Systems; Springer: Berlin, Germany, 1999.
