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Abstract: Breast segmentation plays a vital role in the automatic analysis of mammograms. Accurate
segmentation of the breast region increments the probability of a correct diagnostic and minimizes
computational cost. Traditionally, model-based approaches dominated the landscape for breast
segmentation, but recent studies seem to benefit from using robust deep learning models for this
task. In this work, we present an extensive evaluation of deep learning architectures for semantic
segmentation of mammograms, including segmentation metrics, memory requirements, and average
inference time. We used several combinations of two-stage segmentation architectures composed
of a feature extraction net (VGG16 and ResNet50) and a segmentation net (FCN-8, U-Net, and
PSPNet). The training examples were taken from the mini Mammographic Image Analysis Society
(MIAS) database. Experimental results using the mini-MIAS database show that the best net scored
a Dice similarity coefficient of 99.37% for breast boundary segmentation and 95.45% for pectoral
muscle segmentation.

Keywords: breast segmentation; mammogram; deep learning; semantic segmentation

MSC: 68T20

1. Introduction

Computer-aided detection (CADe) systems are valuable tools to assist medical experts
in detecting and diagnosing diseases. The aim of CADe for breast analysis is twofold: it
reduces the chances of cancer being undetected in the earlier stages, and it can lower the
number of unnecessary medical interventions (such as biopsies), mitigating the levels of
anxiety and stress in the patients [1,2].

For mammogram CADe, accurate segmentation of the breast is a crucial step [3–5], as it
can accelerate diagnosis and lower the number of false positives and false negatives [1,6,7].
Automatic mammogram segmentation identifies the different tissues in the breast and gives
them a label such as pectoral muscle, fatty tissue, fibroglandular tissue, or nipple [6–8].

In breast segmentation, the most challenging task is to identify the pectoral muscle
accurately. As a result, the brightness, position, and size of the pectoral muscle vary widely.
The pectoral muscle may occupy most of the image or do not appear in it. Most of the time,
the pectoral muscle appears in the upper part of the mammogram with a white triangular
shape since the curvature and length of the lower edge fluctuates [7]. The pectoral muscle’s
brightness can appear similar to fibroglandular tissue in dense breasts or other structures
such as parenchymal texture, artifacts, and labels in digitized mammograms [6,9].

CADe approaches for image segmentation began with traditional computer vision
techniques such as edge detection and mathematical modeling. These systems evolved
and started including machine learning approaches which, at present, constitute the core
of a CADe system, becoming the primary option for medical image segmentation [10].
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Although deep learning has shown excellent performance for medical image segmentation,
the use of deep learning for mammogram segmentation is scarce [4,11].

This paper contributes with an extensive evaluation of mammogram segmentation
using deep learning architectures. We combined several architectures to explore their per-
formance under different scenarios. We obtained accuracy metrics, memory consumption,
and inference time to compare the performance of the architectures. We present multicrite-
ria evaluation results that can help obtain answers beyond simple accuracy metrics since
other important characteristics can also be considered in selecting the best architecture for
a given application. Additionally, we provide a comprehensive introduction to the topic
of semantic segmentation using deep learning approaches and how different deep neural
networks can be combined to achieve better results.

The paper is organized as follows: in Section 2, we summarized the different state-
of-the-art approaches for breast segmentation. In Section 3 the theoretical background of
deep neural network used in this work and key concepts about digitized mammograms
are provided. In Section 4 we provide information about the designed experiments and
how to reproduce our findings. In Section 5, we present our results using the mini-MIAS
database and a comparative against other methods. Finally, in Section 6 we discuss our
results and provide our opinion about future work.

2. Related Work

Traditional methods for breast segmentation combine geometric models and iterative
calculation of a threshold to distinguish between different breast tissues.
Mustra and Grgic [5] used polar representation to identify the round part of the breast.
They found the breast line using a combination of morphological thresholding and con-
trast limited adaptive histogram equalization. To extract the pectoral muscle, they used a
mixture of thresholding and cubic polynomial fitting.

Liu et al. [8] developed a method for pectoral muscle segmentation based on statistical
features using the Anderson–Darling test to identify the pectoral muscle’s boundary pixels.
They eliminated the regions outside the pectoral muscle’s probable area by assuming the
position of the pectoral muscle (upper-left corner of the mammogram) and found the final
boundary of the muscle by using an iterative process that searches for edge continuity
and orientation.

More recently, Taghanaki et al. [2] used a mixture of geometric rules and intensity
thresholding to identify the breast region and the pectoral muscle. Vikhe and Thool [7]
developed an intensity-based algorithm to segment the pectoral region. They estimated the
pectoral region through a binary mask of the breast obtained by a thresholding technique
followed by an intensity filter. Then, with a thresholding technique for rows separated by
a pixel interval, several estimated pectoral muscle outline points were found.

Rampun et al. [3] developed a mammogram model to estimate the pectoral region’s
position and the breast’s orientation. First, they found the breast region using Otsu’s
thresholding, then removed the noise using an anisotropic diffusion filtering; after that,
the initial breast boundary was found using the image’s median and standard deviation.
The Chan–Vese model was used to obtain a more precise boundary. Finally, using an
extended breast and Canny edge detection model, the pectoral muscle was found.

The use of deep learning in medical imaging has incremented since 2015 and is now
an essential topic for research. In the medical field, deep learning has been used to detect,
classify, enhance, and segmentation [12]. Despite this trend, the number of works published
for mammograms with deep learning is low.

In this regard, Dalmış et al. [13] segmented breast MRI’s using several sets of U-nets.
In the first experiment, they trained two U-nets, the first one for the breast area’s segmenta-
tion and the second one to segment the fibroglandular tissue. In the second experiment,
a single U-net with three classes to identify the background, the fatty tissue, and the fibrog-
landular tissue was trained. They used the SØrensen–Dice similarity coefficient to evaluate
the experiments, obtaining 0.811 for the first experiment and 0.85 for the second.
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Dubrovina et al. [4], used a convolutional neural network (CNN) for pixel-wise
classification of mammograms. In their work, they classify mammograms patches into five
classes: pectoral muscle, fibroglandular tissue, nipple, breast tissue, and background.

In a recent work, de Oliveira et al. [11] used several semantic segmentation nets for
mammogram segmentation. They used three different net architectures (FCNs, U-net,
and SegNet) for the segmentation of the pectoral muscle, breast region, and background.

Rampun et al. [14] used a convolutional neural network for pectoral segmentation in
mediolateral oblique mammograms. The network used by Rampun et al. was a modified
holistically nested edge detection network. In a more recent work, Ahmed et al. [15]
used two different architectures, Mask-RCNN and the DeepLab V3, for the semantic
segmentation of cancerous regions in mammograms.

3. Theoretical Background

This section provides the mathematical foundation of the convolutional neural net-
works that we used to perform semantic segmentation of the breast; we explain key
concepts about mammograms to facilitate the understanding of the methods, evaluation,
and results. All the tested architectures of DNN are also explained.

3.1. Supervised Learning Foundations

The general problem in machine learning can be summarized as the following: given a
collection of input values Xi and a set of adjustable weights W, calculate an approximation
function F(Xi, W) that estimates output values Yi, see (1). The output Yi can be seen as the
recognized class label of the given pattern Xi, as scores, or as probabilities associated with
each class [16].

Yi = F(Xi, W) (1)

The loss function is calculated by Equation (2), where D measures the discrepancy
between the desired valued Ŷi and the output given by our approximation function F.

L = D(Yi, Ŷi) (2)

The average loss function, Lt(W) is the average of the errors L over a set of labeled
examples called the training set {Xi, Yi}. A simple learning problem consists in finding
the value W that minimizes Lt(W). Commonly, the system’s performance is estimated by
using a disjoint set of samples called the test set, Zi [16].

A method to minimize the loss function, is by estimating the impact of small variations
in the parameters W on the loss value. This is measured by the gradient of the loss function
L with respect W. Generally, W is a real-valued vector, in which L(W) is continues and
differentiable [16]. The most simple minimization procedure is by using gradient descent,
where W is adjusted in each step by:

Wt = Wt−1 − η
∂L(W)

∂W
(3)

where η is called the learning rate, which indicates how much the algorithm would change
by the calculated error.

Another popular minimization procedure is the stochastic gradient descent. This
algorithm consists in updating the W using a noisy or approximated version of the average
gradient. This can be represented as randomly selecting a subset of the input data Xi and
calculate an approximate gradient for each batch. Since over a set of iterations the addition
of the loss functions would be calculated randomly for most of the data, the average of the
different trials would be very similar to the real gradient. The stochastic gradient descent
is represented as:

Wt = Wt1 − η ∑
∂Lx(W)

∂W
(4)
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The main difference, is that in this case, L(W) is calculated over a subset of Xi called
x. In the most simple case, W is updated using only a single example. With this procedure,
the calculated gradient fluctuates around an average trajectory that usually converges
faster than the original gradient descent [16].

Feedforward networks use backpropagation to efficiently calculate gradients of differ-
entiable layers. The basic feedforward networks is built as a group of cascade elements
(neurons) each one implementing a function Yn = F(Yn−1, Wn), where Yn is the output of
the module, Wn is the vector of tunable parameters, and Yn−1 is the input of the module.
The input Y0 to the first module is the input pattern X, and the subsequent layers that
calculate Yi are called hidden layers. If the partial derivative of Fi with respect to Yn is
known, then the partial derivatives of Fi with respect to Wn and Yn−1 can be calculated
using rule chain as:

∂Fi

∂Wn
=

∂F
∂W

(Wn, Yn−1)
∂Fi

∂Yn
(5)

∂Fi

∂Yn−1
=

∂F
∂Y

(Wn, Yn−1)
∂Fi

∂Yn
(6)

where (∂F/∂W)(Wn, Yn−1) is the Jacobian of F with respect to W evaluated at the point
(Wn, Yn−1), and (∂F/∂Y)(Wn, Yn−1) is the Jacobian of F with respect to X. The full gradient
is obtained by getting the average of the gradients over all the training patterns.

3.2. Convolutional Neural Networks

Multilayer networks can learn complex, high-dimensional, nonlinear mappings from
a large set of training examples. This ability makes them a clear candidate for image
recognition tasks. A typical pipeline of an image recognition system uses a feature extractor
method to obtain the most relevant characteristics of the image and then use them as
feature vectors to train the network. Most of these feature extractors are hand-crafted,
which makes appealing the possibility of creating features extractors that learn the most
relevant features. Using traditional neural networks (also called fully connected networks)
for feature extraction and classification has some evident limitations.

The first one is the size of the network. Traditional images are multi-channel matri-
ces with millions of pixels. To represent this information on a fully connected network,
the number of weights for each fully connected layer would be in the millions even if the
image is resized to a certain degree. The increment in the number of trainable parameters
increases the memory requirements to represent the weights of the network.

Additionally, there is no built-in invariance of translation or local distortion of the
inputs in these types of networks. In theory, a fully connected network could learn to gen-
erate outputs that are invariants to distortion or some degree of translation. The downside
is that it would result that several learning units have to learn similar weight patterns that
are positioned at different locations in the input. Covering the space of all the possible
variations would need many training instances; hence it would demand considerable
memory requirements.

Another deficiency of fully connected networks is that the topology of the input vector
is ignored. Images have a solid two-dimensional local structure where pixels have a high
correlation with their neighbors. These local correlations in images are the main reason for
using hand-crafted feature extractors before a classification stage.

Convolutional neural networks (CNN) address the issues of fully connected networks
and achieve shift, scale, and distortion invariance by using three elements: local receptive
fields, shared weights, and spatial subsampling. Local receptive field neurons are used
to extract elementary visual features such as edges, endpoints, corners, and textures.
Subsequent layers combine these low-order features to detect higher-order features. On a
CNN, learning units in a layer are organized in planes in which all units share the same
set of weights, this allows the network to be invariant to shifts or distortions of the input.
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The set of outputs of the learning units is called a feature map [16]. The shared weights are
adjusted during the learning phase to detect a set of relevant features.

A convolutional layer comprises several feature maps, this allows multiple features
to be extracted at each location. The operation of the feature maps is equivalent to a
convolution, followed by an additive bias and a squashing function, giving its name of
convolutional network [17]. A convolutional layer can be represented as:

Conv(Yn, K) = ∑
i

∑
j

∑
k

K{i,j,k}Yn{i,j,k} (7)

where K is the kernel that acts on the input map Yn using a window of size k. The kernel of
this convolutional layer is the set of connection weights used by the units in the feature
map. In Figure 1, an arbitrary input map is feed into a convolutional filter with size 3× 3.
To obtain the output, each element in their respective position K{i,j} would be multiplied
with their pairs in the input map at position Yn{i,n} and then they would be summed
up. In this specific example, the operation is as follows: (1× 1) + (2×−1) + (1×−1) +
(1× 0) + (3× 1) + (2×−1) + (1× 0) + (1× 0) + (4×−1) = −5. The convolutional filter
would move over the input map given a step size. The output map would be the encoded
features from the input map given the convolutional filter.

The shape, size, and composition of the kernel helps the network to learn specific
features that the network detects as important. Convolutional layers are robust to shift and
distortions of the inputs since the feature maps only shifts by the same amount as the shift
in the input image.

Figure 1. Example of a convolutional operation.

After a feature is detected, its exact position becomes irrelevant, and only the approxi-
mate position relative to other features is important. Knowing its precise position can be
harmful to achieving robustness to slight variations of the input. In order to reduce preci-
sion, spatial resolution reduction of the feature maps is used in convolutional networks.

Pooling layers can perform a subsampling using a wide array of mathematical opera-
tions over a feature map. These operations can be as simple as the maximum value over
a given window (max pooling), the average value (average pooling), or more complex,
such as taking the average of the whole feature map (global average pooling). Similar to
the convolutional layers, the mathematical operation of pooling layers acts upon a fixed
window of size p. In Figure 2, two different pooling layers of size p = 2 are applied over
an given feature map of size 4× 4. Given p = 2, the feature map is downsized to 2× 2.
The colors indicate the area of effect of the pooling layer. As an example, on the orange
layer, the output of the max-pooling is 23 given that the maximum value is 23, on the
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contrary, for the average pooling (rounded to the next integer value) the output is 15 given
that (23 + 23 + 0 + 12)/4 = 15. Selecting over different pooling layers would affect the
learning capacity of the network.

Figure 2. Example of max pooling and average pooling.

Using a combination of convolutional and pooling layers over a progressing reduction
of spatial reduction compensated by an increasing number of feature maps helps achieve
invariance to the geometric transformation of the input.

At the end of the convolutional and pooling layers, a fully connected network is used.
Since all the weights in the system are learned using backpropagation, and at the end there
is a fully connected network, in essence, a CNN is learning to extract its own features and
classify them.

CNNs are an example of deep neural networks (DNNs), which are neural networks
with many layers between the input layer and the output layer (hidden layers), hence
the name.

3.3. Fully Convolutional Networks

Fully convolutional networks (FCN) are a particular type of CNNs, where all the layers
compute a nonlinear filter (a convolutional filter). This allows FCNs to naturally operate
on any input size and produce an output of the corresponding spatial dimensions [18].

Commonly, detection CNNs take fixed-sized inputs and produce nonspatial outputs.
Fully connected layers can also be viewed as convolutions with kernels that cover the
entire input. This can transform traditional CNN into FCNs that take input of any size and
make spatial output maps.

These outputs maps are typically reduced due to the subsampling provided by the
pooling layers, reducing the resolution of the FCNs by a factor equal to the pixel stride of
the receptive fields of the output units; this is to prevent the coarse outputs from being
connected with upsampling layers that act as convolutional layers with a fractional input
stride of 1/s. These fractional stride convolutions are typically called transpose convolutions.

A network with these characteristics can perform classification at a pixel level or
semantic segmentation. In semantic segmentation, every pixel of the image is associated
with a class. This association helps to understand what is happening in the image and where
it is happening [18].
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3.4. Deep Learning Architectures for Semantic Segmentation

Many deep neural networks (DNNs) have been proposed for semantic segmentation,
most of these approaches are based on a derivation of the following: convolutional neural
networks, fully convolutional networks [18], U-Net [19] variations, convolutional residual
networks, recurrent neural networks [10], densely connected convolutional networks [20],
and DeepLab variations [21–23].

In this work, we used several DNNs to test their performance in mammogram seg-
mentation. Similar to Siam et al. [24], we combined pairs of feature extraction networks
and segmentation networks for semantic segmentation. For the feature extraction sec-
tion, we used the VGG16 and the ResNet50; for the segmentation part, we used FCN8,
U-Net, and PSPNnet. These composite structures summarize the spectrum of DNNs for
semantic segmentation.

In the following lines, we describe the base networks used in this work in detail, followed
by the description of the specific encoder–decoder pairs used for the breast segmentation.

3.4.1. VGG16

Simonyan and Zisserman [25] proposed VGG16, which is a well-known architecture
that won the 2014 ImageNet Challenge. The VGG16 has 16 weight layers (convolutional
and fully connected layers), with a total of 134 million trainable parameters, see Figure 3.

Figure 3. Architecture of the VGG-16.

The input layer has a fixed size of 224× 224, followed by five convolutional sections.
Each convolutional section have 3× 3 filters with a stride of 1, followed by a 2× 2 max-
pooling filter with stride 2. The activation function used in each block are rectified linear
units (ReLU) layers, defined as:

ReLU(Yn) = max(0, Yn−1). (8)

The end layers are three fully connected layers: the first two with 4096 channels,
and the third one is a softmax layer with the number of channels adjusted to the number of
classes. Table 1 describes each layer in detail.
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Table 1. Layer description of the VGG16.

Type Filters Size, Stride

Conv_1 64 × 2 3× 3, 1
Pool_1 – 2
Conv_2 128 × 2 3× 3, 1
Pool_2 – 2
Conv_3 256 × 3 3× 3, 1
Pool_3 – 2
Conv_4 512 × 3 3× 3, 1
Pool_4 – 2
Conv_5 512 × 3 3× 3, 1
Pool_5 – 2

FConv 4096 7× 7
FConv 4096 1× 1

Softmax – –

3.4.2. ResNet50

A big obstacle for earlier networks with depth above thirty layers was accuracy
saturation, followed by a fast accuracy degradation. ResNet was proposed by He et al. [26],
winning the ILSVRC classification task in 2015. ResNet addresses the degradation problem
with residual blocks, see Figure 4, which are shortcut connections between layers using
identity mapping, and adding their outputs of the stack layers.

Figure 4. ResNets address the accuracy saturation and accuracy degradation issue with residual
blocks. (a) Traditional DNN stacking where each layer feeds into the next layer. (b) In residual blocks
the output of a layers is added to a layer deeper in the block.

ResNets have five sections: the first section is a convolutional layer followed by a
max-pooling layer; the other four sections are residual blocks that repeat different times.
ResNet50 is the fifty layer variant of ResNet, see Figure 5, their four residual blocks are
called bottlenecks. Each bottleneck block has three convolutional layers, the first and the
third one have 1× 1 kernels, and the second layers have a 3× 3 kernel. A description of
the layers in ResNet50 can be found in Table 2.
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Figure 5. Architecture of the ResNet50.

Table 2. Layer description of ResNet50.

Type Filters Size, Stride

Conv_1 64 7× 7, 2
Pool_1 – 3× 3, 2

64 1× 1, 1
Conv_2 × 3 64 3× 3, 1

256 1× 1, 1
128 1× 1, 1

Conv_3 × 4 128 3× 3, 1
512 1× 1, 1
256 1× 1, 1

Conv_4 × 6 256 3× 3, 1
1024 1× 1, 1
512 1× 1, 1

Conv_5 × 3 512 3× 3, 1
2048 1× 1, 1

GAP – 1× 1
Softmax – –

3.4.3. FCN-8

Fully convolutional networks were one of the first networks designed for semantic
segmentation [18]. Their main advantage was their capacity to take an input of arbitrary
size, generating a correspondingly sized output.

The fully convolutional versions of classification networks (such as Alexnet, VGG16,
GoogLeNet) add skip connections at the end of convolutional blocks, and they add a
convolutional filter in the output and fuse it with an upsampled region at the end of the
network. The upsampling layers are transposed convolutional layers.

In FCNs, fully convolutional layers replace the fully connected layers at the end of the
classifiers: instead of having p neurons interconnected, the layer will have p convolutional
layers. At the end of the network, a softmax layer classifies every pixel into a class.

The FCN8 has two skip connections and three upsampling layers. The first upsampling
layer feeds directly from the fully convolutional layers and has a stride of 32. The second
and third upsampling layers are fed from the skip connections and have 16 and 8 strides,
respectively. The two skip connections come from upper pooling layers, and each one
passes through a convolutional layer. An example of an FCN-8 for an arbitrary network is
shown in Figure 6.
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Figure 6. Architecture of the FCN-8 of a generic DNN.

3.4.4. U-Net

The U-Net architecture has two parts: a contracting path to capture context and an
expanding path for localization [19]. The contracting path consists of several blocks of
two 3× 3 convolutional layers, followed by a ReLU layer and a 2× 2 max pooling with
stride 2. At each downsampling, the number of feature channels is doubled. The expansive
paths have several 2× 2 transpose convolution layers for upsampling, a concatenation
with the corresponding feature map in the contracting path, and two 3× 3 convolutional
layers followed by a ReLU layer. The final layer is a 1× 1 convolutional layer followed by
a softmax layer.

The architecture of the classic U-Net can be seen in Figure 7.

Figure 7. Architecture of the U-Net.

3.4.5. PSPNet

The pyramid scene parsing network (PSPNet) was proposed by Zhao et al. [27] to
incorporate suitable global features for semantic segmentation and scene parsing tasks.
To obtain global information, PSPNet relies on a pyramid pooling module. This module
uses a hierarchical prior, which contains information at different pyramid scales and
varying among different sub-regions.

In Figure 8, we can see the pyramid pooling module inside PSPNet. Once the image
features are extracted, the multiple pooling layers at several sizes extract global information,
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and then a 1× 1 convolutional layer is used to flatten the information, followed by an
upsampling layer to obtain the original size of the feature map. The final step is to
concatenate each feature obtained by the pyramid pooling module, and a convolutional
layer generates the final prediction.

Figure 8. Pyramid pooling module.

3.4.6. VGG16+FCN8

The VGG16+FCN8 is the fully convolutional version of the VGG16. It uses the
same architecture as VGG16, but it replaces the two fully connected layers with fully
convolutional layers and uses skip connections. This net has three streams before the
final upsampling (transposed convolution layer): the output of the fully convolutional
layers, a skip connection from pool_4, and a skip connection from pool_3. Every stream
passes through a convolutional layer before adding them to the output. The architecture of
VGG16+FCN8 can be seen in Figure 9 and is described in Table 3.

Figure 9. Architecture of the VGG16+FCN8.
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Table 3. Layer description of the VGG16+FCN8.

Type Filters Conected to

VGG16 – –
Conv_6 × 2 4096 Conv_5

Conv_7 2 Conv_6
TransConv_1 1 Conv_7

Conv_8 1 Pool_4
Add_1 – –

TransConv_2 1 Add_1
Conv_9 1 Pool_4
Add_2 – –

TransConv_3 1 Add_2
Softmax – TransConv_3

3.4.7. VGG16+U-Net

The VGG16+U-Net has the same shape as the U-Net, with a contracting path and an
expanding path. The contracting path is integrated by four convolutional blocks of the
VGG16 (the last block was removed), with an added single convolutional layer before the
expanding path. The expanding path has three upsampling blocks connected with the
convolutional blocks. The concatenations between the two paths are performed between
Conv_1-Upsampling_3, Conv_2-Upsampling_2, and Conv_3-Upsampling_1. The architec-
ture of the VGG16+U-Net can be seen in Figure 10 and is described in Table 4.

Figure 10. Architecture of the VGG16+U-Net.

Table 4. Layer description of the VGG16+U-Net.

Type Filters Conected to

VGG16 – –
Conv_5 512 Conv_4

Upsampling_1 512 Conv_5
Concat_1 768 Conv_3
Conv_6 256 Concat_1

Upsampling_2 256 Conv_6
Concat_2 384 Conv_2
Conv_7 128 Concat_2

Upsampling_3 128 Conv_7
Concat_3 192 Upsampling_3
Conv_8 64 Concat_3
Conv_9 2 Conv_8
Softmax – Conv_9
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3.4.8. ResNet+PSPNet

The architecture of the ResNet+PSPNet is simple: it eliminates the fully connected
layers of the ResNet50 and adds a pyramid pooling module with two convolutional layers
before the final upsampling layers. The last upsampling layer has the same dimension
as the first residual block (conv2_x), while the upsampling layers in the pyramid pooling
module are half the dimensions of conv5_x. The architecture of ResNet+PSPNet can be
seen in Figure 11 and is described in Table 5.

Figure 11. Architecture of the ResNet50+PSPNet.

Table 5. Layer description of the ResNet50+PSPNet.

Type Filters Conected to

ResNet50 – –
AVGPool_1 2048 Conv5_x

Conv_6 512 AVGPool_1
Upsampling_1 512 Conv_6

AVGPool_2 2048 Conv5_x
Conv_7 512 AVGPool_2

Upsampling_2 512 Conv_7
AVGPool_3 2048 Conv5_x

Conv_8 512 AVGPool_3
Upsampling_3 512 Conv_8

AVGPool_4 2048 Conv5_x
Conv_9 512 AVGPool_4

Upsampling_4 512 Conv_9
Concat_1 4096 Conv_6

Conv_7
Conv_8
Conv_9

Conv_10 512 Concat_1
Conv_11 2 Conv_10
Softmax – Conv_11

3.4.9. ResNet+U-Net

Since VGG16+Unet uses three upsampling blocks in the expanding path, the same
number was used for ResNet+U-Net, and only three of the four residual blocks of the origi-
nal Resnet50 were used for the contracting path. The concatenations between the two paths
are carried out between conv2_x-up_3, conv3_x-up_2, and conv4_x-up_1. The architecture
of the ResNet50+U-Net can be seen in Figure 12 and is described in Table 6.
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Figure 12. Architecture of the ResNet50+U-Net.

Table 6. Layer description of the ResNet50+U-Net.

Type Filters Conected to

ResNet50 – –
Conv_5 512 Conv4_x

Upsampling_1 512 Conv_5
Concat_1 1024 Conv4_x
Conv_6 256 Concat_1

Upsampling_2 256 Conv_6
Concat_2 512 Conv3_x
Conv_7 128 Concat_2

Upsampling_3 128 Conv_7
Concat_3 192 Conv2_x
Conv_8 64 Concat_3
Conv_9 2 Conv_8
Softmax – Conv_9

3.5. Digitized Mammograms

Mammograms have two standard views: craniocaudal (CC) and mediolateral oblique
(MLO). In the CC view, the radiologist has a higher appreciation of the anterior, central,
and middle area of the breast [28]. The MLO view complements the CC view; it is taken
with an oblique angle, providing a lateral image of the pectoral muscle and the breast.
Most of the current research in the automatic segmentation of mammograms focuses on
the MLO view. In this view, there are different components, such as the breast region
(sometimes divided in fibroglandular tissue and fat), the pectoral muscle, and the nipple.

The breast region is generally more extensive than the pectoral muscle, with a round
appearance and most of its pixels near the center or in the mammogram’s lower region.
The breast’s gray level intensity depends on its density (the proportion of glandular tissue
and fat); the higher the breast’s density, the brighter it appears.

The pectoral muscle is in the upper region of the mammogram. In most cases, the pec-
toral muscle appears a bright right triangle, with its origin depending on the mammogram’s
orientation. The size, brightness, and curvature of the muscle vary on a case-by-case basis [7].

When the mammogram comes from digitized films, it may contain medical labels,
noise, and other bright elements that are not part of the breast’s anatomy, e.g., adhesive
tape or abnormal spots [3,4,7]. Elements with such characteristics are cataloged as artifacts.
Figure 13 shows a typical digitized mammogram and its components.
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Figure 13. Typical components of a digitized mammogram: (a) breast region, (b) pectoral muscle,
(c) medical label, (d) digitization artifact, (e) salt noise, and (f) background.

4. Method

As detailed in Section 2, although deep learning is the dominant technique for segmen-
tation in medical imaging, the number of works that study the performance of architectures
for breast segmentation is limited; therefore, the main motivation for this work is to com-
pare the performance of several DNNs in breast segmentation and shed some light on
selecting the appropriate network for breast segmentation given the specific purpose.

Modern nets have a better overall performance for multi-label segmentation, but this
does not necessarily reflect higher performance on classes with lower pixel-count or classes
that resemble geometric shapes (such as the pectoral muscle and breast).

To address all these questions, we performed experiments with four different DNNs:
VGG16+FCN8, VGG16+U-Net, ResNet+PSPNet, and ResNet+UNet. The experiments are
designed to study the segmentation quality in “One” vs. “All scenario” and “multi-class
scenario”, then measure how well the smaller class (the pectoral muscle) is identified.

The selected dataset was the mini-MIAS database [29]. The database has a total of
322 images of digitized mammograms, with a resolution of 200 microns and a size of
1024 × 1024 pixels. To train the networks, we used the labels provided by Oliver et al. [30].
The images are labeled in three classes: breast region, pectoral muscle, and background.

Since the pectoral muscle is much smaller than the breast region (and sometimes does
not appear), and the amount of artifacts varies widely between the images, a set of four
different training batches was developed.

For the first two experiments, the “One” vs. “All approach” was used. In the first
experiment, the pectoral muscle was segmented, and all the other pixels were seen as
the background. For the second experiment, the breast region was segmented, with the
other classes set as background. In the third experiment, the breast area was identified as
the union of the pectoral muscle and the breast region, segmented from the background.
The three classes (breast region, pectoral muscle, and background) were segmented indi-
vidually for the final experiments.

All the experiments used identical hyper-parameters. Each net was trained for
100 epochs using the Adam optimizer with an initial learning rate of 10−4 and an ex-
ponential decay adjusted to achieve a 10−7 in the last epoch.

Since the amount of training examples is small (only 322 image), dividing the set into
training, validation, and testing sets could be prone to overfitting, or it will not assess the
performance of the models correctly. A common way to solve this issue is to use K-fold
cross-validation in which a set is divided randomly into K batches of N/K examples and
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trained with K − 1 batches and leave one for testing. The process is repeated K times,
always leaving a different fold as testing set. This means that each training example is
used K − 1 times as part of the training set, and 1 time as part of the test set. Accuracy
metrics are calculated for each individual test set, and the average is reported. Since K-fold
cross validation averages the performance of the model over all the data, there is a higher
confidence in the evaluation of the model.

We used 5-fold cross-validation to evaluate each architecture’s performance; this
means 20% of the dataset (64 images) is selected randomly as a test set and the other
80% (258 images) for training. Thus, the model is trained five times, in which each time,
the training set and test set are different. Additionally, we used data augmentation in the
training process that consisted of a random crop, rotation, translation, padding, and shear.
All the networks were trained on a Titan X GPU with 12 GB of RAM.

5. Results

To measure the performance of each architecture, we used two similarity metrics.
The first metric is the Jaccard index, also known as the Intersection over Union [31], which
is defined as the cardinality of the intersection of two sets divided by the cardinality of
the union of the same sets, see Equation (9). The second metric is the SØrensen–Dice
(shortened to Dice) coefficient, which is equal to twice the cardinality of the intersection of
both sets divided by the number of elements of both sets, see Equation (10).

J(M, N) =
|M ∩ N|
|M ∪ N| (9)

D(M, N) =
2|M ∩ N|
|M|+ |N| (10)

The experiments were labeled as A (pectoral muscle vs. all), B (breast region vs.
all), C (breast area vs. background), and D (three class segmentation). Tables 7 and 8
indicate the mean value of the 5-fold cross-validation for both segmentation metrics.
The columns are labeled PM for pectoral muscle, BC for background, BR for breast region
interest, and BR+PM refers to the breast area, including the breast region of interest and
the pectoral muscle.

Table 7. Segmentation metrics for experiments A and B. Best results in bold.

A B

Net PM BC BR BC

VGG+FCN8 J: 0.8985
D: 0.9465

J: 0.9888
D: 0.9943

J: 0.9681
D: 0.9838

J: 0.9563
D: 0.9777

VGG+U-Net J: 0.8644
D: 0.9272

J: 0.9852
D: 0.9925

J: 0.9641
D: 0.9817

J: 0.9503
D: 0.9745

ResNet+PSPNet J: 0.9130
D: 0.9545

J: 0.9903
D: 0.9951

J: 0.9627
D: 0.9810

J: 0.9488
D: 0.9737

ResNet+U-Net J: 0.8954
D: 0.9448

J: 0.9885
D: 0.9942

J: 0.9705
D: 0.9850

J: 0.9595
D: 0.9793
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Table 8. Segmentation metrics for experiments C and D. Best results in bold.

C D

Net BR+PM BC BR PM BC

VGG+FCN8 J: 0.9863
D: 0.9931

J: 0.9715
D: 0.9855

J: 0.9674
D: 0.9834

J: 0.8934
D: 0.9437

J: 0.9701
D: 0.9848

VGG+U-Net J: 0.9856
D: 0.9927

J: 0.9697
D: 0.9846

J: 0.9630
D: 0.9811

J: 0.8483
D: 0.9179

J: 0.9656
D: 0.9825

ResNet+PSPNet J: 0.9798
D: 0.9898

J: 0.9575
D: 0.9782

J: 0.9617
D: 0.9805

J: 0.9024
D: 0.9487

J: 0.9551
D: 0.9770

ResNet+U-Net J: 0.9876
D: 0.9937

J: 0.9741
D: 0.9869

J: 0.9704
D: 0.9850

J: 0.8995
D: 0.9471

J: 0.9734
D: 0.9865

In experiment A, ResNet+PSPNet had the highest Dice coefficient for pectoral muscle
segmentation, followed by VGG+FCN8, Resnet+U-Net, and VGG+U-Net. For experiment
B, ResNet+U-Net had the highest Dice coefficient, followed by VGG+FCN8, VGG+U-
Net, and Resnet+PSPNet. In both experiments, the VGG+FCN8 had the second-best
performance differing 0.2% from the best reported in the experiment in A, and 0.12% from
the best DNN in experiment B.

As the results for experiment B indicate, all the nets have very similar performance
( 0.98 Dice) for breast region segmentation. The main difference in the performance of the
architecture comes when segmenting the pectoral muscle of dense mammograms.

With the density parameter in the mini-MIAS database, we obtained the performance
for each density class in experiment A. The three density classes in the mini-MIAS database
are F (fatty), G (fatty-glandular), and D (dense-glandular), and the results for each class
can be seen in Figure 14.

(a) VGG+FCN8 (b) VGG+U-Net

(c) ResNet+PSPNet (d) ResNet+U-Net

Figure 14. Jaccard index for each architecture by density class.

Class D had the lowest Jaccard metric in every net, while G class had the highest
Jaccard index. The best net all-around was ResNet+PSPNet, which has very similar results
for every class and achieves the highest value for each class. The most significant difference
between classes is observed in VGG+U-Net in which the difference between class D and
class G is almost 0.06.
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Dense mammograms have the highest amount of error for all the nets, but it is higher
for the two U-Net based nets. Figure 15 shows the outline of the pectoral muscle on
three dense breasts. As can be seen, both VGG+FCN8 (in pink) and ResNet+PSPNet (in
blue) have an outline very similar to the ground truth. Although ResNet+PSPNet (in
green) seems to overshoot the pectoral line in Figure 15b,c, the shape of the pectoral line is
more natural than the line attained by VGG+FCN8. In the case of Resnet+U-Net, it tends
to under-segment the pectoral muscle with an unnatural shape in the lower part of the
pectoral region. Finally, VGG+U-Net (in purple) does not perform well for very dense
mammograms and generates the most unnatural pectoral line of all the architectures.

(a) mdb053 (b) mdb061 (c) mdb179

Figure 15. Pectoral muscle segmentation for the different DNNs: ground truth (red),
ResNet50+PSPNet (blue), ResNet50+U-Net (green), VGG+FCN8 (pink), and VGG+U-Net (purple).

The Jaccard index and Dice coefficient are higher in experiments C than those on
B, near 0.99 Dice in all the architectures, but with similar ranking in between networks.
In experiment D, the breast region segmentation is almost identical to experiment B,
with lower performance for the muscle segmentation than in experiment A and better
background segmentation.

The reduction in the Jaccard and Dice metrics for the pectoral muscle class in experi-
ment D is more evident in dense mammograms, as Figure 16 shows.



Axioms 2021, 10, 180 19 of 23

(a) mdb053 (b) mdb061 (c) mdb179

Figure 16. Pectoral muscle segmentation for the dense class using the different DNNs:
ground truth (red), ResNet50+PSPNet (blue), ResNet50+U-Net (green), VGG+FCN8 (pink), and
VGG+U-Net (purple).

From all of the experiments, there are interesting observations to be made. As the
results show, U-Net based architectures do not perform well in classes with low pixel-count
and have a lower performance with shallower nets. U-Net’s performance was maximized
in bigger classes and deeper nets, as indicated by experiments B and C where it achieved
the highest results of all the tested architectures. Although, ResNet+PSPNet is a more
modern architecture, VGG+FCN8 outperformed it in the breast class in every experiment.
On the other hand, the best performance for the low pixel-count class (pectoral muscle)
was obtained by ResNet+PSPNet, as indicated in experiments A and D.

We compared the results of the best architectures with different state-of-the-art segmen-
tation approaches, and they are summarized in Table 9. For the breast area segmentation
(BR+PM), the best DNN performs better than any other method in the state-of-the-art,
which is not surprising since the breast area has a high pixel count and can be easily
segmented by a DNN.

For the breast area (BR), the results are also higher than the other two methods
compared. In the pectoral muscle, the best DNN was 2.6% below the best method, achieving
0.9545 compared to the 0.98 of the best result in the state-of-the-art.
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Table 9. Comparison of the best net with other proposals. Best results in bold.

Method BR+PM PM BR

Best DNN J: 0.9876
D: 0.9937

J: 0.9130
D: 0.9545

J: 0.9705
D: 0.9850

Nagi et al. [1] J: 0.9236
D: 0.9598

J: 0.6170
D: 0.7361

J: ——–
D: ——–

Mustra and Grgic [5] J: 0.9525
D: 0.9751

J: ——–
D: ——–

J: ——–
D: ——–

Olsen [32] J: 0.9436
D: 0.9704

J: ——–
D: ——–

J: ——–
D: ——–

Shen et al. [33] J: ——–
D: ——–

J: 0.9125
D: 0.9496

J: ——–
D: ——–

Oliver et al. [30] J: ——–
D: 0.9600

J : ——–
D: 0.8300

J: ——–
D: 0.9700

Taghanaki et al. [2] J: ——–
D: ——–

J: 0.9700
D: 0.9800

J: ——–
D: ——–

Rampun et al. [3] J: 0.9760
D: 0.9880

J: 0.9210
D: 0.9580

J: 0.9510
D: 0.9730

Rampun et al. [14] J: ——–
D: ——–

J: 0.9460
D: 0.9750

J: ——–
D: ——–

Multiple Objective Evaluation

The performance of the implemented architectures does not provide a definitive
answer on which network performs the best under the tested conditions. A way to balance
these results is to test other important features on deep architectures, such as temporal
and spatial requirements. The aforementioned can be achieved by trying to maximize
the accuracy metrics and minimize the inference time and memory requirements for each
network. This approach is an example of a multiobjective optimization problem (MOP)
since we are trying to find a compromise between the computational resources and the
segmentation metrics of each network.

Multiobjective optimization relies on concepts such as Pareto optimal set and Pareto
front [34]. A vector of decision variables ~x∗ ∈ F is a Pareto optimal if there is no other
~x ∈ F such that fi(~x) ≤ fi(~x∗) for all i = 1, . . . , k and f j(~x) ≤ f j(~x∗) for at least one j.
In this definition, the feasible region is represented by F . In MOP, it is common to have
a set of solutions called the Pareto optimal set [34]. The vectors ~x∗ of this set are called
nondominated solutions. A vector of solution ~u is said to dominate ~v, ~u � ~v, if and only if
ui ≤ vi ∧ ∃i ∈ {i, . . . n} : ui ≤ vi. Using this nomenclature, the Pareto optimal set, P∗, can
be defined as:

P∗ := {x ∈ F|¬∃x′ ∈ F , ~f (x′) � ~f (x)}. (11)

The representation of the nondominated vectors included in the Pareto optimal set is
called the Pareto front, which can be represented as:

PF ∗ := {~u = ~f = ( f1(x), . . . , fk(x))|x ∈ P∗}. (12)

For calculating the trade-off between different experiments and the temporal and
spatial requirements, we use a similar approach as in [35]. The idea is to rank each network
in a Pareto front, taking into account the performance in each parameter. We calculated
the inference time in seconds and the memory in megabytes for a standard inference on
an image; the results can be seen in Table 10. At first glance, VGG16+U-Net requires less
time to do an inference and less memory than the others networks, while VGG16+FCN8
took the most time for an inference (0.1445 s), and ResNet+U-Net needed the most memory
(1057 MB).
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Table 10. Temporal and spatial requirements of each architecture.

Network Time (s) Memory (MB)

VGG16+FCN8 0.1445 826
VGG16+U-Net 0.0699 613

ResNet+PSPNet 0.0717 727
ResNet+U-Net 0.0797 1057

To rank the solutions, we base on the distance between the solutions. Since in some
experiments, the distance between metrics is minimal, we established a difference of at
least 1% between each parameter was enough to indicate that one network dominated over
another and they had a lower rank. The results can be seen in Table 11.

Table 11. Ranking for every network at a given metric. The experiment is indicated in parenthesis.

Network Time Memory PM(A) BR(B) PM+BR(C) PM(D)

VGG16+FCN8 III III II I I I
VGG16+U-Net I I III II I II

ResNet+PSPNet I II I II II I
ResNet+U-Net II IV II I I I

The ranking in Table 11 corroborates the previous findings: the best-performing net-
works taking only into consideration the accuracy metrics are VGG+FCN8 and ResNet+U-
Net; however, if we consider the results of inference time and memory needed for each
network, the best performing architecture is Resnet+PSPNet followed by VGG+U-Net.
The results of the ranking systems are important on limited since the expert can decide to
use a network that does not yield the best results but overall has good performance metrics
and a lower computational power to implement.

6. Discussion and Future Work

This paper proposes an extensive analysis of mammogram semantic segmentation
using DNNs. Four different encoder–decoder pairs were trained and evaluated in four
different experimental setups.

Our results show that all the architectures perform well (near 0.99 in Dice) for breast
border segmentation, with higher results than state-of-the-art approaches. For breast region
segmentation, all the architectures had a Dice metric superior to 0.98.

The highest variation was attained in the experiments that included the isolation of
the pectoral muscle. The two architectures that use the U-Net segmentation approach have
the smallest Dice value, surpassed by a very shallow net such as VGG16+FCN8. This issue
is transcendental since U-Net is the go-to architecture for semantic segmentation for many
medical imaging articles. Our research work reveals that other architectures may obtain
higher performance for classes with low pixel-count in medical images.

The highest variation was due to breast density for the pectoral muscle segmentation
since the lowest Dice coefficient was obtained in dense mammograms in all four architec-
tures; however, ResNet+PSPNet had very similar results for the three classes proving to
be the best architecture for low pixel-count classes in mammograms. The main drawback
was its performance on the breast region class, where it had the worst Dice metric of all
the architectures.

Our results indicate that the trained DNNs have good performance for mammogram
segmentation. The best combination for mammogram segmentation seems to be a union of
the output of the breast line given by ResNet+U-Net and the pectoral segmentation given
by ResNet+PSPNet.

The multiobjective evaluation of memory and time requirements showed the impor-
tance of balancing the best performance against these two parameters. This evaluation
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indicates that ResNet+PSPNet has a good balance between accuracy metrics and computa-
tional requirements. The second-best overall network was VGG16+UNet, but their lower
performance in dense mammograms does not make this network appealing in those cases.

In future work, the influence of different and more depth feature extraction architec-
tures can be explored. A balance between the segmentation of low pixel-count and high
pixel-count classes might be achieved by a pyramid module embedded on a U-shaped seg-
mentation net; this could balance between the good performance and capacity of training
with small databases of the U-Net, and the accuracy of detecting low pixel-count classes
of PSPNet.
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