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1. Introduction

We suggest the (k, n− k)-type conjugate boundary value problem for the nonlinear
fractional differential inclusion

(−1)n−k
CH Dρw(τ) ∈ λΘ(τ, w(τ)), τ ∈ [b0, b], (1)

w(r)(b0) = 0, r = 1, ....., n− 1, (2)

w(b) = 0, (3)

where 0 < b0 < b ≤ +∞, n ≥ 3, ρ ∈ (n− 1, n], k ∈ {1, ....., n− 1}, and λ > 0. CH Dρ

denotes Caputo-Hadamard fractional differential derivative and Θ : [b0, b]×R→ 2R is a
monotone multi-valued mapping.

Fractional calculus is a very strong way to generalize the models of ordinary differ-
ential problems. It plays important roles in the dynamics description for many complex
systems. It is worth noting the practical progress in the field of fractional calculus and its
theory (for example, in the analysis of fractional–order numerical schemes, viscoelasticity,
transport processes, elastodynamics, the behavior of multifacted media, random flow
processes, . . . , etc). To show its importance, we refer to [1–8] and the references therein.

The (k, n− k) conjugate differential equation of second order (n = 2) has been studied
in [9]. After that, the main results with a high order were presented in [10–13] and the
references given therein. The development, by adding the fractional derivative, is impor-
tant and necessary to prove the strong extent of nonlinearity theory and its applications.
The research into the conjugate fractional type of problem began with the case (n− 1, 1)
in [14,15]. As far as we know, there are no papers exploring the existence of solutions for
the (k, n− k) conjugate differential inclusion of fractional order.

Oscillation theory began with Sturm’s work in 1836, and was further developed
for the fifty years before 1996. At present, it is a full, self-contained, discipline, turning
more towards nonlinear and functional differential equations. On one hand, oscillation
theory has two research fields; one with linear operators and the other with nonlinear
functional operators. On the other hand, it has two different fields under the conjugate and
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disconjugate operators topics. See [16] for a good overview. This theory strongly influences
investigatations of strong solution results for (k, n− k) conjugate differential boundary
value problems.

The aim of this paper is to take one more step with oscillation theory, to develop
the previous results from another aspect, which is to study (n− k, k) fractional conjugate
problems with multi-valued mappings instead of single–valued mappings. These results
are devoted to the sufficient conditions for the existence of a positive solution to the problem

(−1)n−k
CH Dρw(τ) ∈ λΘ(τ, w(τ)),

where Θ is a monotone multi-valued map.
There are several contributions that generalize differential equations and inclusions

and study their solvability. They depend on investigations into the properties of the solu-
tions (existence, uniqueness, stability, controllability, . . . , etc.), see [17,18] and the references
given therein.

It is worth mentioning that the literature on the existence and uniqueness of solutions
to fractional differential equations is expanding at present, and this problem has drawn the
attention of many contributors [19–27].

In the next section, we provide some basic definitions, properties, lemmas and theo-
rems used to investigate the main upshots. The main theorems and results are included
in Section 3. Consequently, Section 4 comes with some applications. Finally, Section 5 is
formed by a brief overview of current and future works.

2. Preliminaries
2.1. Fractional Calculus

In this subsection, we recall the definitions and some fundamental facts of Caputo-
Hadamard fractional integral and the corresponding derivative [28,29].

Definition 1 (Caputo-Hadamard Fractional Integral). Let ρ ≥ 0, n = [ρ] + 1, w(τ) ∈
Lp[b0, b], 0 < b0 < b ≤ ∞, and 1 ≤ p < ∞. Then, the Caputo-Hadamard integral CH Iρ

b0
of

fractional order ρ is written by

CH Iρ
b0

w(τ) =
1

Γ(ρ)

∫ τ

b0

(
log

τ

s

)ρ−1
w(s)

ds
s

.

Definition 2 (Caputo-Hadamard Fractional Derivative). Let ρ ≥ 0, n = [ρ] + 1, w(τ) ∈
ACn

δ [b0, b] and 0 < b0 < b < ∞. Then, the Caputo-Hadamard fractional derivative CH Dρ
b0

exists
everywhere on [b0, b] and

(a) if ρ /∈ N0 = N∪ {0},

CH Dρ
b0

w(τ) =
1

Γ(n− ρ)

∫ τ

b0

(
log

τ

s

)n−ρ−1
δnw(s)

ds
s

= CH In−ρ
b0

δnw(τ),

(b) If ρ ∈ N,

CH Dρ
b0

w(τ) = δnw(τ).

(c) If ρ = 0,

CH Dρ
b0

w(τ) = w(τ),

where δ := τ d
dτ and

ACn
δ [b0, b] =

{
w : [b0, b]→ R : δn−1w(τ) ∈ AC[b0, b]

}
.
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Lemma 1. Let ρ ≥ 0, n = [ρ] + 1 and w(τ) ∈ C[b0, b]. Then

(a) if ρ 6= 0, or ρ ∈ N, then

CH Dρ
b0

(
CH Iρ

b0
w
)
(τ) = w(τ).

(b) If w(τ) ∈ ACn
δ [b0, b], or Cn

δ [b0, b], then

CH Iρ
b0

(
CH Dρ

b0
w
)
(τ) = w(τ)−

n−1

∑
r=0

cr

(
log

τ

b0

)r
,

where
Cn

δ [b0, b] = {w : [b0, b]→ R : δnw(τ) ∈ C[b0, b]}.

(c) If w(τ) ∈ Cn
δ [b0, b] and β > ρ ≥ 0, then

CH Dρ
b0

(
CH Iβ

b0
w
)
(τ) = CH Iβ−ρ

b0
w(τ).

2.2. Monotone Multi-Valued Operators and Corresponding Fixed Point Theorems

We recall the following definitions and results from [30–32].

Definition 3. A multi-valued map A : [b0, b]×R → Pcp,cv(R)(the nonempty compact convex
subsets of R) is known as a Caratheodory map if:

(1) For all w ∈ R; τ → A(τ, w) is measurable.
(2) For a.e τ ∈ [b0, b]; w→ A(τ, w) is upper semi–continuous.

In addition to assumptions (1) and (2), the map A is a L1–Caratheodory map if for each
k > 0, ∃ φk ∈ L1[b0, b] satisfying supτ≥0|φk(τ)| < +∞ and φk > 0, and a nondecreasing map
Ł for which:

‖A(τ, w)‖ = sup{|a| : a(τ) ∈ A(τ, w)} ≤ φk(τ)Ł(‖w‖),

for all ‖w‖ < k, τ ∈ [b0, b].

A has a closed graph if, whenever vn → v∗, zn → z∗ and zn ∈ A(vn), it holds
z∗ ∈ A(v∗).

Let (E, ‖.‖) be a real Banach space and P a normal cone of E. A partial ordering ”�”
is induced by the cone P, namely, for any w, z ∈ E, w�z if and only if z− w ∈ P.

Let X and Y be subsets of E. If, for all w ∈ X, there exists z ∈ Y such that w�z,
then we write X�Y. For a nonempty subset D of X and A : D → 2X/∅, we say that A is
increasing (decreasing) upward if and only if, for all u, v ∈ D with u�v, it is true that, for
any w ∈ A(u), there exists z ∈ A(v) such that w�z (w�z). A is increasing (decreasing)
downward if and only if, for all u, v ∈ D with u�v it is true that, for any z ∈ A(v),
there exists w ∈ A(u) such that w�z (w�z). If A is increasing (decreasing) upward and
downward, we say that A is increasing (decreasing).

Lemma 2. Let Σ be a Banach space, J = [b0, b], Ψ : J × Σ → Pcp,cv(Σ) be a L1−Caratheodory
multi-valued map and P : L1(J, Σ)→ C(J, Σ) be a continuous and linear map. Define the operator
SΨ by

SΨ : z ∈ L1(J, Σ)→ SΨ(z) =
{

ψ(τ, z(τ)) : ψ(τ, z(τ)) ∈ Ψ(τ, z(τ)) ∩ L1(J, Σ)
}

.

Then, the operator
P ◦ SΨ : C(J, Σ)→ Pcp,cv(C(J, Σ))

defined as (P ◦ SΨ)(z) = P(SΨ(z)) is an operator with a closed graph.

Theorem 1. Let X be a real Banach space and P a normal cone of X. Suppose that T : X →
2X/{∅} is an increasing multi-valued operator satisfying:
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(1) For any w ∈ X, T(w) is a nonempty and closed subset of X.
(2) There exists a linear operator L : X→ X with a spectral radius r(L) < 1 and L(P) ⊂ P such

that, for any w, z ∈ X with w�z,

(i) for any u ∈ T(w) there exists v ∈ T(z) satisfying

0�v− u�L(z− w).

(ii) For any v ∈ T(z) there exists u ∈ T(w) satisfying

0�v− u�L(z− w).

Then T has a fixed point in X.

Theorem 2. Let X be a real Banach space and P a normal cone of X. Suppose that T : X →
2X/{∅} is a decreasing multi-valued operator satisfying;

(1) For any w ∈ X, T(w) a nonempty and a closed subset of X.
(2) There exists a constant c ∈ (0, 1) such that, for any w, z ∈ X with w�z,

(i) for any u ∈ T(w) there exists v ∈ T(z) satisfying

−c(z− w)�v− u�0.

(ii) For any v ∈ T(z) there exists u ∈ T(w) satisfying

−c(z− w)�v− u�0.

Then T has a fixed point in X.

3. Main Results

To show the main results, we need to explain some basic facts. Let Σ = R, J = [b0, b]
and define the set–valued map SΘ(w) by

SΘ(w) =
{

θ(τ, w(τ))| θ(τ, w(τ)) ∈ Θ(τ, w(τ)) ∩ L1([b0, b],R)
}

. (4)

Then we have below Lemmas:

3.1. Some Auxiliary Results

Lemma 3. Let η(τ) ∈ L1([b0, b],R) and consider the following problem

CH Dρw(τ) = η(τ), τ ∈ [b0, b], (5)

w(r)(b0) = 0, r = 1, ....., n− 1, (6)

w(b) = 0, (7)

then, the unique solution is given by

w(τ) =
∫ b

b0

K(τ, s)η(s)ds, (8)

where

K(τ, s) =
1

Γ(ρ)



(
log τ

s
)ρ−1

s
−

(
log b

s

)ρ−1

s
, b0 ≤ s < τ ≤ b,

−

(
log b

s

)ρ−1

s
, b0 ≤ τ < s ≤ b

(9)
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Proof. To get (8) and (9) we apply the integral operator CH Iρ
b0

to the both sides of (5).
We obtain

w(τ) = CH Iρ
b0

η(τ) +
n−1

∑
r=0

cr

(
log

τ

b0

)r
.

Using the conditions in (6), we find cr = 0, ∀r = 1, . . . , n− 1 and then

w(τ) = CH Iρ
b0

η(τ) + c0.

Under the effect of the condition (7) we have

c0 = − CH Iρ
b0

η(b),

which completes the proof.

Define the normal cone P ⊂ E by the set of all non–negative functions P = {w(τ)|
w(τ) ≥ 0}. Consider the multi-valued map

Hλ
k (τ, w(τ)) = λ(−1)n−kΘ(τ, w(τ)).

Let ηk
λ(τ) ∈ Hλ

k (τ, w(τ)) and consider the problem

CH Dρw(τ) = ηk
λ(τ), τ ∈ [b0, b], (10)

w(r)(b0) = 0, r = 1, ....., n− 1, (11)

w(b) = 0, (12)

which has a solution

w(τ) =
∫ b

b0

K(τ, s)ηk
λ(s)ds = λ(−1)n−k

∫ b

b0

K(τ, s)θ(s)ds. (13)

We fix the set K+ with values of (τ, s) such that

(−1)n−kK(τ, s) > 0. (14)

Depending on (14), we define the green functions GK+(τ, s) by

GK+(τ, s) =
1

Γ(ρ)



(
log b

s

)ρ−1

s
−
(
log τ

s
)ρ−1

s
, b0 ≤ s < τ ≤ b,(

log b
s

)ρ−1

s
, b0 ≤ τ < s ≤ b

(15)

Lemma 4. Let θ(τ) ∈ L1([b0, b],R) and ηk
λ(τ) = λ(−1)n−kθ(τ), then the problem (10)–(12)

admits a unique solution with respect to (14) given by

w(τ) = λ
∫ b

b0

GK+(τ, s)η(s)ds, (16)

where GK+(τ, s) is defined by (15).

Proof. Using Lemma 3 and (14) we obtain the result.

Lemma 5. Consider GK+(τ, s) defined by (15). Then

GK+(τ, s) ≤ (ρ− 1)M(s), ∀s, τ ∈ [b0, b], (17)
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where M(s) = 1
sΓ(ρ)

(
log
(

b
s

))ρ−1
.

Proof. The proof is divided in two cases:

Case 1: If b0 ≤ s < τ ≤ b, then, by using the fact that log w < w and log w ≤ log z if w ≤ z,
we have

Γ(ρ)GK+(τ, s) =
1
s

[(
log

b
s

)ρ−1
−
(

log
τ

s

)ρ−1
]
=

ρ− 1
s

∫ b

τ

1
r

(
log

r
s

)ρ−2
dr

≤ (ρ− 1)
s

(
log

b
s

)ρ−2 ∫ b

τ

s
r

1
s

dr ≤ (ρ− 1)
s

(
log

b
s

)ρ−2(
log

b
τ

)
≤ (ρ− 1)Γ(ρ)M(s).

Case 2: If b0 ≤ τ < s ≤ b, one has

Γ(ρ)GK+(τ, s) =

(
log b

s

)ρ−1

s
≤ (ρ− 1)

s

(
log

b
s

)ρ−1
≤ (ρ− 1)Γ(ρ)M(s).

From both cases, we get (17).

Now, define the linear operator ∆λ
K+

: [b0, b]× SΘ(w)→ 2R as follows

∆λ
K+

(θ)(τ) = λ
∫ b

b0

GK+(τ, s)θ(s, w(s))ds. (18)

Define the set Λ by

Λ(θ) =
{

λ > 0| ∆λ
K+

(θ)(τ) ≥ 0, ∀τ ∈ [b0, b], ∀w ∈ P, ∀θ ∈ SΘ(w)
}

(19)

Consequently, define the multi-valued operator NΛ
K+

(w)(τ) by the relation

NΛ
K+

(w)(τ) =
{

ηλ
k (τ)| η

λ
k (τ) = ∆λ

k (θ)(τ), θ(τ) ∈ SΘ(w), λ ∈ Λ
}

. (20)

3.2. Main Results

Consider X = L1([b0, b],R) and P = {w ∈ X| w ≥ 0} as a normal cone in X. Then we
can study two different cases.

Theorem 3 (Increasing Map). Suppose that Θ : [b0, b]×R→ Pcp,cv(R) is a L1–Caratheodory
multi-valued map subject to the following conditions:

(N1) SΘ is an increasing multi-valued map.

(N2) There exists a nondecreasing function ψR ∈ L∞([0, R],R+) with

‖Θ(τ, w)‖ ≤ ψR(‖w‖), ∀ ‖w‖ ≤ R.

(N3) There exists a nondecreasing function β(τ) ∈ L∞([b0, b],R+) such that, for any τ ∈ [b0, b],
θw ∈ SΘ(w), θz ∈ SΘ(z) and w, z ∈ P with w�z, it holds∫ τ

b0

(θz − θw)(s)ds ≤ β(τ)(z− w)(τ).

Then, the problem (1)–(3) has at least one positive solution.

Proof. Here, bearing in mind Theorem 1, the proof is shown in the following steps:
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Step1: We claim that NΛ
K+

has a closed graph. Indeed, let us consider un(τ) ∈ NΛ
K+

(wn),

where un → u∗ and wn → w∗. It follows that there exists θwn ∈ SΘ(wn) such that
un(τ) = ∆λ

K+
θwn(τ). Since the operator ∆λ

K+
is a closed linear operator (Lemma 2)

and un → u∗; then, there exists θw∗ ∈ SΘ(w∗) such that

un(τ) = ∆λ
K+

θwn(τ)→ ∆λ
K+

θw∗(τ).

Take u∗(τ) = ∆λ
K+

θw∗(τ): then u∗(τ) ∈ NΛ
K+

(w∗) concludes the proof of the claim.

Step2: Define the linear operator Lw = λ(ρ − 1)M(b0)
∫ b

b0
β(s)w(s)ds, w ∈ X. Then,

L(P) ⊆ P and

r(L) = lim
n→∞

(‖Ln‖)
1
n

≤ λ(ρ− 1)M(b0)β lim
n→∞

sup
‖w‖=1

∣∣∣∣ 1
Γ(n)

∫ b

b0

(b− s)n−1w(s)ds
∣∣∣∣ 1

n

≤ λ(ρ− 1)M(b0)β lim
n→∞

∣∣∣∣ 1
Γ(n + 1)

(b− b0)
n
∣∣∣∣ 1

n

≤ λ(ρ− 1)M(b0)β(b− b0) lim
n→∞

∣∣∣∣ 1
Γ(n + 1)

∣∣∣∣ 1
n
= 0

.

Then

(1) Let w, z ∈ P with w�z. If ηw(τ) ∈ NΛ
K+

(w), there exists θw ∈ SΘ(w) such that

ηw(τ) = λ
∫ b

b0

GK+(τ, s)θw(s)ds.

Since SΘ is increasing upward, then there exists θz ∈ SΘ(z) with θw�θz. Conse-
quently,

ηw(τ) ≤ λ
∫ b

b0

GK+(τ, s)θz(s)ds.

Defining

ηz(τ) = λ
∫ b

b0

GK+(τ, s)θz(s)ds,

it holds ηz(τ) ∈ NΛ
K+

(z) and 0 ≤ ηz(τ)− ηw(τ).
(2) Similarly to (1), we can prove that if ηz(τ) ∈ NΛ

K+
(z) there exists ηw(τ) ∈

NΛ
K+

(w), for which 0 ≤ ηz(τ)− ηw(τ).
(3) Using Lemma 5, one has

ηz(τ)− ηw(τ) = λ
∫ b

b0

GK+(τ, s)[θz − θw](s)ds

≤ λ(ρ− 1)
∫ b

b0

M(s)[θz − θw](s)ds

≤ λ(ρ− 1)
∫ b

b0

M(s)
∫ s

b0

[θz − θw](z)dzds

≤ λ(ρ− 1)M(b0)
∫ b

b0

β(s)[z− w](s)ds

≤ λ(ρ− 1)M(b0)β
∫ b

b0

[z− w](s)ds

≤ L(z− w).



Axioms 2021, 10, 170 8 of 12

By Theorem 1, the previous steps imply that the problem (1)–(3) admits at least a
solution in P, i.e, a positive solution.

Theorem 4. (Decreasing Map) Suppose that Θ is a L1 − −Caratheodory multi-valued map
subject to the following conditions:

(N4) SΘ is a decreasing multi-valued map.

(N5) There exists a nondecreasing function Υb(τ) ∈ L∞([b0, b],R+) such that for any τ ∈
[b0, b], θw ∈ SΘ(w), θz ∈ SΘ(z) and w, z ∈ P with w�z it holds∫ b

b0

(θz − θw)(s)ds ≥ −Υb(τ)(z− w)(τ).

(N6) For the function M(s) defined as in Lemma 5 we have the condition

C = λ(ρ− 1)M(b0)Υ∗b < 1, λ ∈ Λ,

where Λ is defined in (19) and Υ∗b = ‖Υb‖∞.

Then, the problem (1)–(3) has at least one positive solution.

Proof. Step1: Similarly to Step1 in the proof of Theorem 3.

Step2 (1) Let w, z ∈ P with w�z. If ηw(τ) ∈ NΛ
K+

(w), it follows that there exists θw ∈
SΘ(w) such that

ηw(τ) = λ
∫ b

b0

GK+(τ, s)θw(s)ds.

Since SΘ is decreasing upward, then there exists θz ∈ SΘ(z) with θz�θw. Conse-
quently,

ηw(τ) ≥ λ
∫ b

b0

GK+(τ, s)θz(s)ds.

Defining

ηz(τ) = λ
∫ b

b0

GK+(τ, s)θz(s)ds,

ηz(τ) ∈ NΛ
K+

(z) and ηz(τ)− ηw(τ) ≤ 0.
(2) Similarly to (1), we can prove that if ηz(τ) ∈ NΛ

K+
(z), then there exists ηw(τ) ∈

NΛ
K+

(w), for which ηz(τ)− ηw(τ) ≤ 0.
(3) Using Lemma 5, one has

ηz(τ)− ηw(τ) = λ
∫ b

b0

GK+(τ, s)[θz − θw](s)ds

≥ −λ(ρ− 1)
∫ b

b0

M(s)[θw − θz](s)ds

≥ λ(ρ− 1)M(b0)
∫ b

b0

[θz − θw](s)ds

≥ −λ(ρ− 1)M(b0)Υb(τ)[z− w](τ)

≥ −λ(ρ− 1)M(b0)Υ∗b [z− w](τ)

≥ −C(z− w)(τ),

where C = λ(ρ− 1)M(b0)Υ∗b < 1.
By Theorem 2, the pervious steps show that the problem (1)–(3) is solvable in P, i.e,

admits a positive solution.
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4. Applications

Here, we present some examples related to the main results. To obtain the desired
conditions, we make use of the Poincaré inequality in L1(J,R).

Example 1. Consider the problem

(−1)4−k
CH Dρw(τ) ∈ Θ(τ, w(τ)), J = [1, 2], ρ =

7
2

, λ = 1 (21)

Θ(τ, w) =

[
[ρ]n sin

(
πw

2n(π + w)

)]
, n ≤ N, n, N ∈ N. (22)

w(r)(1) = 0, r = 1, 2, 3 (23)

w(2) = 0 (24)

Then

(1) ‖Θ‖∞ = sup
∣∣∣[ρ]n sin

(
πw

2(π+w)

)∣∣∣ ≤ [ρ]N , which implies ψR = [ρ]N .

(2) It is known that the function sin w is increasing in the compact interval [−π
2 , π

2 ]. So, Θ is
increasing since 0 < πw

2n(π+w)
< π

2n ≤ π
2 .

(3) For all 0 ≤ w�z one has

[ρ]n
∫ τ

1

[
sin
(

πz
2n(π + z)

)
(s)− sin

(
πw

2n(π + w)

)
(s)
]

ds

= [ρ]n
∫ τ

1
2
[

sin
(

πz(π + w)− πw(π + z)
2n+1(π + z)(π + w)

)
(s) cos

(
πz(π + w) + πw(π + z)

2n+1(π + z)(π + w)

)
(s)
]

ds

≤ 2[ρ]N
∫ τ

1

[
sin
(

π(z− w)(π + z)
2n+1(π + z)(π + w)

)
(s)
]

ds

= 2[ρ]N
∫ τ

1

[
sin
(

π(z− w)

2n+1(π + w)

)
(s)
]

ds

≤ 2[ρ]N
∫ τ

1

[
sin
(

π(z− w)

2n+1(π + w)

)
(s)
]

ds

≤ 2[ρ]N
∫ τ

1

[
1

2n+1 (z− w)(s)
]

ds

≤ [ρ]N

2n CJ

∫ τ

1
∇[z− w](s)ds

=
[ρ]N

2n CJ(z− w)(τ)

[
1− (z− w)(1)

(z− w)(τ)

]
≤ [ρ]N

2
CJ(z− w)(τ)

[
1− (z− w)(1)

‖z− w‖

]
≤ [ρ]N

2
CJ(z− w)(τ),

where we used the fact that u(τ) ≤ ‖u‖∞, ∀τ ∈ J. Hence, β(τ) = [ρ]N

2 CJ

Comparing (1)–(3) with Theorem 3 we find the solvability of the problem (21)–(24) in the cone P.

Example 2. If we replace (22) by the multi-valued map

Θ(τ, w) =

[
1

[ρ]n
cos
(

πw
2n(π + w)

)]
, n ∈ N. (25)

Then we have the followings

(1) ‖Θ‖∞ = sup
∣∣∣ 1
[ρ]n

cos
(

πw
2n(π+w)

)∣∣∣ ≤ 1
3 , which implies ψR = 1

3 .
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(2) It is known that the function cos w is decreasing in the compact interval [0, π]. Therefore, Θ
is decreasing since 0 < πw

2n(π+w)
< π

2 .

(3) For all 0 ≤ w�z we have

1
[ρ]n

∫ 2

1

[
cos
(

πz
2n(π + z)

)
(s)− cos

(
πw

2n(π + w)

)
(s)
]

ds

=
1

[ρ]n

∫ 2

1
−2
[

sin
(

πz(π + w)− πw(π + z)
2n+1(π + z)(π + w)

)
(s) sin

(
πz(π + w) + πw(π + z)

2n+1(π + z)(π + w)

)
(s)
]

ds

≥ −2
[ρ]n

∫ 2

1

[
sin
(

π(z− w)(π + w)

2n+1(π + z)(π + w)

)
(s)
]

ds

=
−2
[ρ]n

∫ 2

1

[
sin
(

π(z− w)

2n+1(π + z)

)
(s)
]

ds

≥ −2
[ρ]n

∫ 2

1

(
π(z− w)

2n+1(π + z)

)
(s)ds

≥ −π

2n[ρ]n

∫ 2

1

(
(z− w)

(π + z)

)
(s)ds

≥ −1
2[ρ]n

CJ

∫ 2

1
∇(z− w)(s)ds

=
−1

2[ρ]n
CJ [(z− w)(2)− (z− w)(1)]

=
1

2[ρ]n
CJ(z− w)(1)

≥ 0 ≥ −1
[ρ]

(z− w)(τ),

which tends to take Υb(τ) =
1
[ρ]

.

(4) We have the following values

Γ(
7
2
) =

15
√

π

8
≈ 3.323350970445,

M(1) ≈ 0.1496057282,

Υ∗b =
1
3

λ = 1

.

C = λ(ρ− 1)M(b0)Υ∗b ≈ 0.1246714402 < 1

By linking results for positive solutions of the problem (1)–(3) with Theorem 4, we can see that
the problem (21), (23)–(25) has a positive solution.

5. Conclusions

For monotone-type multi-valued operator, we investigate the existence results and
provide some applications for them. Our analysis relies on nonlinear monotone fixed point
theorems and is connected with oscillation theory in the sense of (k, n− k) conjugate-type
differential operator. It is worth generalizing the results on fractional differential equation
by multi-valued maps in order to get new extents for phenomena modeling.
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