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1. Introduction

In [1,2], A. M. Rubinov introduced a discrete dispersive dynamical system, which was
investigated in [1–7]. This dynamical system is determined by a set-valued mapping and
has a prototype in the economic growth theory [1,8,9]. Our dynamical system is described
by a compact metric space of states and a transition operator, which is set-valued. Usually
in the dynamical systems theory a transition operator is single-valued. In [1–7] and in the
present paper we study dynamical systems with a set-valued transition operator. Such
dynamical systems correspond to certain models of economic dynamics [1,8,9].

Let (X, ρ) be a compact metric space and let a : X → 2X \ {∅} be a set-valued mapping
of which the graph

graph(a) = {(x, y) ∈ X× X : y ∈ a(x)}

is a closed subset of X× X. For each nonempty subset E ⊂ X set

a(E) = ∪{a(x) : x ∈ E} and a0(E) = E.

By induction we define an(E) for any positive integer n and any nonempty subset E ⊂ X
as follows:

an(E) = a(an−1(E)).

In the present work we investigate convergence and structure of trajectories of the
perturbed dynamical system determined by the set-valued mapping a. Following [1,2]
this system is called a discrete dispersive dynamical system.

A sequence {xt}∞
t = 0 ⊂ X is called a trajectory of a (or just a trajectory if the mapping

a is understood) if xt+1 ∈ a(xt) for all nonnegative integers t.
Let T2 > T1 be integers. A sequence {xt}T2

t = T1
⊂ X is called a finite trajectory of

a (or just a trajectory if the mapping a is understood) if xt+1 ∈ a(xt) for all integers
t ∈ {T1, . . . , T2 − 1}.

Define

Ω(a) = {z ∈ X : for very positive number ε there exists a trajectory{xt}∞
t = 0

for which lim inf
t→∞

ρ(z, xt) ≤ ε}.

By the compactness of X, Ω(a) is a nonempty closed subset of the metric space (X, ρ). In
the dynamical systems theory the set Ω(a) is called a global attractor of a. In [1,2] Ω(a) is
called a turnpike set of a. This terminology is motivated by economic growth theory [1,8,9].
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For each x ∈ X and each nonempty closed subset E ⊂ X put

ρ(x, E) = inf{ρ(x, y) : y ∈ E}.

Evidently, for every trajectory {xt}∞
t = 0,

lim
t→∞

ρ(xt, Ω(a)) = 0.

Let φ : X → R1 be a continuous function such that

φ(z) ≥ 0 for all z ∈ X,

φ(y) ≤ φ(x) for all x ∈ X and all y ∈ a(x).

Evidently, the function φ is a Lyapunov function for the dynamical system generated
by the mapping a. In economic growth theory usually X is a subset of the finite-dimensional
Euclidean space and φ is a linear functional on this space [1,8,9]. Our goal in [7] was to
study approximate solutions of the problem

φ(xT)→ max,

{xt}T
t = 0 is a trajectory satisfying x0 = x,

where x ∈ X and a natural number T are given.
The following theorem was obtained in [7].

Theorem 1. The following properties are equivalent:
(1) If a sequence {xt}∞

t = −∞ ⊂ X satisfies xt+1 ∈ a(xt) and φ(xt+1) = φ(xt) for all integers
t, then

{xt}∞
t = −∞ ⊂ Ω(a).

(2) For every positive number ε there exists a positive integer T(ε) such that for every trajectory
{xt}∞

t = 0 ⊂ X satisfying φ(xt) = φ(xt+1) for all integers t ≥ 0 the relation ρ(xt, Ω(a)) ≤ ε is
valid for all integers t ≥ T(ε).

Our results are obtained under the assumption that property (1) holds. This property
indeed holds for models of economic dynamics, which are prototypes of our dynamical
system [1,8,9].

For each bounded function ψ : X → R1 set

‖ψ‖ = sup{|ψ(z)| : z ∈ X}.

We denote by Card(A) the cardinality of a set A and suppose that the sum over empty set
is zero.

For every point (x1, x1), (y1, y2) ∈ X× X put

ρ1((x1, x2), (y1, y2)) = ρ(x1, y1) + ρ(x2, y2).

For every point (x1, x2) ∈ X× X and every nonempty closed subset E ⊂ X× X set

ρ1((x1, x2), E) = inf{ρ1((x1, x2), (y1, y2)) : (y1, y2) ∈ E}.

In [7] we established the turnpike properties for approximate solutions of the problem

φ(xT)→ max,

{xt}T
t = 0 is a trajectory satisfying x0 = x,
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where x ∈ X and a positive integer T are given. In [10] we established a weak version of the
turnpike property that holds for all finite trajectories of our dynamical system, which are
of a sufficient length and which are not necessarily approximate solutions of the problem
above. This turnpike result usually holds for models of economic dynamics [1,8,9].

More precisely, in [10] we prove the following result.

Theorem 2. Assume that property (1) of Theorem 1 holds and that ε > 0. Then there exists a
natural number L such that for each integer T > L and each finite trajectory {xt}T

t = 0 the following
inequality holds:

Card({t ∈ {0, . . . , T} : ρ(xt, Ω(a)) > ε}) ≤ L.

In this paper we show that a weak version of the turnpike property established in
Theorem 2 is stable under small perturbations.

Turnpike properties are well known in mathematical economics. See, for example,
references [2,8,9,11] and the references mentioned there. Recently it was shown that the
turnpike phenomenon holds for many important classes of problems arising in various areas
of research [12–20]. For related infinite horizon problems see [9,21–28].

2. The Main Results

For every pair of nonempty sets A, B ⊂ X set

H(A, B) = max{sup{ρ(x, B) : x ∈ A}, sup{ρ(y, A) : y ∈ B}}.

We assume that the following assumption is true:
(A) for every positive number ε there is a positive number δ such that for every pair

of points x, y ∈ X satisfying ρ(x, y) ≤ δ,

H(a(x), a(y)) ≤ ε.

We also assume that property (1) of Theorem 1 is true and obtain the following
two theorems.

Theorem 3. Let ε be a positive number. Then there is a positive integer L0 such that for every natural
number L > L0 there is a positive number δ such that for each sequence {xt}L

t = 0 ⊂ X satisfying

ρ1((xt, xt+1), graph(a)) ≤ δ, t = 0, . . . , T − 1

the following relation holds:

Card({t ∈ {0, . . . , L} : ρ(xt, Ω(a)) > ε}) ≤ L0.

Theorem 4. Let ε be a positive number. Then there is a positive integer L1 and a positive number
δ such that for every integer T > L1 and every sequence {xt}T

t = 0 ⊂ X satisfying

ρ1((xt, xt+1), graph(a)) ≤ δ, t = 0, . . . , T − 1

the following relation holds:

T−1Card({t ∈ {0, . . . , T} : ρ(xt, Ω(a)) > ε}) ≤ ε.

In Theorems 3 and 4 we deal with the structure of inexact trajectories of our dynamical
system. They are important because in the real world applications computational errors
and errors of measurements always take place.
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3. An Auxiliary Result

The following lemma shows that our dynamical system has the so-called shadowing
property [29,30].

Lemma 1. Let ε > 0 and L be a positive integer. Then there is a positive number δ such that for
every sequence {xt}L

t = 0 ⊂ X satisfying for all integers t = 0, . . . , L− 1,

ρ1((xt, xt+1), graph(a)) ≤ δ

there is a finite trajectory {yt}L
t = 0 ⊂ X for which

y0 = x0,

ρ(xt, yt) ≤ ε, t = 0, . . . , L.

Proof. Let
δL = ε/4. (1)

By induction and assumption (A), we define positive numbers δi > 0, i = 0, . . . , L− 1 such
that for every integer i ∈ {1, . . . , L}

δi−1 < δi/8 (2)

and for every pair of points x, y ∈ X for which ρ(x, y) ≤ δi−1 we have

H(a(x), a(y)) < δi/8. (3)

Set
δ = δ0. (4)

Assume that {xt}L
t = 0 ⊂ X satisfies

ρ1((xt, xt+1), graph(a)) ≤ δ, t = 0, . . . , L− 1. (5)

Set
x0 = y0. (6)

In view of (5) and (6),
ρ1((y0, x1), graph(a)) ≤ δ. (7)

By (7), there exists
(z0, z1) ∈ graph(a) (8)

such that
ρ(y0, z0) ≤ δ, ρ(x1, z1) ≤ δ. (9)

It follows from (3), (4) and (9) that

H(a(y0), a(z0)) ≤ δ1/8. (10)

Equations (8) and (10) imply that

ρ(z1, a(y0)) ≤ δ1/8. (11)

Equation (11) implies that there is
y1 ∈ a(y0) (12)

for which
ρ(y1, z1) ≤ δ1/4. (13)
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It follows from (2), (4), (9) and (13) that

ρ(y1, x1) ≤ δ + δ1/4 < δ1/2. 14)

Suppose that an integer k ∈ {1, . . . , L} \ {L} and that we have already defined a trajectory
{yi}k

i=1 such that
y0 = x0

and that for integers i = 1, . . . , k,

ρ(xi, yi) < δi/2. (15)

(In view of (6), (12) and (14), our assumption is valid for k = 1). Equation (5) implies that
there is a point

(ξk, ξk+1) ∈ graph(a) (16)

for which
ρ1((xk, xk+1), (ξk, ξk+1)) ≤ δ.

This implies that
ρ(xk, ξk) ≤ δ, ρ(xk+1, ξk+1) ≤ δ. (17)

Equations (2), (4), (15) and (17) imply that

ρ(ξk, yk) ≤ ρ(ξk, xk) + ρ(xk, yk) ≤ δ + δk/2 ≤ δk/8 + δk/2. (18)

By (3) and (18),
H(a(ξk), a(yk)) ≤ δk+1/8. (19)

Equations (16) and (19) imply that

ρ(ξk+1, a(yk)) ≤ δk+1/8. (20)

In view of (20), there exists
yk+1 ∈ a(yk) (21)

such that
ρ(ξk+1, yk+1) ≤ δk+1/4. (22)

It follows from (2), (4), (17) and (22) that

ρ(yk+1, xk+1) ≤ ρ(yk+1, ξk+1) + ρ(ξk+1, xk+1) ≤ δ + δk+1/4 < δk+1/2.

Thus the assumption made for k is also true for k+ 1. Therefore by induction we constructed
the trajectory {yt}L

t = 0 ⊂ X such that

y0 = x0,

ρ(xt, yt) ≤ ε, t = 0, . . . , L.

This completes the proof of Lemma.

Proof of Theorem 3. Theorem 2 implies that there is a positive integer L0 for which the
following property is valid:

(i) for every integer T > L0 and every finite trajectory {xt}T
t = 0,

Card({t ∈ {0, . . . , T} : ρ(xt, Ω(a)) > ε/2}) ≤ L0.

Let L > L0 be an integer. By Lemma 1, there is a positive number δ such that the
following property is valid:
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(ii) for every sequence {xt}L
t = 0 ⊂ X, which satisfies

ρ1((xt, xt+1), graph(a)) ≤ δ, t = 0, . . . , L− 1 (23)

there is a finite trajectory {yt}L
t = 0 ⊂ X for which

y0 = x0,

ρ(xt, yt) ≤ ε/4, t = 0, . . . , L. (24)

Assume that {xt}L
t = 0 ⊂ X satisfies (23). Property (ii) and (23) imply that there exists

a finite trajectory {yt}L
t = 0 satisfying (24). Property (i) implies that

Card({t ∈ {0, . . . , L} : ρ(yt, Ω(a)) > ε/2}) ≤ L0. (25)

In view of (24), for integers t = 0, . . . , L,

ρ(xt, Ω(a)) ≤ ρ(xt, yt) + ρ(yt, Ω(a)) ≤ ε/4 + ρ(yt, Ω(a))

and if
ρ(xt, Ω(a)) > ε,

then
ρ(yt, Ω(a)) > ε/2.

Together with (25) this implies that

Card({t ∈ {0, . . . , L} : ρ(xt, Ω(a)) > ε})

≤ Card({t ∈ {0, . . . , L} : ρ(yt, Ω(a)) > ε/2}) ≤ L0.

This completes the proof of Theorem 3.

Proof of Theorem 4. We may assume without loss of generality that ε < 1. Theorem 3
implies that there is a positive integer L0 for which the following property is valid:

(i) for every integer L > L0 there is a positive number δ such that for every sequence
{xt}L

t = 0 satisfying

ρ1((xt, xt+1), graph(a)) ≤ δ, t = 0, . . . , T − 1

the relation
Card({t ∈ {0, . . . , L} : ρ(xt, Ω(a)) > ε}) ≤ L0

is true.
Fix a natural number

L > 4L0ε−1. (26)

Let a positive number δ be as guaranteed by property (i). Choose a natural number

k0 > 4ε−1. (27)

Set
L1 = k0L. (28)

Assume that T > L1 is an integer and that a sequence {xt}T
t = 0 satisfies

ρ1((xt, xt+1), graph(a)) ≤ δ, t = 0, . . . , T − 1. (29)

There is an integer k1 ≥ 1 for which

k1L ≤ T < (k1 + 1)L. (30)



Axioms 2021, 10, 45 7 of 8

By (28) and (30),
k1 > k0. (31)

Property (i), (29) and (30) imply that for integers i = 0, . . . , k1 − 1,

Card({t ∈ {iL, . . . , (i + 1)L} : ρ(xt, Ω(a)) > ε}) ≤ L0.

Combined with (30) the equation above implies that

Card({t ∈ {0, . . . , T} : ρ(xt, Ω(a)) > ε}) ≤ k1L0 + L.

Combined with (26), (27), (30) and (31) the equation above implies that

T−1Card({t ∈ {0, . . . , T} : ρ(xt, Ω(a)) > ε})

≤ k1L0T−1 + LT−1 ≤ L0L−1 + k−1
0 < ε.

Theorem 4 is proved.
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