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1. Introduction

In [1,2], A. M. Rubinov introduced a discrete dispersive dynamical system, which was
investigated in [1-7]. This dynamical system is determined by a set-valued mapping and
has a prototype in the economic growth theory [1,8,9]. Our dynamical system is described
by a compact metric space of states and a transition operator, which is set-valued. Usually
in the dynamical systems theory a transition operator is single-valued. In [1-7] and in the
present paper we study dynamical systems with a set-valued transition operator. Such
dynamical systems correspond to certain models of economic dynamics [1,8,9].

Let (X, p) be a compact metric space and leta : X — 2%\ {@} be a set-valued mapping
of which the graph

graph(a) = {(x,y) e X x X: y€a(x)}

is a closed subset of X x X. For each nonempty subset E C X set

a(E) = U{a(x): x € E} and a’(E) = E.
By induction we define a"(E) for any positive integer n and any nonempty subset E C X
as follows:

a"(E) = a(a"1(E)).

In the present work we investigate convergence and structure of trajectories of the
perturbed dynamical system determined by the set-valued mapping a. Following [1,2]
this system is called a discrete dispersive dynamical system.

A sequence {x;}{°_ , C X is called a trajectory of a (or just a trajectory if the mapping
a is understood) if x;,1 € a(x;) for all nonnegative integers .

Let T, > Tj be integers. A sequence {x;},2 1, C X is called a finite trajectory of
a (or just a trajectory if the mapping a is understood) if x;,1 € a(x;) for all integers
te{T,..., T, —1}.

Define

Q(a) = {z € X : for very positive number € there exists a trajectory{x; };"_
for which litm info(z,x¢) < €}.
— 00

By the compactness of X, (}(a) is a nonempty closed subset of the metric space (X, p). In
the dynamical systems theory the set ()(a) is called a global attractor of a. In [1,2] Q(a) is
called a turnpike set of a. This terminology is motivated by economic growth theory [1,8,9].
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For each x € X and each nonempty closed subset E C X put

p(x,E) =inf{p(x,y) : y € E}.
Evidently, for every trajectory {x:}{°_,

lim p(xt, Q(a)) = 0.

Let ¢ : X — R! be a continuous function such that
¢$(z) > 0forallz € X,

$(y) < ¢(x) forall x € X and all y € a(x).

Evidently, the function ¢ is a Lyapunov function for the dynamical system generated
by the mapping a. In economic growth theory usually X is a subset of the finite-dimensional
Euclidean space and ¢ is a linear functional on this space [1,8,9]. Our goal in [7] was to
study approximate solutions of the problem

¢(x7) — max,

{x;}]_ , is a trajectory satisfying xg = x,
where x € X and a natural number T are given.

The following theorem was obtained in [7].

Theorem 1. The following properties are equivalent:
(1) If a sequence {x; }3°_ _ C X satisfies x;11 € a(x¢) and ¢p(x;11) = ¢(x¢) for all integers
t, then

{xi}ie —e0 € O(a).

(2) For every positive number € there exists a positive integer T (€) such that for every trajectory
{x:}§°_ o C X satisfying ¢(x¢) = ¢(x¢41) for all integers t > 0 the relation p(x;, Q(a)) < € is
valid for all integers t > T/(e).

Our results are obtained under the assumption that property (1) holds. This property
indeed holds for models of economic dynamics, which are prototypes of our dynamical
system [1,8,9].

For each bounded function ¢ : X — R! set

lpll = sup{[¢(2)| : z € X}.

We denote by Card(A) the cardinality of a set A and suppose that the sum over empty set
is zero.
For every point (x1,x1), (y1,¥2) € X x X put

p1((x1,x2), (y1,92)) = p(x1, 1) + p(x2,42)-
For every point (x1,x2) € X x X and every nonempty closed subset E C X x X set
1((x1,%2), E) = inf{p1((x1, %2), (y1,42)) = (y1,42) € E}.
In [7] we established the turnpike properties for approximate solutions of the problem
¢(x7) — max,

{x;:}I_ , is a trajectory satisfying xg = x,
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where x € X and a positive integer T are given. In [10] we established a weak version of the
turnpike property that holds for all finite trajectories of our dynamical system, which are
of a sufficient length and which are not necessarily approximate solutions of the problem
above. This turnpike result usually holds for models of economic dynamics [1,8,9].

More precisely, in [10] we prove the following result.

Theorem 2. Assume that property (1) of Theorem 1 holds and that € > 0. Then there exists a
natural number L such that for each integer T > L and each finite trajectory {x;}] _ , the following
inequality holds:

Card({t € {0,..., T} : p(x;,Q(a)) > €e}) < L.

In this paper we show that a weak version of the turnpike property established in
Theorem 2 is stable under small perturbations.

Turnpike properties are well known in mathematical economics. See, for example,
references [2,8,9,11] and the references mentioned there. Recently it was shown that the
turnpike phenomenon holds for many important classes of problems arising in various areas
of research [12-20]. For related infinite horizon problems see [9,21-28].

2. The Main Results
For every pair of nonempty sets A, B C X set

H(A,B) = max{sup{p(x,B) : x € A}, sup{p(y,A): y € B}}.

We assume that the following assumption is true:
(A) for every positive number € there is a positive number ¢ such that for every pair
of points x, y € X satisfying p(x,y) <,

H(a(x),a(y)) <e.

We also assume that property (1) of Theorem 1 is true and obtain the following
two theorems.

Theorem 3. Let € be a positive number. Then there is a positive integer Ly such that for every natural
number L > Ly there is a positive number & such that for each sequence {x;}F_ o C X satisfying

p1((x¢, x¢41),graph(a)) <6, t = 0,...,T—1
the following relation holds:
Card({t € {0,...,L}: p(x:,Q(a)) > €}) < L.

Theorem 4. Let € be a positive number. Then there is a positive integer L1 and a positive number
& such that for every integer T > Ly and every sequence {x¢}] _ , C X satisfying

p1((x¢, x¢41),8raph(a)) <6, t = 0,...,T—1
the following relation holds:
T 'Card({t € {0,..., T} : p(x;,Q(a)) > €}) <e.

In Theorems 3 and 4 we deal with the structure of inexact trajectories of our dynamical
system. They are important because in the real world applications computational errors
and errors of measurements always take place.
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3. An Auxiliary Result

The following lemma shows that our dynamical system has the so-called shadowing
property [29,30].

Lemma 1. Let € > 0 and L be a positive integer. Then there is a positive number 5 such that for
every sequence {x;}L _ | C X satisfying for all integerst = 0,...,L—1,

p1((xt, xp41),graph(a)) < 6
there is a finite trajectory {y: }F_ o C X for which
Yo = Xo,
p(xe,yt) <e t =0,...,L

Proof. Let
5. =e€/4. (1)

By induction and assumption (A), we define positive numbers ; > 0,i =0,...,L — 1 such
that for every integeri € {1,...,L}

di_1 < 6;/8 (2)
and for every pair of points x,y € X for which p(x,y) < é;_1 we have
H(a(x),a(y)) < 6;/8. (3)

Set
= dp. (4)

Assume that {x;}}_ ; C X satisfies

p1((xt,x41), graph(a)) <6, t = 0,...,L—1. (5)
Set
Yo = o (6)
In view of (5) and (6),
p1((yo, x1), graph(a)) < 6. 7)
By (7), there exists
(z0,21) € graph(a) (8)
such that
(Yo, z0) <96, p(x1,2z1) < 6. (9)

It follows from (3), (4) and (9) that
H(a(yo),a(z0)) < 61/8. (10)
Equations (8) and (10) imply that
p(z1,a(yo)) < 61/8. (11)

Equation (11) implies that there is
1 € a(yo) (12)

for which
p(y1,21) < 61/4. (13)
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It follows from (2), (4), (9) and (13) that
p(yl,x1)§5+51/4<51/2. 14)

Suppose that an integer k € {1,...,L} \ {L} and that we have already defined a trajectory
{y:}¥_, such that
Yo = Xo

and that for integersi = 1,...,k,
p(xi,yi) < 0i/2. (15)

(In view of (6), (12) and (14), our assumption is valid for k = 1). Equation (5) implies that
there is a point

(€k, Ck+1) € graph(a) (16)
for which
p1((xk, Xk11), (Gks Gky1)) < 0.

This implies that
P (X, Ck) <6, p(Xpey1,8pes1) < 6. (17)
Equations (2), (4), (15) and (17) imply that

0(Cr yk) < (8 X)) + (i, yi) < 6+ 0/2 < 0/ 846 /2. (18)

By (3) and (18),
H(a(Ck), a(yx)) < Oky1/8. (19)

Equations (16) and (19) imply that

0(Crs1,a(yk)) < Oka/8. (20)
In view of (20), there exists
Yi+1 € a(yx) (21)
such that
O(Cks1, Yrg1) < O /4 (22)

It follows from (2), (4), (17) and (22) that

O Wi+1, Xk41) < 0Whs1s Grr1) + (G, Xkg1) < 0+ 0pp1/4 < Opq1/2.

Thus the assumption made for k is also true for k 4- 1. Therefore by induction we constructed
the trajectory {y;}L_ , C X such that

Yo = Xo,
p(xt,yr) <e t =0,...,L
This completes the proof of Lemma. [

Proof of Theorem 3. Theorem 2 implies that there is a positive integer Lo for which the
following property is valid:
(i) for every integer T > Lo and every finite trajectory {x;}/_ ,

Card({t € {0,..., T} : p(x,Q(a)) > €/2}) < Ly.

Let L > Ly be an integer. By Lemma 1, there is a positive number ¢ such that the
following property is valid:
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(ii) for every sequence {x;}F_ ; C X, which satisfies
p1((x¢, x¢41), graph(a)) <6, t = 0,...,L—1 (23)

there is a finite trajectory {y;}_ ; C X for which

yO = X0,
o(xt,yt) <e/4,t =0,...,L. (24)

Assume that { xt}tL: o C X satisfies (23). Property (ii) and (23) imply that there exists
a finite trajectory {y:}F_ , satisfying (24). Property (i) implies that

Card({t € {0,...,L}: p(y:, Q(a)) > €/2}) < Ly. (25)
In view of (24), for integerst = 0,...,L,

p(xt, Qa)) < p(xt,ye) +p(ye, Q(a)) < e/4+ p(yt, Q(a))

and if
p(xt, Q(a)) > €,

then
oy, Q(a)) > e/2.

Together with (25) this implies that
Card({t € {0,...,L}: p(xt,Q(a)) > €})
< Card({t € {0,...,L}: p(y:,Q(a)) > €/2}) < Ly.
This completes the proof of Theorem 3. [

Proof of Theorem 4. We may assume without loss of generality that € < 1. Theorem 3
implies that there is a positive integer Lo for which the following property is valid:

(i) for every integer L > L there is a positive number § such that for every sequence
{x:}F_ , satisfying

p1((xt, x¢41),graph(a)) <6, t = 0,...,T—1

the relation
Card({t € {0,..., L} : p(xt,Q(a)) > €}) < Ly

is true.
Fix a natural number
L>4Lge . (26)

Let a positive number J be as guaranteed by property (i). Choose a natural number
ko > 4e L. (27)

Set
Ly = kL. (28)

Assume that T > Ly is an integer and that a sequence {x;}] _ , satisfies
p1((xt, x¢41),graph(a)) <6, t = 0,...,T—1. (29)
There is an integer k1 > 1 for which

kiL < T < (ky +1)L. (30)
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By (28) and (30),
k1 > ko. (31)

Property (i), (29) and (30) imply that for integersi =0,...,k; — 1,
Card({t € {iL,...,(i+ 1)L} : p(xt,Q(a)) > €}) < Ly.
Combined with (30) the equation above implies that
Card({t € {0,...,T}: p(xt,Q(a)) > €}) < kLo + L.
Combined with (26), (27), (30) and (31) the equation above implies that
T 'Card({t € {0,..., T} : p(x:,Q(a)) > €})
<kLoT '+ LT ' <Ll ' +k,' <e.
Theorem 4 is proved. [
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