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Abstract: Multivariate polynomial interpolation plays a crucial role both in scientific computation
and engineering application. Exploring the structure of the D-invariant (closed under differentiation)
polynomial subspaces has significant meaning for multivariate Hermite-type interpolation (especially
ideal interpolation). We analyze the structure of a D-invariant polynomial subspace Pn in terms of
Cartesian tensors, where Pn is a subspace with a maximal total degree equal to n, n ≥ 1. For an
arbitrary homogeneous polynomial p(k) of total degree k in Pn, p(k) can be rewritten as the inner
products of a kth order symmetric Cartesian tensor and k column vectors of indeterminates. We show
that p(k) can be determined by all polynomials of a total degree one in Pn. Namely, if we treat all
linear polynomials on the basis of Pn as a column vector, then this vector can be written as a product
of a coefficient matrix A(1) and a column vector of indeterminates; our main result shows that the
kth order symmetric Cartesian tensor corresponds to p(k) is a product of some so-called relational
matrices and A(1).

Keywords: multivariate polynomial interpolation; D-invariant polynomial subspace; Cartesian tensor

1. Introduction

Multivariate polynomial interpolation is widely used in many application domains,
such as image processing, electronic communication, control theory, etc. The theory of
multivariate polynomial interpolation is far from perfect since the interpolation conditions
are too complicated, and the multiplicity structure of each interpolation site has many
different expressions. Note that most related practical problems can be converted to ideal
interpolation problems, whose interpolation conditions is determined by a D−invariant
polynomial subspace. Throughout the paper, F[X] := F[x1, . . . , xd] denotes the polynomial
ring in d variables over F. For simplicity, we will work with the ground field F = R or C.
Ideal interpolation, a special class of polynomial interpolation problems, can be defined by
a linear projector (idempotent operator) of finite rank on F[X]. The kernel of the projector
forms a polynomial ideal. Carl de Boor has conducted a great deal of important work for
ideal interpolation [1].

The interpolation conditions of an ideal interpolant correspond to a D-invariant
subspace [1,2]. Lagrange interpolation is a standard example of which the interpolation
conditions consist of only evaluation functionals. In the one variable case, every ideal
projector is the pointwise limit of Lagrange projectors when F = C. However, this is not
true in the multivariate case [3,4]. Thus, it is natural to ask what kind of ideal interpolation
problem can be written as a limit of Lagrange interpolation problems; we call this the
discrete approximation problem for ideal interpolation [5]. This is equal to considering
how to discretize the differential operators in the D-invariant subspace of each interpolation
site. In [5], by analyzing the structure of the second-order D-invariant subspaces, we give a
sufficient condition to solve the discrete approximation problem for this case. This indicates
that analyzing the structure of the D-invariant subspaces will help us know more about
multivariate polynomial interpolation.
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In polynomial system solving, the multiplicity structure at an isolated zero X̂ is
identified with the dual space consisting of all linear functionals supported at X̂ that vanish
on the entire polynomial ideal generated by the given polynomial system [2]. Here, all
the functionals correspond to a vector space, which is D-invariant (some references would
use the term “closed”). Dayton and Zeng used the dual space theory to derive special-
case polynomial system solving algorithms in 2005 [6]. After that, Zeng presented a new
algorithm that substantially reduces the calculation by means of the closedness subspace
strategy in his paper [7]. In [8], Li and Zhi demonstrated the explicit structure of the
D-invariant subspace in the case of breadth one, which helps to compute the multiplicity
structure of an isolated singular solution more efficiently.

We have seen that analyzing the structure of the D-invariant subspaces helps us
to study a class of interpolation problems and to improve computational efficiency in
polynomial system solving. It is the aim of this paper to describe the structure of the
D-invariant subspaces by Cartesian tensors.

2. Preliminaries

In this section, we will recall some basic definitions in symbolic computation [9] and
the concept of tensors in multilinear algebra [10].

A monomial order on F[X] is any relation � on Zd
≥0 satisfying the following:

(i) � is a total (or linear) order on Zd
≥0.

(ii) If α � β and γ ∈ Zd
≥0, then α + γ � β + γ.

(iii) � is a well-order on Zd
≥0.

Let f = ∑α aαXα ∈ F[X] be a nonzero polynomial and � be a monomial order. The
multidegree of f is the following:

multideg( f ) = max�{α ∈ Zd
≥0 : aα 6= 0}.

The leading monomial of f is the following:

LM( f ) = Xmultideg( f ).

The total degree of f , denoted by deg( f ), is the maximum |α| such that the coefficient aα

is nonzero.

Definition 1. A polynomial subspace P ⊂ F[X] is said to be D-invariant if it is closed under
differentiation, i.e., ∀p ∈ P,

Dj p ∈ P, ∀j = 1, . . . , d,

in which Dj is the partial derivative of p with respect to the jth argument.

In this paper, we denote by Pn, n ≥ 1, a D-invariant polynomial subspace of degree n,
i.e., Pn satisfies the following:

(i) Pn ⊂ { f ∈ F[X] : deg( f ) ≤ n}.
(ii) There exists at least one polynomial of total degree n in Pn.
(iii) ∀p ∈ Pn, Dj p ∈ Pn, ∀j = 1, . . . , d.
For any given subspace Pn, we also define P<n := { f ∈ Pn : deg( f ) < n}.
Since Pn is a linear space, we only need to study a special basis of Pn by doing the

following: to fix a term order (for example, graded reverse lexicographic order, 1 ≺ xd ≺
xd−1 ≺ · · · ≺ x1 ≺ x2

d ≺ xdxd−1 ≺ . . . ), we first write the polynomials in a given basis of
Pn in matrix form, where the columns are indexed by the monomials in increasing order
and the rows are indexed by the basis of Pn; then, with Gauss–Jordan elimination, we can
obtain the reduced row echelon form of this matrix, which gives another basis for Pn. We
call this new basis the “reduced basis” of Pn. In the discussion that follows, by a basis of
some subspace, we always mean the reduced basis.
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Einstein Convention. Einstein introduced a convention whereby if a particular sub-
script (e.g., i) appears twice in a single term of an expression, then it is implicitly summed,
and i is called a dummy index. For example, in traditional notation, we have the following:

a · b = (a1, a2, a3) · (b1, b2, b3) =
3

∑
i=1

aibi,

and using summation convention, we can simply write the following:

a · b = aibi.

Let ei = (0, . . . , 0, 1, 0, . . . , 0)T. Recall that a tensor of real numbers is simply an
element in the tensor product of the vector spaces Rk1 ⊗Rk2 ⊗ · · · ⊗Rkn [11]. Let

{e(1)i1
⊗ e(2)i2

⊗ · · · ⊗ e(n)in | 1 ≤ i1 ≤ k1, 1 ≤ i2 ≤ k2, . . . , 1 ≤ in ≤ kn}

be the standard basis of Rk1 ⊗Rk2 ⊗ · · · ⊗Rkn , where {e(l)1 , e(l)2 , . . . , e(l)kl
} forms a standard

basis for Rkl , l = 1, . . . , n. Note that e(l)i · e
(l)
j = δij, with δ, the Kronecker delta.

We denote by
T = Ti1i2 ...in e(1)i1

⊗ e(2)i2
⊗ · · · ⊗ e(n)in

an nth order Cartesian tensor. Here, the sum over i1, i2, . . . , in is implicit, and Ti1i2 ...in ∈ R
denotes the weight for e(1)i1

⊗ e(2)i2
⊗ · · · ⊗ e(n)in in the sum. Throughout the paper, d denotes

the number of indeterminates, so if there is no confusion, we will simply write ei (i is a
subscript) if e(l)i is in the standard basis of Rd, and write ei (i is a superscript) if e(l)i is in
the standard basis of Rq, where q need not be equal to d. Particularly, for a second order
tensor T = Tijei ⊗ ej on Rd, d = 3, representing each basis tensor as a matrix:

e1 ⊗ e1 =

1 0 0
0 0 0
0 0 0

, e1 ⊗ e2 =

0 1 0
0 0 0
0 0 0

 . . .

then T can be written in the form of a square matrix, i.e., T = (Tij)3×3.

Definition 2 ([11]). A tensor T = Ti1i2 ...in ei1 ⊗ ei2 ⊗ · · · ⊗ ein ∈ Rd ⊗Rd ⊗ · · · ⊗Rd is called
symmetric if it is invariant under any permutation σ of its n indices, i.e., the following:

Tiσ(1)iσ(2) ...iσ(n) = Ti1i2 ...in .

The space of symmetric tensors of order n on Rd is naturally isomorphic to the space
of homogeneous polynomials of total degree n in d variables [11]. We will use this fact to
represent a homogeneous polynomial in R[X].

Definition 3 ([12]). The inner product (also known as contraction) of two Cartesian tensors is
defined as the following:

A · B = (ai...jkei ⊗ · · · ⊗ ej ⊗ ek) · (blm...nel ⊗ em ⊗ · · · ⊗ en)
.
= ai...jkblm...nei ⊗ · · · ⊗ ej ⊗ (ek · el)⊗ em ⊗ · · · ⊗ en

= ai...jlblm...nei ⊗ · · · ⊗ ej ⊗ em ⊗ · · · ⊗ en.

For example, if A and B are matrices, we obtain the following matrix multiplication:

(aijei ⊗ ej) · (bskes ⊗ ek)
.
= aijbskei ⊗ (ej · es)⊗ ek = aisbskei ⊗ ek,
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etc. The critical request here is that the vectors in the inner product must be of the
same dimension.

3. The Structure of the D-Invariant Subspace P2

The structure of P2 was discussed in our paper [5]; we list the results in this section
for completeness.

We first consider a special second-degree D-invariant subspace as follows:

P̃2 := span{1, p(1)1 , p(1)2 , . . . , p(1)m1 , p(2)}, (1)

in which m1 ≤ d and the superscript indicate the total degree of the polynomial. Without
loss of generality, the polynomials of total degree one can be rewritten as the following:

p(1)1

p(1)2
...

p(1)m1

 =


1 0 · · · 0 a1,m1+1 · · · a1,d
0 1 · · · 0 a2,m1+1 · · · a2,d

. . .
...

...
0 0 · · · 1 am1,m1+1 · · · am1,d




x1
x2
...

xd


.
=
(

Im1 A
)
X. (2)

With all p(1)i , i = 1, . . . , m1, given, we have the following result.

Theorem 1 ([5]). With the above notation, p(2) in P̃2 has the following form:

p(2) =
1
2

XT
(

E EA
ATE ATEA

)
X + LTX, (3)

where E is an m1 ×m1 symmetric matrix, L = (0, . . . , 0, lm1+1, . . . , ld)T is a 1-column matrix.

Note that E has
1
2

m1(m1 + 1) free parameters, and L has d−m1 free parameters. The
proof of Theorem 1 also establishes the following result.

Corollary 1 ([5]). Suppose that P2 = span{1, p(1)1 , p(1)2 , . . . , p(1)m1 , p(2)1 , p(2)2 , . . . , p(2)m2 }, where

m1 ≤ d, m2 ≤ (d+1
2 ). Then, each p(2)j , j = 1, . . . , m2, has the following form:

p(2)j =
1
2

XT
(

Ej Ej A
ATEj ATEj A

)
X + LT

j X, (4)

where Ej is an m1 ×m1 symmetric matrix, Lj = (0, . . . , 0, l(j)
m1+1, . . . , l(j)

d )T is a 1-column matrix.

4. The Structure of the D-Invariant Subspace P3

We first assume that there is only 1 polynomial of total degree n in Pn. In the general
case, since we are considering reduced bases, then all polynomials of total degree n in the
basis have this form.

4.1. The Structure of the Homogeneous D-Invariant Subspace P3

We will discuss the structure of p(3) in the D-invariant subspace as follows:

P3 = span{1, p(1)1 , p(1)2 , . . . , p(1)m1 , p(2)1 , p(2)2 , . . . , p(2)m2 , p(3)}, m2 ≤
(

d + 1
2

)
with P<3 given in this part. The partial derivative of the highest homogeneous part
of p(3) can be represented as a linear combination of the quadratic homogeneous part
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of p(2)i , i = 1, . . . , m2; hence, it is natural to begin with the case when p(3) and p(2)i are
all homogeneous polynomials. The general situation of P3 is covered at the end of the
next section.

An arbitrary homogeneous polynomial p(3) has the following form:

p(3) = bijkxixjxk = (bijkei ⊗ ej ⊗ ek) · (xses) · (xtet) · (xlel)
.
= B(3) · X · X · X, (5)

where i, j, k are dummy indices and

bijk = bσ(ijk). (6)

Here, σ(ijk) denotes any permutation of (i, j, k).

Lemma 1. Suppose that p(3) is of the form (5), then ∇p(3) = 3B(3) · X · X.

Proof. ∀l = 1, . . . , d,

∂p(3)

∂xl
= bijkxixj

∂xk
∂xl

+ bijkxi
∂xj

∂xl
xk + bijk

∂xi
∂xl

xjxk = 3blijxixj.

Thus,

∇p(3) =


∂p(3)
∂x1
...

∂p(3)
∂xd

 =

3b1ijxixj
...

3bdijxixj

 = 3bkijxixjek = 3B(3) · X · X. (7)

The proof is completed.

Proposition 1. Suppose that p(3) is of the form (5). Let p(2) := (p(2)1 , . . . , p(2)m2 )
T where

p(2)k = pkijxixj with pkij = pkji ∈ R, ∀k = 1, . . . , m2. Let c(3)sk be the coefficients satisfying
the following:

∇p(3) = (c(3)sk )d×m2 p(2) .
= C(3)p(2),

namely, C(3) is the relational matrix between p(3) and all p(2)k . Then

bsij =
1
3

c(3)sk pkij, ∀s, i, j = 1, . . . , d, (8)

where the right side is a sum w.r.t. k from 1 to m2.

Proof. Since

∇p(3) = C(3)p(2) = c(3)sk pkijxixjes = (c(3)sk pkijes ⊗ ei ⊗ ej) · X · X,

comparing the above equation with (7), we have the following:

3B(3) = 3bsijes ⊗ ei ⊗ ej = c(3)sk pkijes ⊗ ei ⊗ ej, (9)

which is equivalent to the following:

3bsij = c(3)sk pkij, ∀s, i, j = 1, . . . , d.

Thus, the proposition is proved.
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Next, we focus on formulating the relational expression between p(3) and all p(2)k in
“matrix form”.

Supposing that Ck = ckijei ⊗ ej, k = 1, . . . , m, is a sequence of matrices of the same
size, the following notation is useful:

C1
C2
...

Cm

 =


c1ijei ⊗ ej

c2ijei ⊗ ej

...
cmijei ⊗ ej

 .
= ckije

k ⊗ ei ⊗ ej. (10)

Theorem 2. Let C(2)
k = c(2)kij ei ⊗ ej, k = 1, . . . , m2, be the relational matrices between p(2)k and

all linear polynomials in the graded basis of P3 (i.e., p(1)1 , p(1)2 , . . . , p(1)m1 ). With the above notation,

B(3) =
1
3!

C(3) ·


C(2)

1

C(2)
2
...

C(2)
m2

 · (Im1 A
)
. (11)

Proof. For simplicity, let (Im1 A) = A(1) = a(1)ij ei ⊗ ej. Since p(2)k = pkijxixj, and pkijei ⊗ ej

is a d× d matrix, using Corollary 1, we obtain the following:

pkijei ⊗ ej =
1
2

C(2)
k (Im1 A) =

1
2

C(2)
k A(1), ∀k = 1, . . . , m2.

It follows from (9) that

3B(3) = (c(3)sk es ⊗ ek) · (plije
l ⊗ ei ⊗ ej)

= C(3) ·


p1ijei ⊗ ej
p2ijei ⊗ ej

...
pm2ijei ⊗ ej

 =
1
2

C(3) ·


C(2)

1 A(1)

C(2)
2 A(1)

...
C(2)

m2 A(1)


=

1
2
(c(3)lq el ⊗ eq) · (c(2)sij a(1)jt es ⊗ ei ⊗ et) =

1
2

c(3)ls c(2)sij a(1)jt el ⊗ ei ⊗ et,

which gives the following:

B(3) =
1
3!

c(3)ls c(2)sij a(1)jt el ⊗ ei ⊗ et. (12)

On the other hand, the right side of (11) is equal to the following:

1
3!
(c(3)lq el ⊗ eq) · (c(2)wije

w ⊗ ei ⊗ ej) · (a(1)st es ⊗ et) =
1
3!

c(3)lq c(2)qij a(1)jt el ⊗ ei ⊗ et,

This completes the proof of the theorem.

4.2. The Degrees of Freedom of p(3)

We have proved that B(3) has the form (11). Corollary 1 shows that each C(2)
j has

1
2

m1(m1 + 1) free parameters with P<2 given. Now we turn to the following question: given

the space P<3, how many degrees of freedom does C(3) have? According to Equation (8),
the constraints on C(3) are derived from the symmetry of B(3), i.e., Equation (6).



Axioms 2021, 10, 193 7 of 11

Lemma 2. The number of equality constraints contained in (6) is the following:

d(d− 1) +
d(d− 1)(d− 2)

3
.

Proof. There are three cases to consider. First, b111, b222, . . . , bddd do not lead to any con-
straint. Second, b112, b113, . . . are of the form bsst, s 6= t, with bsst = bsts = btss. Notice
that bsst = bsts holds naturally by (8), so there are 1 · d(d− 1) equality constraints. Third,
b123, b124, . . . , are of the form bstw, s 6= t 6= w. Each bstw leads to five equations, for which

three pairs naturally hold, so there are 2
(

d
3

)
=

d(d− 1)(d− 2)
3

equality constraints in

this case.

Similar to (2), with the term order x1 � x2 � · · · � xd, we can write the following:
p(2)1

p(2)2
...

p(2)m2

 =
(

Im2 Ã
)
Q


x2

1
x1x2

...
x2

d

, (13)

in which Q is a column permutation matrix. Since the basis is reduced, then
LM(p(2)i ) 6= LM(p(2)j ), ∀i 6= j. We denote by LM(P=2) andH(P=2) the following sets:

LM(P=2) := {LM(p(2)1 ), LM(p(2)2 ), . . . , LM(p(2)m2 )},

H(P=2) := span{t is a monomial : deg(t) = 3, Dit ∈ LM(P=2) , ∀i = 1, . . . , d}.

Theorem 3. Let χ denote the number of the degrees of freedom of C(3). Then, we have the following:

max{0, dm2 −
(
d(d− 1) +

d(d− 1)(d− 2)
3

)
} ≤ χ ≤ dim(H(P=2)). (14)

Proof. With P<3 given, χ is equal to the number of the degrees of freedom of B(3), so the
second inequality holds obviously. To verify the first one, note that some of the linear
equations derived from (6) may not be linearly independent, and by Lemma 2, the theorem
is proved.

Example 1. Choose d = 3, Q = I, m2 = 5 in (13). Then

LM(P=2) = {x2, xy, xz, y2, yz},

which indicates thatH(P=2) = span{x3, x2y, x2z, xyz, xy2, y3, y2z}. Thus, by the above theorem,
the following holds:

max{0, 15− 8} ≤ χ ≤ 7,

so that χ = 7.

Next, let us show that estimation (14) is sharp through the following example.

Example 2. Let d = 3, m2 = 4, and

p(2)1 = x2 + 0 + 0 + 0 + p123yz + p133z2,

p(2)2 = 0 + xy + 0 + 0 + p223yz + p233z2,

p(2)3 = 0 + 0 + xz + 0 + p323yz + p333z2,
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p(2)4 = 0 + 0 + 0 + y2 + p423yz + p433z2.

By (14),
4 ≤ χ ≤ 5.

We can verify the following:
χ = 4, if p123 = p223 = p323 = p433 = 1, p133 = p233 = p333 = p423 = 0. The free

parameters in C(3) are c(3)11 , c(3)12 , c(3)13 , c(3)14 .
χ = 5, if pk23 = pk33 = 0, ∀k = 1, 2, 3, 4. The free parameters can be chosen as

c(3)11 , c(3)12 , c(3)13 , c(3)14 ,c(3)24 .

5. The Structure of the D-Invariant Subspace Pn

Consider the following D-invariant subspace:

Pn = span{1, p(1)1 , p(1)2 , . . . , p(1)m1 , . . . , p(n−1)
1 , p(n−1)

2 , . . . , p(n−1)
mn−1 , p(n)1 }, n ≥ 3,

in which mk ≤ (d+k−1
k ) for k = 1, . . . , n − 1. We will discuss the special case where all

polynomials in the reduced basis of Pn are restricted to be homogeneous. Let

p(s)t = bti1i2 ...is xi1 xi2 . . . xis , s = 1, . . . , n, t = 1, . . . , ms,

with btiσ(1)iσ(2) ...iσ(s) = bti1i2 ...is , mn = 1.

Similar to the case when n = 3, let B(s)
t = bti1i2 ...is ei1 ⊗ ei2 ⊗ · · · ⊗ eis , the following

can be verified:

p(s)t = B(s)
t ·X · X · · ·X︸ ︷︷ ︸

s copies

, ∇p(s)t = sB(s)
t ·X · X · · ·X︸ ︷︷ ︸

s−1 copies

. (15)

Note that if s = 1, B(1)
t is a first order tensor which can be written as a vector as in

Section 3; if s = 2, B(2)
t is a second order tensor which we write as a matrix in (3). Namely,

p(2)t has two equivalent forms:

p(2)t =
1
2

XTB(2)
t X =

1
2

B(2)
t · X · X. (16)

Finally, assuming that P<n is given, we set forth a general form of Theorem 2.

Theorem 4. For any fixed j ∈ {2, . . . , n}, k ∈ {1, . . . , mj}, let C(j)
k be the relational matrix

between p(j)
k and all polynomials of total degree j− 1 in the basis of Pn, n ≥ 3. Then,

B(n)
1 =

1
n!

C(n)
1 ·


C(n−1)

1

C(n−1)
2

...
C(n−1)

mn−1

 ·


C(n−2)
1

C(n−2)
2

...
C(n−2)

mn−2

 . . .


C(2)

1

C(2)
2
...

C(2)
m2

 · A(1), (17)

where A(1) = (Im1 A).

Unlike general linear polynomial subspaces, due to the “closed” property, the re-
lation between the polynomial of higher degree (i.e., p(s)t ) and all linear polynomials in
Pn can be observed by the above formula. For the proof of this theorem, we need the
following lemmas.
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Lemma 3.

C(n)
1 ·


B(n−1)

1 · X · X · · ·X
B(n−1)

2 · X · X · · ·X
...

B(n−1)
mn−1 · X · X · · ·X

 = C(n)
1 ·


B(n−1)

1

B(n−1)
2

...
B(n−1)

mn−1

 · X · X · · ·X. (18)

Proof. The left side of (18) is equal to the following:

C(n)
1 ·


b1ij...kxixj . . . xk
b2ij...kxixj . . . xk

...
bmn−1ij...kxixj . . . xk

 = (c1stes ⊗ et) · (bqij...kxixj . . . xkeq)

= c1stbtij...kxixj . . . xkes;

and the right side is equal to the following:

(c1stes ⊗ et) · (bqij...keq ⊗ ei ⊗ ej ⊗ · · · ⊗ ek) · (xiei) · (xjej) · · · (xtet)

= (c1stbtij...kes ⊗ ei ⊗ · · · ⊗ ek) · (xiei) · (xjej) · · · (xtet)

= c1stbtij...kxixj . . . xkes.

This completes the proof.

In Theorem 2, we have actually proved the following:

C(3) ·


C(2)

1 A(1)

C(2)
2 A(1)

...
C(2)

m2 A(1)

 = C(3) ·


C(2)

1

C(2)
2
...

C(2)
m2

 · A(1),

This can be easily generalized to an arbitrary n, n > 3, as follows.

Lemma 4.

C(n) ·



C(n−1)
1 ·


C(n−2)

1

C(n−2)
2

...
C(n−2)

mn−2

 . . .


C(2)

1

C(2)
2
...

C(2)
m2

 · A(1)

...

C(n−1)
mn−1 ·


C(n−2)

1

C(n−2)
2

...
C(n−2)

mn−2

 . . .


C(2)

1

C(2)
2
...

C(2)
m2

 · A(1)



= C(n) ·


C(n−1)

1

C(n−1)
2

...
C(n−1)

mn−1

 . . .


C(2)

1

C(2)
2
...

C(2)
m2

 · A(1).
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Proof of Theorem 4. We will use induction on n. If n = 3, the theorem is true by Theorem 2.
Now assume that the theorem holds for all B(n−1)

t , t = 1, . . . , mn−1, n > 3. If we let s = n
in (15), we have the following:

∇p(n)1 = nB(n)
1 · X · X · · ·X;

on the other hand, using Lemma 3, we obtain the following:

∇p(n)1 = C(n)
1 ·


p(n−1)

1

p(n−1)
2

...
p(n−1)

mn−1

 = C(n)
1 ·


B(n−1)

1 · X · X · · ·X
B(n−1)

2 · X · X · · ·X
...

B(n−1)
mn−1 · X · X · · ·X



= C(n)
1 ·


B(n−1)

1

B(n−1)
2

...
B(n−1)

mn−1

 · X · X · · ·X.

Thus,

B(n)
1 =

1
n

C(n)
1 ·


B(n−1)

1

B(n−1)
2

...
B(n−1)

mn−1

.

By our inductive assumption and Lemma 4, the theorem is proved.

6. Conclusions

Li and Zhi demonstrated the structure of the breadth-one D-invariant polynomial
subspace in [8]. We analyzed the structure of a second-degree D-invariant polynomial
subspace P2 in our previous work [5]. As an application for ideal interpolation, we solved
the discrete approximation problem for δzP2(D) under certain conditions. In this work, we
discuss the structure of Pn for a special case, where all polynomials in the reduced basis of
Pn are restricted to be homogeneous. In the future, we will consider a more general case
of Pn. For any fixed s and t, we can decompose p(s)t into its homogeneous components,
and write the following:

p(s)t = B(s)
t,s ·X · · ·X︸ ︷︷ ︸

s copies

+B(s)
t,s−1 ·X · · ·X︸ ︷︷ ︸

s−1 copies

+ · · ·+ B(s)
t,1 · X, s = 1, . . . , n, t = 1, . . . , ms

with B(s)
t,j , a jth order symmetric Cartesian tensor for j = 2, . . . , s. Since 1 is always in

Pn, this means that the constant term in p(s)t can be omitted with reduction. We can now
analyze the structure of the following:

p(n)1 = B(n)
1,n ·X · · ·X︸ ︷︷ ︸

n copies

+B(n)
1,n−1 ·X · · ·X︸ ︷︷ ︸

n−1 copies

+ · · ·+ B(n)
1,1 · X

with P<n given. In view of the D-invariance of Pn, B(n)
1,n only relates to the highest ho-

mogeneous components of all p(n−1)
j , j = 1, . . . , mn−1, i.e., B(n−1)

j,n−1 . In addition, note that

each B(n−1)
j,n−1 can be expressed in the same way; hence, B(n)

1,n has the form (17). B(n)
1,j , j =

2, . . . , n− 1 relates to all the homogeneous complements, which have total degree j− 1
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of polynomials in P<n. With linear reduction, B(n)
1,1 can be written in the form B(n)

1,1 =

(0, . . . , 0, l(n)m1+1, . . . , l(n)d ).
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