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1. Introduction

We suggest the (k, n — k)-type conjugate boundary value problem for the nonlinear
fractional differential inclusion

(—1)"* cyDfw(t) € A@(T,w(7)), T € [by, b], 1)
w(r)(bo) =0, r=1,..,n—1, )
w(b) =0, (©)

where 0 < by < b < 400, n >3, p € (n—1,n], k € {1,...n—1},and A > 0. cyDF
denotes Caputo-Hadamard fractional differential derivative and @ : [b, b] x R — 2R is a
monotone multi-valued mapping.

Fractional calculus is a very strong way to generalize the models of ordinary differ-
ential problems. It plays important roles in the dynamics description for many complex
systems. It is worth noting the practical progress in the field of fractional calculus and its
theory (for example, in the analysis of fractional-order numerical schemes, viscoelasticity,
transport processes, elastodynamics, the behavior of multifacted media, random flow
processes, ..., etc). To show its importance, we refer to [1-8] and the references therein.

The (k, n — k) conjugate differential equation of second order (n = 2) has been studied
in [9]. After that, the main results with a high order were presented in [10-13] and the
references given therein. The development, by adding the fractional derivative, is impor-
tant and necessary to prove the strong extent of nonlinearity theory and its applications.
The research into the conjugate fractional type of problem began with the case (1 —1,1)
in [14,15]. As far as we know, there are no papers exploring the existence of solutions for
the (k, n — k) conjugate differential inclusion of fractional order.

Oscillation theory began with Sturm’s work in 1836, and was further developed
for the fifty years before 1996. At present, it is a full, self-contained, discipline, turning
more towards nonlinear and functional differential equations. On one hand, oscillation
theory has two research fields; one with linear operators and the other with nonlinear
functional operators. On the other hand, it has two different fields under the conjugate and
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disconjugate operators topics. See [16] for a good overview. This theory strongly influences
investigatations of strong solution results for (k, n — k) conjugate differential boundary
value problems.

The aim of this paper is to take one more step with oscillation theory, to develop
the previous results from another aspect, which is to study (n — k, k) fractional conjugate
problems with multi-valued mappings instead of single—valued mappings. These results
are devoted to the sufficient conditions for the existence of a positive solution to the problem

(=1)"* cyDPw(t) € AO(t,w(T)),

where © is a monotone multi-valued map.

There are several contributions that generalize differential equations and inclusions
and study their solvability. They depend on investigations into the properties of the solu-
tions (existence, uniqueness, stability, controllability, ..., etc.), see [17,18] and the references
given therein.

It is worth mentioning that the literature on the existence and uniqueness of solutions
to fractional differential equations is expanding at present, and this problem has drawn the
attention of many contributors [19-27].

In the next section, we provide some basic definitions, properties, lemmas and theo-
rems used to investigate the main upshots. The main theorems and results are included
in Section 3. Consequently, Section 4 comes with some applications. Finally, Section 5 is
formed by a brief overview of current and future works.

2. Preliminaries
2.1. Fractional Calculus

In this subsection, we recall the definitions and some fundamental facts of Caputo-
Hadamard fractional integral and the corresponding derivative [28,29].

Definition 1 (Caputo-Hadamard Fractional Integral). Let p > 0, n = [p] + 1, w(7) €
LP[bo,b], 0 < bgp < b < oo, and1 < p < co. Then, the Caputo-Hadamard integral CHIZ’:O of
fractional order p is written by

1 T T\P-1 ds
B = [ (log: 2,
CH bow(r) T'(p) Ju, ( 08 s) w(s) s
Definition 2 (Caputo-Hadamard Fractional Derivative). Let p > 0, n = [p] + 1, w(7) €
AC}[bo,b] and 0 < by < b < oo. Then, the Caputo-Hadamard fractional derivative CHDZJO exists
everywhere on by, b| and

(@) ifp ¢ Nyo=NuU{0},

Dy (™) = r(”l—P) /boT <log§)n_p_15nw(s)§ = culy, "6"w(7),
® IfpeN,
cuDj w(t) = §"w(7).
(© Ifp=0,

cnDf () = w(x),
where 6 1= Td% and

AC![bo, b] = {w : [bo,b] — R : " lw(t) € AC[b, b]}.
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Lemmal. Let p > 0, n = [p] + 1 and w(7) € Clbg, b]. Then
(a) ifp#0,orpeN,then

CHDZO ((:Hfsow) (1) = w(7).

(b) Ifw(t) € ACJ[by,b], or C}l[bo,b], then

P o (S T\
culy, (CHDb0w> (1) = w(7) - rg,) Cr <log bo> ’

where
Cjlbo, b] = {w : [bo,b] = R : 6"w(t) € Clby, b]}.

(c) Ifw(t) e Cflbo,b]and B> p >0, then
cnDf (enlfw) (1) = culf) Po(t).

2.2. Monotone Multi-Valued Operators and Corresponding Fixed Point Theorems
We recall the following definitions and results from [30-32].

Definition 3. A multi-valued map A : [by, b] X R — Pep,co(R)(the nonempty compact convex
subsets of R) is known as a Caratheodory map if:

(1) Forallw e R; T — A(t,w) is measurable.
(2) Foraet € [by,b]; w— A(t,w) is upper semi—continuous.

In addition to assumptions (1) and (2), the map A is a L'~Caratheodory map if for each
k>0, 3¢y € L[by, b] satisfying sup_,|¢x(T)| < +o0 and ¢y > 0, and a nondecreasing map
L for which:

[A(7,w)[| = sup{lal : a(7) € A(r,w)} < gi(T)E([w]),

forall |[w|| <k, T € [bo, b].

A has a closed graph if, whenever v, — vy, z, — z4 and z, € A(vy,), it holds
Zx € A(vy).

Let (E, ||.||) be a real Banach space and P a normal cone of E. A partial ordering <"
is induced by the cone P, namely, for any w,z € E, w=zifand onlyifz —w € P.

Let X and Y be subsets of E. If, for all w € X, there exists z € Y such that w=z,
then we write X<Y. For a nonempty subset D of X and A : D — 2% /@, we say that A is
increasing (decreasing) upward if and only if, for all u,v € D with u=v, it is true that, for
any w € A(u), there exists z € A(v) such that w=z (w>z). A is increasing (decreasing)
downward if and only if, for all u,v € D with u=wv it is true that, for any z € A(v),
there exists w € A(u) such that w=z (w>z). If A is increasing (decreasing) upward and
downward, we say that A is increasing (decreasing).

Lemma 2. Let ¥ be a Banach space, | = [by,b], ¥ : | X & — Pep co(E) be a L' —Caratheodory
multi-valued map and P : L1 (], %) — C(J,Z) be a continuous and linear map. Define the operator
Sy by

Sy:zeLN],X) = Sy(z) = {lp(r,z(T)) L p(T,2(T)) € ¥(1,2(T)) ﬂLl(I,Z)}.

Then, the operator
PoSy:C(],X) — Pczﬂ,cv(c(]rz))

defined as (P o Sy)(z) = P(Sy(z)) is an operator with a closed graph.

Theorem 1. Let X be a real Banach space and P a normal cone of X. Suppose that T : X —
2% /{@} is an increasing multi-valued operator satisfying:
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(1) Foranyw € X, T(w) is a nonempty and closed subset of X.
(2)  There exists a linear operator L : X — X with a spectral radius r(L) < 1and L(P) C P such
that, for any w,z € X with w=z,

(i) forany u € T(w) there exists v € T(z) satisfying
0=<v —u=L(z—w).
(ii) Foranyv € T(z) there exists u € T(w) satisfying
0=<v—u=L(z —w).
Then T has a fixed point in X.

Theorem 2. Let X be a real Banach space and P a normal cone of X. Suppose that T : X —
2% /{@} is a decreasing multi-valued operator satisfying;

(1) Foranyw € X, T(w) a nonempty and a closed subset of X.
(2)  There exists a constant ¢ € (0,1) such that, for any w,z € X with w=z,

(i) forany u € T(w) there exists v € T(z) satisfying
—c(z —w)=v —u=0.
(ij) Foranyv € T(z) there exists u € T(w) satisfying
—c(z —w)=v —u=0.
Then T has a fixed point in X.

3. Main Results

To show the main results, we need to explain some basic facts. Let ¥ = R, | = [by, b]
and define the set-valued map Sg(w) by

So(w) = {0(7,w(7))| 6(7,w (7)) € O(t,w(t)) N L (bo, b], R) }. @
Then we have below Lemmas:

3.1. Some Auxiliary Results
Lemma 3. Let 17(t) € L!([bo, b], R) and consider the following problem

cuDfw(t) =n(t), T € [by, V], (5)
w(r)(bo) =0, r=1,..,n—1, (6)
w(b) =0, 7)

then, the unique solution is given by

w() = [ K(xs)y(s)as, ®

where

Krs)=od 5 ©)
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Proof. To get (8) and (9) we apply the integral operator CHI{,)O to the both sides of (5).
We obtain

n—1 o\’
w(T) = CHI{;OU(T) + r;;) cr <log bo) .
Using the conditions in (6), we find ¢, =0, Vr =1,...,n — 1 and then
w(t) = culp 1(t) + co-
Under the effect of the condition (7) we have
co=— CHI;’;O’?(b),
which completes the proof. [

Define the normal cone P C E by the set of all non—-negative functions P = {w(7)]
w(7) > 0}. Consider the multi-valued map

H) (t,w(1)) = A(—1)" %0 (7, w(T)).

Let 7% (t) € H}(t, w(7)) and consider the problem

cyDfw(t) = iyf‘\(r), T € [by, b], (10)
w”) (bg) =0, r=1,..,n—1, (11)
w(b) =0, (12)
which has a solution
w(T) = /bb K(T,s)ql)i(s)ds = /\(—1)”_7‘ /bb K(t,s)6(s)ds. (13)

We fix the set Ky with values of (7,s) such that
(—1)"*K(1,s) > 0. (14)

Depending on (14), we define the green functions Gk, (7,s) by

o—1
log & T)p-1
1 ( :) 7(10gss) , b0§S<T§b,
G ,8) = —— 15
k(79 = 15 (g’ )

: , bp<T<s<b

Lemma 4. Let 0(7) € L([bo, b], R) and nX(t) = A(—1)"%0(t), then the problem (10)~(12)
admits a unique solution with respect to (14) given by

w(t) = A /h : Gk, (T,5)7(s)ds, (16)
where Gk, (T,5) is defined by (15).
Proof. Using Lemma 3 and (14) we obtain the result. O
Lemma 5. Consider Gk (7,s) defined by (15). Then

Gk, (1,5) < (p—1)M(s), Vs, T € [bo, b], (17)
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p—1
where M(s) = sl"%p) (log(g)) .
Proof. The proof is divided in two cases:

Case 1: If by < s < T < b, then, by using the fact thatlogw < wandlogw < logzifw < z,
we have

1 b p-1 \p—1 —1 rb1 r\p—2
F(p)GK+ (T,S) = g l(log S) — (log g) ] = p S /T ;(logg) dr

(p—1) b\"% (bs1 (p—1) b\ 2 b
< 5 logg /T ;gdrgis logg log;

Case 2: If by < T < s < b, one has

(log g)p_l

S

I'(p)Gk, (T,5) =

IN

-1
2D (10g2)" < o-rio)mes)

From both cases, we get (17). O

Now, define the linear operator Aﬁ+ : [bo, b] x Sg(w) — 2R as follows

AL (0)(1) = A /b : G, (1,5)0(s, w(s))ds. (18)
Define the set A by
A(0) = {/\ > 0] A, (6)(t) 0, Yt € [b,b], Vw € P, V0 € S@(w)} (19)
Consequently, define the multi-valued operator N I’<\+ (w)(7) by the relation
N, (@)(1) = {s (D) 1 (x) = AL(0)(7), 0(r) € So(@), A A} @0)

3.2. Main Results

Consider X = L([by,b],R) and P = {w € X| w > 0} as a normal cone in X. Then we
can study two different cases.

Theorem 3 (Increasing Map). Suppose that © : [by, b] x R — Pepco(R) is a L'~Caratheodory
multi-valued map subject to the following conditions:

(N1) Se is an increasing multi-valued map.

(N2) There exists a nondecreasing function pr € L*([0, R],R) with

l©(z,w)|| < yr([wl), Vw] <R

(N3) There exists a nondecreasing function B(t) € L®([bo, b], R) such that, for any T € [by, b],
0w € Se(w), 0, € So(z) and w,z € P with w=z, it holds

/b;(ez —0y)(s)ds < B(T)(z — w)(T).

Then, the problem (1)—(3) has at least one positive solution.

Proof. Here, bearing in mind Theorem 1, the proof is shown in the following steps:
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Step1: We claim that NI/<\+ has a closed graph. Indeed, let us consider u,(7) € N, f<\+ (wn),

where u, — u* and w, — w*. It follows that there exists 6, € Sg(w;,) such that
up (1) = A% 6, (T). Since the operator Aﬁr is a closed linear operator (Lemma 2)

and u, — u*; then, there exists 0+ € Sg(w*) such that
uy(t) = Aﬁjwn(T) — Aﬁ+9w*(r).
Take u*(7) = AﬁJr O+ (T): then u*(7) € NI’<\+ (w*) concludes the proof of the claim.

Step2: Define the linear operator Lw = A(p — 1)M(bo)fbl; B(s)w(s)ds, w € X. Then,
L(P) C Pand

r(L) = lim (||L"]|)"

n—o0

n

1 /b(b — o) Lap(s)ds

< A(p —1)M(bo)B lim sup I'(n) Jo,

n—00
[wl=1

n

< A(p — 1)M(bo)ﬁ1}g§0‘]’(ﬂl—|—1)(b _ bo)n

< Ap —1)M(bo)B(b — bo) lim F(%H) -

Then

(1) Letw,z € Pwithw=z. If 5,(7) € Nf<\+ (w), there exists 6, € Sg(w) such that

b
M (T) = /\/b[J Gk, (T,5)0(s)ds.

Since Sg is increasing upward, then there exists 0, € Sg(z) with 6,<6.. Conse-
quently,

Mw(T) < )\A: Gk, (7,5)0:(s)ds.
Defining
1z(T) = /\/b: Gk, (7,5)02(s)ds,
itholds #;(7) € NI/<\+ (z) and 0 < 772(T) — 7w (7).
(2) Similarly to (1), we can prove that if 7,(7) € N{é+ (z) there exists 17, (T) €

NI‘<\+ (w), for which 0 < #2(T) — 7w(T).
(3) Using Lemma 5, one has

b
12(T) — fo(T) = A /bo Gk, (T,5)[6: — 0] (s)ds
b

<Ap-1) /bo M(s)[0: — 6] (s)ds

SA(p—l)/

b s
b M(s) /b [0, — 0] (z)dzds

) 0
< Mp = 1)M(ko) [ B(s) [z~ wl(s)ds

b
< Ap=1)M(b0)p | [e —w](s)ds

< L(z—w).



Axioms 2021, 10, 170 8 of 12

By Theorem 1, the previous steps imply that the problem (1)—-(3) admits at least a
solution in P, i.e, a positive solution. [

Theorem 4. (Decreasing Map) Suppose that ® is a L' — —Caratheodory multi-valued map
subject to the following conditions:

(Ny) Se is a decreasing multi-valued map.

(N5) There exists a nondecreasing function Y,(t) € L%([bo,b],R) such that for any T €
[bo, b], 0y € So(w), 0, € Se(z) and w,z € P with w=z it holds

/ (6 — 00)(s)ds > —Y, (1) (2 — ) (7).

bo
(Ng) For the function M(s) defined as in Lemma 5 we have the condition
C=AMp—1)M(by)Y, <1, A € A,
where A is defined in (19) and Y; = || Yp|co-
Then, the problem (1)—(3) has at least one positive solution.

Proof. Stepl: Similarly to Stepl in the proof of Theorem 3.
Step2 (1) Letw,z € P with w=z. If 57,(7) € NI/<\+ (w), it follows that there exists 6, €

Se(w) such that
b
Nw(T) = /\/b Gk, (7,5)0w(s)ds.
0

Since Sg is decreasing upward, then there exists 6, € Sg(z) with 6,<6,,. Conse-
quently,

b
Ho(T) > A /h G, (7,5)0-(s)ds.
0
Defining
b
H(7) = /\/b Gk, (7,5)02(s)ds,
0

7:(7) € N@_(z) and (1) — 17 (7) < 0.

(2) Similarly to (1), we can prove that if 7,(7) € NI/<\+ (z), then there exists 17, (T) €
Ng, (w), for which (7) — 17 (7) < 0.

(3) Using Lemma 5, one has

b
(1) = 1ol(®) = A [ G, (1,5)[6: — 0] (5)ds

> —Ap —1)M(bo)Yy(7)[z — w](7)
> —A(p —1)M(bo)Y; [z — w(T)
> —C(z —w)(1),

where C = A(p —1)M(b)Y; < 1.
By Theorem 2, the pervious steps show that the problem (1)—(3) is solvable in P, i.e,
admits a positive solution. [J
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4. Applications

Here, we present some examples related to the main results. To obtain the desired
conditions, we make use of the Poincaré inequality in L' (], R).

Example 1. Consider the problem

(—1)** cyDPw(t) € O(T,w(T)),] = [1,2],p = %,A =1 (21)
O(t,w) = {[p]”sin(zn ) )} n<N,nNeN. (22)
w(1)=0, r=1,23 (23)
w(2)=0 (24)

Then

(1) |9l = sup’[p]"sin(z(;;fw)) ’ < [o]N, which implies g = [p]N.

(2) It is known that the function sinw is increasing in the compact interval [*, Z]. So, © is
increasing since 0 < iy < gn < 7.

(3) Forall 0 < w=z one has

" /1T Sin(zﬂ(;i—z)) (s) — sin(zn(::ujrw)> (s)} ds

T (mz(m 4 w) — mw (T + z) nz(1 4+ w) + w (7w + z)
231( 2 (74 2) (4 w) ><S)C < 2 (7 4 2) (e 4 w) )“ﬁds

< z[p]N./: _:sin( m(z —w)(m +2) >>(S)}d5

_ 2l (4 z)(m+w
I & <2n7i§z(;j"iu) > (s)} ds
/; _sin(%) (s)} ds
T 1

20" [ e ws)

—w

)(1) }
( —w)(7)
)(

Ehcyz w1 - S

[

where we used the fact that u(t) < ||u|le, VT € J. Hence, B(T) = @C]
Comparing (1)—(3) with Theorem 3 we find the solvability of the problem (21)—(24) in the cone P.

Example 2. If we replace (22) by the multi-valued map

O(t,w) = [[pl}n cos<2n(;m_f_w))}, n e N. (25)

Then we have the followings
(1) [|O]le = sup‘ﬁ cos(%)‘ < 1, which implies pr = .
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(2) It is known that the function cos w is decreasing in the compact interval [0, 7). Therefore, ©

. L w 7
is decreasing since 0 < rrw) < 2

(3) Forall 0 < w=z we have

i | [0 () 0
_ 1 /12 L [sin(rcz(rc—i— w) — mw(7 +z)>(s) Sin(n:z(n—ir w) + ﬂw(n—l—z))(s)}ds

[o]" 2nH (4 z) (7t + w) 2nH(r 4+ z2) (r + w)
-2 2] 7(z — w) (T + w)
> i | [ (e S e ) @)

[ T e—
(2}

> o | (Fei ) o
2 (G ) o

> 2[;5” C /fV(z —w)(s)ds
_ 2[;]1”c,[(z —w)(2) — (z— w)(1)]
—4%@@—@&)

zoz;j@wxﬂ,

which tends to take Y, (T) = ﬁ

(4)  We have the following values

r(%) = 15;35 ~ 3.323350970445,

M(1) ~ 0.1496057282,

1
Y= -
b—3
A=1

C = Alp — 1)M(bp)Y; ~ 0.1246714402 < 1

By linking results for positive solutions of the problem (1)—(3) with Theorem 4, we can see that
the problem (21), (23)—(25) has a positive solution.

5. Conclusions

For monotone-type multi-valued operator, we investigate the existence results and
provide some applications for them. Our analysis relies on nonlinear monotone fixed point
theorems and is connected with oscillation theory in the sense of (k, n — k) conjugate-type
differential operator. It is worth generalizing the results on fractional differential equation
by multi-valued maps in order to get new extents for phenomena modeling.
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