On the Composition of Overlap and Grouping Functions

Songsong Dai © ${ }^{(1)}$ Lei Du, Haifeng Song and Yingying Xu *
School of Electronics and Information Engineering, Taizhou University, Taizhou 318000, China; ssdai@tzc.edu.cn (S.D.); dulei2109@tzc.edu.cn (L.D.); isshf@126.com (H.S.)
* Correspondence: yyxu@tzc.edu.cn

Citation: Dai, S.; Du, L.; Song, H.; Xu, Y. On the Composition of Overlap and Grouping Functions. Axioms 2021, 10, 272. https://doi.org/ 10.3390/axioms10040272

Academic Editor: Amit K. Shukla

Received: 9 September 2021
Accepted: 20 October 2021
Published: 24 October 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:/ / creativecommons.org/licenses/by/ 4.0/).

Abstract

Obtaining overlap/grouping functions from a given pair of overlap/grouping functions is an important method of generating overlap/grouping functions, which can be viewed as a binary operation on the set of overlap/grouping functions. In this paper, firstly, we studied closures of overlap/grouping functions w.r.t. \circledast-composition. In addition, then, we show that these compositions are order preserving. Finally, we investigate the preservation of properties like idempotency, migrativity, homogeneity, k-Lipschitz, and power stable.

Keywords: overlap functions; grouping functions; composition; closures; properties preservation

1. Introduction

Overlap function [1] is a special case of aggregation functions [2]. Grouping function [3] is the dual concept of overlap function. In recent years, overlap and grouping functions have attracted wide interest. In the field of application, they are used in image processing [1,4], classification [5,6], and decision-making [7,8]. In the field of theoretical research, the concepts of general, Archimedean, n-dimensional, interval-valued, and complex-valued overlap/grouping functions have been introduced [9-17]. In the literature about overlap/grouping functions, much attention have been recently paid to their properties, this study has enriched overlap/grouping functions. Bedregal [9] studied some properties such as migrativity, idempotency, and homogeneity of overlap/overlap functions. Gomez et al. [12] also considered these properties of N -dimensional overlap functions. Costa and Bedregal [18] introduced quasi-homogeneous overlap functions. Qian and Hu [19] studied the migrativity of uninorms and nullnorms over overlap/grouping functions. They $[13,20,21]$ also studied multiplicative generators and additive generators of overlap/grouping functions and the distributive laws of fuzzy implication functions over overlap functions [9,12,13,18-21]. Moreover, overlap/grouping functions also can be viewed as binary connectives on $[0,1]$, then they can be used to construct other fuzzy connectives. Residual implication, (G, N)-implications, QL-implications, (IO, O)-fuzzy rough sets, and binary relations induced from overlap/grouping functions have been studied [22-27].

The construction of the following overlap/grouping functions was developed in many literature works [1,4,13,15,16,21,27,28]. Obtaining overlap/grouping functions from given overlap/grouping functions is one of the methods to generate overlap/grouping functions. We consider this work as a composition of two or more overlap/grouping functions. As mentioned above, some properties are important for overlap/grouping functions. Thus, it raises the question of whether the new generated overlap/grouping function still satisfies the properties of overlap/grouping functions. In this paper, we consider properties preservation of four compositions such as meet operation, join operation, convex combination, and \circledast-composition of overlap/grouping functions. These results might serve as a certain criteria for choices of generation methods of overlap/grouping functions from given overlap/grouping functions.

The paper is organized as follows: In Section 2, we recall the concepts of overlap/grouping functions and their properties. In Section 3, we studied the closures of
overlap/grouping functions w.r.t. \circledast-composition. In Section 4, we study the order preservation of compositions. In Section 5, we study properties' preservation of compositions. In Section 6, conclusions are briefly summed up.

2. Preliminaries

2.1. Overlap and Grouping Functions

First, we recall the concepts of overlap/grouping functions and their properties; for details, see [1,9,12,13].

Definition 1 ([1]). A bivariate function $O:[0,1]^{2} \rightarrow[0,1]$ is an overlap function if it has the following properties:
(O1) It is commutative;
(O2) $O(\eta, \xi)=0$ if and only if $\eta \xi=0$;
(O3) $O(\eta, \xi)=1$ if and only if $\eta \xi=1$;
(O4) It is non-decreasing;
(O5) It is continuous.
Definition 2 ([1]). A bivariate function $G:[0,1]^{2} \rightarrow[0,1]$ is a grouping function if it has the following properties:
(G1) It is commutative;
(G2) $G(\eta, \xi)=0$ if and only if $\eta=\xi=0$;
(G3) $G(\eta, \xi)=1$ if and only if $\eta=1$ or $\xi=1$.
(G4) It is non-decreasing;
(G5) It is continuous.
If O is an overlap function, then the function $G(\eta, \xi)=1-O(1-\eta, 1-\xi)$ is the dual grouping function of G.

2.2. Properties of Overlap and Grouping Functions

For any two overlap (or grouping) functions O and O^{\prime}, if $O(\eta, \xi) \leq O^{\prime}(\eta, \xi)$ holds for all $(\eta, \xi) \in[0,1]^{2}$, then we say that O is weaker than O^{\prime}, denoted $O \preceq O^{\prime}$. For example, consider the following three overlap functions $O_{M}(\eta, \xi)=\min (\eta, \xi), O_{P}(\eta, \xi)=\eta \xi$ and $O_{\text {Mid }}(\eta, \xi)=\eta \xi \frac{\eta+\xi}{2}$, we get this ordering for these overlap functions:

$$
O_{M i d} \preceq O_{P} \preceq O_{M} .
$$

Some interesting properties for overlap (or grouping) functions are:
(ID) Idempotency:

$$
O(\eta, \eta)=\eta
$$

for all $\eta \in[0,1]$;
(MI) Migrativity:

$$
O(\alpha \eta, \xi)=O(\eta, \alpha \xi)
$$

for all $\alpha, \eta, \xi \in[0,1]$;
(HO-k) Homogeneous of order $k \in] 0, \infty[$:

$$
O(\alpha \eta, \alpha \xi)=\alpha^{k} O(\eta, \xi)
$$

for all $\alpha \in[0, \infty[$ and $\eta, \xi \in[0,1]$ such that $\alpha \eta, \alpha \xi \in[0,1]$;
(k-LI) k-Lipschitz:

$$
\left|O\left(\eta_{1}, \xi_{1}\right)-O\left(\eta_{2}, \xi_{2}\right)\right| \leq k\left(\left|\eta_{1}-\eta_{2}\right|+\left|\xi_{1}-\xi_{2}\right|\right)
$$

for all $\eta_{1}, \eta_{2}, \xi_{1}, \xi_{2} \in[0,1]$.
(PS) Power stable [29]:

$$
O\left(\eta^{r}, \xi^{r}\right)=O(\eta, \xi)^{r}
$$

for all $r \in] 0, \infty[$ and $\eta, \xi \in[0,1]$.

3. Compositions of Overlap and Grouping Functions and Their Closures

In the following, we list four compositions of overlap/grouping functions including meet, join, convex combination, and \circledast-composition. In addition, we then studied their closures.

3.1. Compositions of Overlap and Grouping Functions

For any two overlap (or grouping) functions O_{1} and O_{2}, meet and join operations of O_{1} and O_{2} are defined by

$$
\begin{align*}
& \left(O_{1} \vee O_{2}\right)(\eta, \xi)=\max \left(O_{1}(\eta, \xi), O_{2}(\eta, \xi)\right) \tag{1}\\
& \left(O_{1} \wedge O_{2}\right)(\eta, \xi)=\min \left(O_{1}(\eta, \tilde{\xi}), O_{2}(\eta, \xi)\right) \tag{2}
\end{align*}
$$

for all $(\eta, \xi) \in[0,1]^{2}$.
For any two overlap (or grouping) functions O_{1} and O_{2}, a convex combination of O_{1} and O_{2} is defined as

$$
\begin{equation*}
O_{\lambda}=\lambda O_{1}(\eta, \xi)+(1-\lambda) O_{2}(\eta, \xi) \tag{3}
\end{equation*}
$$

for all $(\eta, \xi) \in[0,1]^{2}$ and $\lambda \in[0,1]$.
For any two overlap (or grouping) functions O_{1} and O_{2}, the \circledast-composition of O_{1} and O_{2} is defined as

$$
\begin{equation*}
\left(O_{1} \circledast O_{2}\right)(\eta, \tilde{\xi})=O_{1}\left(\eta, O_{2}(\eta, \xi)\right) \tag{4}
\end{equation*}
$$

for all $(\eta, \xi) \in[0,1]^{2}$.

3.2. Closures of the Compositions

Closures of the meet operation, join operation, and convex combination have been obtained in $[1,3,9]$. The \circledast-composition of two overlap functions is closed means \circledast composition of two bivariate functions on [0, 1] preserves (O1), (O2), (O3), (O4) and (O5). Similarly, the \circledast-composition of two grouping functions is closed means \circledast-composition of two bivariate functions on [0, 1] preserves (G1), (G2), (G3), (G4) and (G5).

Theorem 1. If two bivariate functions $O_{1}, O_{2}:[0,1]^{2} \rightarrow[0,1]$ satisfy (O2) ((O3), (G2), (G3), (O4), (O5)), then $\left(O_{1} \circledast O_{2}\right)$ also satisfies (O2) ((O3), (G2), (G3), (O4), (O5)).

Proof. First, we show that \circledast-composition preserves $(\mathrm{O} 2)$. If

$$
\left(O_{1} \circledast O_{2}\right)(\eta, \xi)=O_{1}\left(\eta, O_{2}(\eta, \xi)\right)=0
$$

then, since O_{1} satisfies (O2), we have $\eta O_{2}(\eta, \xi)=0$. Case I, if $\eta=0$ and $O_{2}(\eta, \xi) \neq 0$, then $\eta \xi=0 \xi=0$; Case II, if $\eta=0$ and $O_{2}(\eta, \xi)=0$, then $\eta \xi=0 \xi=0$; Case III, if $\eta \neq 0$ and $O_{2}(\eta, \xi)=0$, since O_{2} satisfies $(O 2)$, then $\eta \xi=0$.

Next, we show that \circledast-composition preserves (O3). If

$$
\left(O_{1} \circledast O_{2}\right)(\eta, \xi)=O_{1}\left(\eta, O_{2}(\eta, \xi)\right)=1
$$

then, since O_{1} satisfies $(O 3)$, we have $\eta O_{2}(\eta, \xi)=1$. Then, $\eta=1$ and $O_{2}(\eta, \xi)=1$, since O_{2} satisfies (O3), then $\eta \xi=1$.

Then, we show that \circledast-composition preserves (G2). If

$$
\left(O_{1} \circledast O_{2}\right)(\eta, \xi)=O_{1}\left(\eta, O_{2}(\eta, \xi)\right)=0
$$

then, since O_{1} satisfies (G2), we have $\eta=O_{2}(\eta, \xi)=0$. Since O_{2} satisfies (G2), then $\eta=\xi=0$.

Afterwards, we show that \circledast-composition preserves (G3). If

$$
\left(O_{1} \circledast O_{2}\right)(\eta, \xi)=O_{1}\left(\eta, O_{2}(\eta, \xi)\right)=1
$$

then, since O_{1} satisfies (G3), we have $\eta=1$ or $O_{2}(\eta, \xi)=1$. Since O_{2} satisfies $(G 3), O_{2}(\eta, \xi)=1$ means $\eta=1$ or $\xi=1$.

The case for (O 4) and (O 5) are straightforward.
Unfortunately, \circledast-composition of two bivariate functions does not preserve (O1). For example, let $O_{1}(\eta, \xi)=O_{2}(\eta, \xi)=\eta \xi$; then, $\left(O_{1} \circledast O_{2}\right)(\eta, \xi)=\eta^{2} \xi$ is not commutative. This means \circledast-composition of two overlap/grouping functions is not closed.

However, it is possible to find an example that \circledast-composition of two overlap/grouping functions is also an overlap/grouping function. For example, for two given overlap functions $O_{1}(\eta, \xi)=O_{2}(\eta, \xi)=\min (\eta, \xi)$, their \circledast-composition $\left(O_{1} \circledast O_{2}\right)(\eta, \xi)=\min (\eta, \xi)$ is an overlap function.

The summary of the closures of two bivariate functions w.r.t. these compositions is shown in Table 1.

Table 1. Closures of the compositions.

Property	O_{1}	O_{2}	$O_{1} \vee O_{2}$	$O_{1} \wedge O_{2}$	O_{λ}	$O_{1} \circledast O_{2}$
O_{1}	$\sqrt{ }$	\times				
O_{2}	$\sqrt{ }$					
O_{3}	$\sqrt{ }$					
G_{2}	$\sqrt{ }$					
G_{3}	$\sqrt{ }$					
O_{4}	$\sqrt{ }$					
O_{5}	$\sqrt{ }$					

4. Order Preservation

In the following we show that the meet operation, join operation, convex combination, and \circledast-composition of overlap/grouping functions are order preserving.

Theorem 2. Suppose that four overlap functions have $O_{1} \preceq O_{2}$ and $O_{3} \preceq O_{4}$, then $\left(O_{1} \vee O_{3}\right) \preceq$ $\left(O_{2} \vee O_{4}\right),\left(O_{1} \wedge O_{3}\right) \preceq\left(O_{2} \wedge O_{4}\right)\left(O_{1,3, \lambda}\right) \preceq\left(O_{2,4, \lambda}\right)$ and $\left(O_{1} \circledast O_{3}\right) \preceq\left(O_{2} \circledast O_{4}\right)$, where $O_{1,3, \lambda}=\lambda O_{1}(\eta, \xi)+(1-\lambda) O_{3}(\eta, \xi)$ and $O_{2,4, \lambda}=\lambda O_{2}(\eta, \xi)+(1-\lambda) O_{4}(\eta, \xi)$.

Proof. The case for meet operation, join operation, and convex combination are straightforward. We show only that \circledast-composition preserves order. For any $\eta, \xi \in[0,1]$, from $O_{3} \preceq O_{4}$, we have $O_{3}(\eta, \xi) \leq O_{4}(\eta, \xi)$. Since O_{1} is non-decreasing and $O_{1} \preceq O_{2}$, we have

$$
\begin{aligned}
\left(O_{1} \circledast O_{3}\right)(\eta, \xi) & =O_{1}\left(\eta, O_{3}(\eta, \xi)\right) \\
& \leq O_{1}\left(\eta, O_{4}(\eta, \xi)\right) \\
& \leq O_{2}\left(\eta, O_{4}(\eta, \xi)\right) \\
& =\left(O_{2} \circledast O_{4}\right)(\eta, \xi) .
\end{aligned}
$$

Thus, $\left(O_{1} \circledast O_{3}\right) \preceq\left(O_{2} \circledast O_{4}\right)$.

Theorem 3. Suppose that four grouping functions have $G_{1} \preceq G_{2}$ and $G_{3} \preceq G_{4}$, then $\left(G_{1} \vee G_{3}\right) \preceq$ $\left(G_{2} \vee G_{4}\right),\left(G_{1} \wedge G_{3}\right) \preceq\left(G_{2} \wedge G_{4}\right)\left(G_{1,3, \lambda}\right) \preceq\left(G_{2,4, \lambda}\right)$ and $\left(G_{1} \circledast G_{3}\right) \preceq\left(G_{2} \circledast G_{4}\right)$, where $G_{1,3, \lambda}=\lambda G_{1}(\eta, \xi)+(1-\lambda) G_{3}(\eta, \xi)$ and $G_{2,4, \lambda}=\lambda G_{2}(\eta, \xi)+(1-\lambda) G_{4}(\eta, \xi)$.

5. Properties Preservation

In the following, we study properties preserved by meet operation, join operation, convex combination, and \circledast-composition of overlap/grouping functions.
5.1. Properties Preserved by Meet and Join Operations of Overlap/Grouping Functions

First, we consider the meet and join operations of overlap/grouping functions.
Theorem 4. If two overlap functions O_{1} and O_{2} satisfy (ID) ((MI), (HO-k), (\boldsymbol{k}-LI), (PS)), then $\left(O_{1} \vee O_{2}\right)$ and $\left(O_{1} \wedge O_{2}\right)$ also satisfy (ID) $((\mathbf{M I}),(\mathbf{H O}-k),(\boldsymbol{k}$-LI), (PS)).

Proof. First, we show that meet operation preserves (ID). Assume that O_{1} and O_{2} satisfy (ID); then, for any $\lambda, \eta \in[0,1]$,

$$
\begin{aligned}
\left(O_{1} \vee O_{2}\right)(\eta, \eta) & =\max \left(O_{1}(\eta, \eta), O_{2}(\eta, \eta)\right) \\
& =\max (\eta, \eta) \\
& =\eta
\end{aligned}
$$

Next, we show that meet operation preserves (MI). Assume that O_{1} and O_{2} satisfy (MI), then, for any $\alpha, \eta, \xi \in[0,1]$,

$$
\begin{aligned}
\left(O_{1} \vee O_{2}\right)(\alpha \eta, \xi) & =\max \left(O_{1}(\alpha \eta, \xi), O_{2}(\alpha \eta, \xi)\right) \\
& =\max \left(O_{1}(\eta, \alpha \tilde{\xi}), O_{2}(\eta, \alpha \tilde{\xi})\right) \\
& =\left(O_{1} \vee O_{2}\right)(\eta, \alpha \xi)
\end{aligned}
$$

Then, we show that the meet operation preserves (HO-k). Assuming that O_{1} and O_{2} satisfy (HO-k), then, for any $\alpha, \eta, \xi \in[0,1]$,

$$
\begin{aligned}
\left(O_{1} \vee O_{2}\right)(\alpha \eta, \alpha \xi) & =\max \left(O_{1}(\alpha \eta, \alpha \xi), O_{2}(\alpha \eta, \alpha \xi)\right) \\
& =\max \left(\alpha^{k} O_{1}(\eta, \xi), \alpha^{k} O_{2}(\eta, \xi)\right) \\
& =\alpha^{k} \max \left(O_{1}(\eta, \xi), O_{2}(\eta, \xi)\right) \\
& =\alpha^{k}\left(O_{1} \vee O_{2}\right)(\eta, \xi) .
\end{aligned}
$$

Afterwards, we show that meet operation preserves (k-LI). Assume that O_{1} and O_{2} satisfy (k-LI), then, for any $\eta_{1}, \eta_{2}, \xi_{1}, \xi_{2} \in[0,1]$,

$$
\begin{aligned}
& \left|\left(O_{1} \vee O_{2}\right)\left(\eta_{1}, \xi_{1}\right)-\left(O_{1} \vee O_{2}\right)\left(\eta_{2}, \xi_{2}\right)\right| \\
& =\left|\max \left(O_{1}\left(\eta_{1}, \xi_{1}\right), O_{2}\left(\eta_{1}, \xi_{1}\right)\right)-\max \left(O_{1}\left(\eta_{2}, \xi_{2}\right), O_{2}\left(\eta_{2}, \xi_{2}\right)\right)\right| \\
& \leq \max \left(\left|O_{1}\left(\eta_{1}, \xi_{1}\right)-O_{1}\left(\eta_{2}, \xi_{2}\right)\right|,\left|O_{2}\left(\eta_{1}, \xi_{1}\right)-O_{2}\left(\eta_{2}, \xi_{2}\right)\right|\right) \\
& \leq \max \left(k\left(\left|\eta_{1}-\eta_{2}\right|+\left|\xi_{1}-\xi_{2}\right|\right), k\left(\left|\eta_{1}-\eta_{2}\right|+\left|\xi_{1}-\xi_{2}\right|\right) \mid\right) \\
& =k\left(\left|\eta_{1}-\eta_{2}\right|+\left|\xi_{1}-\xi_{2}\right|\right) .
\end{aligned}
$$

Finally we show that meet operation preserves (PS). Assume that O_{1} and O_{2} satisfy (PS), then, for any $r, \eta, \xi \in[0,1]$,

$$
\begin{aligned}
\left(O_{1} \vee O_{2}\right)\left(\eta^{r}, \xi^{r}\right) & =\max \left(O_{1}\left(\eta^{r}, \xi^{r}\right), O_{2}\left(\eta^{r}, \xi^{r}\right)\right) \\
& =\max \left(O_{1}(\eta, \xi)^{r}, O_{2}(\eta, \xi)^{r}\right) \\
& =\left(\max \left(O_{1}(\eta, \xi), O_{2}(\eta, \xi)\right)\right)^{r} \\
& =\left(O_{1} \vee O_{2}\right)(\eta, \xi)^{r} .
\end{aligned}
$$

Similarly, we can show that the join operation also preserves (ID) (MI), (HO-k), $(k$-LI), (PS) $)$.

5.2. Properties Preserved by Convex Combination of Overlap/Grouping Functions

Second, we consider the convex combination of overlap/grouping functions.
Theorem 5. If two overlap functions O_{1} and O_{2} satisfy (ID) ((MI), (HO-k), (k-LI)), then, for any $\lambda \in[0,1]$, their convex combination of O_{λ} also satisfies (ID) $\left.(\mathbf{M I}),(\mathbf{H O}-\boldsymbol{k}),(\boldsymbol{k} \mathbf{- L I})\right)$.

Proof. First, we show that convex combination preserves (ID). Assume that O_{1} and O_{2} satisfy (ID), then, for any $\lambda, \eta \in[0,1]$,

$$
\begin{aligned}
O_{\lambda}(\eta, \eta) & =\lambda O_{1}(\eta, \eta)+(1-\lambda) O_{2}(\eta, \eta) \\
& =\lambda \eta+(1-\lambda) \eta \\
& =\eta
\end{aligned}
$$

Next, we show that convex combination preserves (MI). Assume that O_{1} and O_{2} satisfy (MI), then, for any $\lambda, \alpha, \eta, \xi \in[0,1]$,

$$
\begin{aligned}
O_{\lambda}(\alpha \eta, \xi) & =\lambda O_{1}(\alpha \eta, \xi)+(1-\lambda) O_{2}(\alpha \eta, \xi) \\
& =\lambda O_{1}(\eta, \alpha \xi)+(1-\lambda) O_{2}(\eta, \alpha \xi) \\
& =O_{\lambda}(\eta, \alpha \xi) .
\end{aligned}
$$

Then, we show that convex combination preserves (HO-k). Assume that O_{1} and O_{2} satisfy (HO-k), then, for any $\lambda, \alpha, \eta, \xi \in[0,1]$,

$$
\begin{aligned}
O_{\lambda}(\alpha \eta, \alpha \xi) & =\lambda O_{1}(\alpha \eta, \alpha \xi)+(1-\lambda) O_{2}(\alpha \eta, \alpha \xi) \\
& =\lambda \alpha^{k} O_{1}(\eta, \xi)+(1-\lambda) \alpha^{k} O_{2}(\eta, \xi) \\
& =\alpha^{k}\left(\lambda O_{1}(\eta, \xi)+(1-\lambda) O_{2}(\eta, \xi)\right) \\
& =\alpha^{k} O_{\lambda}(\eta, \xi)
\end{aligned}
$$

Finally, we show that convex combination preserves (k-LI). Assume that O_{1} and O_{2} satisfy $(\boldsymbol{k}$-LI), then, for any $\lambda, \alpha, \eta, \xi \in[0,1]$,

$$
\begin{aligned}
& \left|O_{\lambda}\left(\eta_{1}, \xi_{1}\right)-O_{\lambda}\left(\eta_{2}, \xi_{2}\right)\right| \\
& =\left|\lambda O_{1}\left(\eta_{1}, \xi_{1}\right)+(1-\lambda) O_{2}\left(\eta_{1}, \xi_{1}\right)-\lambda O_{1}\left(\eta_{2}, \xi_{2}\right)-(1-\lambda) O_{2}\left(\eta_{2}, \xi_{2}\right)\right| \\
& =\left|\lambda\left(O_{1}\left(\eta_{1}, \xi_{1}\right)-O_{1}\left(\eta_{2}, \xi_{2}\right)\right)+(1-\lambda)\left(O_{2}\left(\eta_{1}, \xi_{1}\right)-O_{2}\left(\eta_{2}, \xi_{2}\right)\right)\right| \\
& \leq\left|\lambda k\left(\left|\eta_{1}-\eta_{2}\right|+\left|\xi_{1}-\xi_{2}\right|\right)+(1-\lambda) k\left(\left|\eta_{1}-\eta_{2}\right|+\left|\xi_{1}-\xi_{2}\right|\right)\right| \\
& =k\left(\left|\eta_{1}-\eta_{2}\right|+\left|\xi_{1}-\xi_{2}\right|\right) .
\end{aligned}
$$

Note that convex combination does not preserve (PS), since we have

$$
\begin{aligned}
O_{\lambda}\left(\eta^{r}, \xi^{r}\right) & =\lambda O_{1}\left(\eta^{r}, \xi^{r}\right)+(1-\lambda) O_{2}\left(\eta^{r}, \xi^{r}\right) \\
& =\lambda O_{1}(\eta, \xi)^{r}+(1-\lambda) O_{2}(\eta, \tilde{\xi})^{r},
\end{aligned}
$$

and

$$
\begin{aligned}
O_{\lambda}(\eta, \xi)^{r} & =\left(\lambda O_{1}(\eta, \xi)+(1-\lambda) O_{2}(\eta, \xi)\right)^{r} \\
& \neq \lambda O_{1}(\eta, \xi)^{r}+(1-\lambda) O_{2}(\eta, \xi)^{r}
\end{aligned}
$$

for some $\lambda, r, \eta, \xi \in[0,1]$.
5.3. Properties Preserved by \circledast-Composition of Overlap/Grouping Functions Third, we consider the \circledast-composition of overlap/grouping functions.

Theorem 6. If two overlap functions O_{1} and O_{2} satisfy (ID) ((HO-1), (PS)), then, their \circledast composition $\left(O_{1} \circledast O_{2}\right)$ also satisfies (ID) $\left.(\mathbf{(H O - 1}),(\mathbf{P S})\right)$.

Proof. First, we show that \circledast-composition preserves (ID). Assume that O_{1} and O_{2} satisfy (ID), then, for any $\lambda, \eta \in[0,1]$,

$$
\begin{aligned}
\left(O_{1} \circledast O_{2}\right)(\eta, \eta) & =O_{1}\left(\eta, O_{2}(\eta, \eta)\right) \\
& =O_{1}(\eta, \eta) \\
& =\eta .
\end{aligned}
$$

Next, we show that \circledast-composition preserves (HO-1). Assume that O_{1} and O_{2} satisfy (HO-1), then, for any $\alpha, \eta, \xi \in[0,1]$,

$$
\begin{aligned}
\left(O_{1} \circledast O_{2}\right)(\alpha \eta, \alpha \xi) & =O_{1}\left(\alpha \eta, O_{2}(\alpha \eta, \alpha \xi)\right) \\
& =O_{1}\left(\alpha \eta, \alpha O_{2}(\eta, \xi)\right) \\
& =\alpha O_{1}\left(\eta, O_{2}(\eta, \xi)\right) \\
& =\alpha\left(O_{1} \circledast O_{2}\right)(\eta, \xi)
\end{aligned}
$$

Then, we show that \circledast-composition preserves (PS). Assume that O_{1} and O_{2} satisfy (PS), then, for any $r, \eta, \xi \in[0,1]$,

$$
\begin{aligned}
\left(O_{1} \circledast O_{2}\right)\left(\eta^{r}, \xi^{r}\right) & =O_{1}\left(\eta^{r}, O_{2}\left(\eta^{r}, \xi^{r}\right)\right) \\
& =O_{1}\left(\eta^{r}, O_{2}(\eta, \xi)^{r}\right) \\
& =O_{1}\left(\eta, O_{2}(\eta, \xi)\right)^{r} \\
& =\left(O_{1} \circledast O_{2}\right)(\eta, \xi)^{r} .
\end{aligned}
$$

Note that we only show that \circledast-composition preserves (HO-1), it does not preserve (HO-k) for $k \in] 0, \infty\left[\right.$ and $k \neq 1$. For example, let $O_{1}(\eta, \xi)=O_{2}(\eta, \xi)=\eta^{2} \tilde{\xi}^{2}$, then $\left(O_{1} \circledast\right.$ $\left.O_{2}\right)(\eta, \xi)=\eta^{6} \xi^{4}$, we know that O_{1} and O_{2} satisfy (HO-2), i.e., $O_{1}(\alpha \eta, \alpha \xi)=\alpha^{2} O_{1}(\eta, \xi)$, but $\left(O_{1} \circledast O_{2}\right)(\eta, \xi)$ does not satisfy (HO-2) since $\left(O_{1} \circledast O_{2}\right)(\alpha \eta, \alpha \xi)=\alpha^{10} \eta^{6} \xi^{4} \neq \alpha^{2} \eta^{6} \xi^{4}=$ $\alpha^{2}\left(O_{1} \circledast O_{2}\right)(\eta, \xi)$.

The \circledast-composition does not preserve (MI). Assume that O_{1} and O_{2} satisfy (MI), then

$$
\begin{aligned}
\left(O_{1} \circledast O_{2}\right)(\eta, \alpha \xi) & =O_{1}\left(\eta, O_{2}(\eta, \alpha \xi)\right) \\
& =O_{1}\left(\eta, O_{2}(\alpha \eta, \xi)\right) \\
& \neq O_{1}\left(\alpha \eta, O_{2}(\alpha \eta, \tilde{\xi})\right) \\
& =\left(O_{1} \circledast O_{2}\right)(\alpha \eta, \tilde{\xi})
\end{aligned}
$$

for some $\alpha, \eta, \xi \in[0,1]$.
The \circledast-composition does not preserve $(k-\mathbf{L I})$.
Example 1. Let $O_{1}(\eta, \xi)=O_{2}(\eta, \xi)=\eta \xi$, then $\left(O_{1} \circledast O_{2}\right)(\eta, \xi)=\eta^{2} \xi$,

$$
\begin{aligned}
\left|O_{1}\left(\eta_{1}, \xi_{1}\right)-O_{2}\left(\eta_{2}, \xi_{2}\right)\right| & =\left|\eta_{1} \xi_{1}-\eta_{2} \xi_{2}\right| \\
& =\left|\eta_{1} \xi_{1}-\eta_{1} \xi_{2}+\eta_{1} \xi_{2}-\eta_{2} \xi_{2}\right| \\
& =\left|\eta_{1}\left(\xi_{1}-\xi_{2}\right)+\xi_{2}\left(\eta_{1}-\eta_{2}\right)\right| \\
& \leq\left|\eta_{1}\left(\xi_{1}-\xi_{2}\right)\right|+\left|\xi_{2}\left(\eta_{1}-\eta_{2}\right)\right| \\
& \leq\left|\xi_{1}-\xi_{2}\right|+\left|\eta_{1}-\eta_{2}\right| .
\end{aligned}
$$

Thus, O_{1} and O_{2} satisfy (1-LI). Let $\eta_{1}=\xi_{1}=0.8$ and $\eta_{2}=\xi_{2}=1$, then $\left(O_{1} \circledast\right.$ $\left.O_{2}\right)(0.8,0.8)-\left(O_{1} \circledast O_{2}\right)(1,1)=0.488>0.4=(|0.8-1|+|0.8-1|)$, so $O_{1} \circledast O_{2}$ does not satisfy (1-LI).

However, we have the following result.

Theorem 7. If two overlap functions O_{1} and O_{2} respectively satisfy ($k_{1}-\mathrm{LI}$) and ($\boldsymbol{k}_{2}-\mathrm{LI}$), then their \circledast-composition $\left(O_{1} \circledast O_{2}\right)$ satisfies $\left(\left(k_{1}+k_{1} k_{2}\right)\right.$-LI).

Proof. Assume that O_{1} and O_{2} respectively satisfy $\left(k_{1}-\mathbf{L I}\right)$ and $\left(k_{2}-\mathbf{L I}\right)$, then, for any $\eta_{1}, \eta_{2}, \xi_{1}, \xi_{2} \in[0,1]$, we have

$$
\begin{aligned}
\left|\left(O_{1} \circledast O_{2}\right)\left(\eta_{1}, \xi_{1}\right)-\left(O_{1} \circledast O_{2}\right)\left(\eta_{2}, \xi_{2}\right)\right| & =\left|O_{1}\left(\eta_{1}, O_{2}\left(\eta_{1}, \xi_{1}\right)\right)-O_{1}\left(\eta_{2}, O_{2}\left(\eta_{2}, \xi_{2}\right)\right)\right| \\
& \leq k_{1}\left(\left|\eta_{1}-\eta_{2}\right|+\left|O_{2}\left(\eta_{1}, \xi_{1}\right)-O_{2}\left(\eta_{2}, \xi_{2}\right)\right|\right) \\
& \leq k_{1}\left(\left|\eta_{1}-\eta_{2}\right|+k_{2}\left|\eta_{1}-\eta_{2}\right|+k_{2}\left|\xi_{1}-\xi_{2}\right|\right) \\
& =\left(k_{1}+k_{1} k_{2}\right)\left|\eta_{1}-\eta_{2}\right|+k_{1} k_{2}\left|\xi_{1}-\xi_{2}\right| \\
& \leq\left(k_{1}+k_{1} k_{2}\right)\left(\left|\eta_{1}-\eta_{2}\right|+\left|\xi_{1}-\xi_{2}\right|\right) .
\end{aligned}
$$

5.4. Summary

Thus far, we have studied the basic properties of overlap/grouping functions w.r.t. the meet operation, join operation, convex combination, and \circledast-composition. The summary of the properties of overlap/grouping functions w.r.t. the meet operation, join operation, convex combination, and \circledast-composition is shown in Table 2.

Table 2. Properties preservation of the compositions.

Property	O_{1}	O_{2}	$O_{1} \vee O_{2}$	$O_{1} \wedge O_{2}$	O_{λ}	$O_{1} \circledast O_{2}$
ID	$\sqrt{ }$					
MI	$\sqrt{ }$	\times				
HO- k	$\sqrt{ }$	\times				
\boldsymbol{k}-LI	$\sqrt{ }$	\times				
PS	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\times	$\sqrt{ }$

6. Conclusions

This paper studies the properties preservation of overlap/grouping functions w.r.t. meet operation, join operation, convex combination, and \circledast-composition. The main conclusions are listed as follows.
(1) Closures of two bivariate functions w.r.t. meet operation, join operation, convex combination, and \circledast-composition have been obtained in Table 1 . Note that \circledast-composition does not preserve $(\mathbf{O 1})$, and \circledast-composition of overlap/grouping functions is not closed. In other words, \circledast-composition can not be used to generate new overlap/grouping functions.
(2) We show that meet operation, join operation, convex combination, and \circledast-composition of overlap/grouping functions are order preserving, see Theorems 2 and 3.
(3) We have investigated the preservation of the law of (ID), (MI), (HO-k), (k-LI), and (PS) w.r.t. meet operation, join operation, convex combination, and \circledast-composition, which can be summarized in Table 2.
These results can be served as a certain criteria for choices of generation methods of overlap/grouping functions from given overlap/grouping functions. For example, convex combination does not preserve (PS). Thus, we can not generate a power stable overlap function from two power stable overlap functions by their convex combination.

As we know, overlap/grouping functions have been extended to interval-valued and complex-valued overlap/grouping functions. Could similar results be carried over to the interval-valued and complex-valued settings? Moreover, special overlap/grouping functions such as Archimedean and multiplicatively generated overlap/grouping functions have been studied. In these cases, many restrictions have been added. For further works, it follows that we intend to consider properties preservation of these overlap/grouping functions w.r.t. different composition methods.

Abstract

Author Contributions: Funding acquisition, S.D. and Y.X.; Writing-original draft, S.D. and Y.X.; Writing-review and editing, L.D. and H.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Science Foundation of China (Grant Nos. 62006168 and 62101375) and Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LQ21A010001 and LQ21F020001).

Institutional Review Board Statement: Not applicable
Informed Consent Statement: Not applicable
Data Availability Statement: Not applicable.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bustince, H.; Fernández, J.; Mesiar, R.; Montero, J.; Orduna, R. Overlap functions. Nonlinear Anal. Theory Methods Appl. 2010, 72, 1488-1499. [CrossRef]
2. Beliakov, G.; Pradera, A.; Calvo, T. Aggregation Functions: A Guide for Practitioners; Springer: Berlin, Germany, 2007.
3. Bustince, H.; Pagola, M.; Mesiar, R.; Hüllermeier, E.; Herrera, F. Grouping, overlaps, and generalized bientropic functions for fuzzy modeling of pairwise comparisons. IEEE Trans. Fuzzy Syst. 2012, 20, 405-415. [CrossRef]
4. Jurio, A.; Bustince, H.; Pagola, M.; Pradera, A.; Yager, R. Some properties of overlap and grouping functions and their application to image thresholding. Fuzzy Sets Syst. 2013, 229, 69-90. [CrossRef]
5. Elkano, M.; Galar, M.; Sanz, J.; Bustince, H. Fuzzy Rule-Based Classification Systems for multi-class problems using binary decomposition strategies: On the influence of n-dimensional overlap functions in the Fuzzy Reasoning Method. Inf. Sci. 2016, 332, 94-114. [CrossRef]
6. Elkano, M.; Galar, M.; Sanz, J.; Fernández, A.; Barrenechea, E.; Herrera, F.; Bustince, H. Enhancing multi-class classification in FARC-HD fuzzy classifier: On the synergy between n-dimensional overlap functions and decomposition strategies. IEEE Trans. Fuzzy Syst. 2015, 23, 1562-1580. [CrossRef]
7. Elkano, M.; Galar, M.; Sanz, J.A.; Schiavo, P.F.; Pereira, S.; Dimuro, G.P.; Borges, E.N.; Bustince, H. Consensus via penalty functions for decision making in ensembles in fuzzy rule-based classification systems. Appl. Soft Comput. 2018, 67, 728-740. [CrossRef]
8. Santos, H.; Lima, L.; Bedregal, B.; Dimuro, G.P.; Rocha, M.; Bustince, H. Analyzing subdistributivity and superdistributivity on overlap and grouping functions. In Proceedings of the 8th International Summer School on Aggregation Operators (AGOP 2015), Katowice, Poland, 7-10 July 2015; pp. 211-216.
9. Bedregal, B.; Dimuro, G.P.; Bustince, H.; Barrenechea, E. New results on overlap and grouping functions. Inf. Sci. 2013, 249, 148-170. [CrossRef]
10. Bedregal, B.; Bustince, H.; Palmeira, E.; Dimuro, G.; Fernandez, J. Generalized interval-valued OWA operators with interval weights derived from interval-valued overlap functions. Int. J. Approx. Reason. 2017, 90, 1-16. [CrossRef]
11. Dimuro, G.P.; Bedregal, B. Archimedean overlap functions: The ordinal sum and the cancellation, idempotency and limiting properties. Fuzzy Sets Syst. 2014, 252, 39-54. [CrossRef]
12. Gómez, D.; Rodríguez, J.T.; Montero, J.; Bustince, H.; Barrenechea, E. N-dimensional overlap functions. Fuzzy Sets Syst. 2016, 287, 57-75. [CrossRef]
13. Qiao, J.; Hu, B.Q. On interval additive generators of interval overlap functions and interval grouping functions. Fuzzy Sets Syst. 2017, 323, 19-55. [CrossRef]
14. Asmus, T.C.; Dimuro, G.P.; Bedregal, B.; Sanz, J.A.; Pereira, S.; Bustince, H. General interval-valued overlap functions and interval-valued overlap indices. Inf. Sci. 2020, 527, 27-50. [CrossRef]
15. Chen, Y.; Bi, L.; Hu, B.; Dai, S. General Complex-Valued Overlap Functions. J. Math. 2021, 2021, 6613730.
16. Chen, Y.; Bi, L.; Hu, B.; Dai, S. General Complex-Valued Grouping Functions. J. Math. 2021, 2021, 5793151.
17. Santos, H.; Dimuro, G.P.; Asmus, T.C.; Lucca, G.; Bueno, E.; Bedregal, B.; Bustince, H. General grouping functions. In Proceedings of 18th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Lisbon, Portugal, 15-19 June 2020; Series Communications in Computer and Information Science; Springer: Cham, Switzerland, 2020.
18. Costa, L.M.; Bedregal, B.R.C. Quasi-homogeneous overlap functions. In Decision Making and Soft Computing; World Scientific: Joao Pessoa, Brazil, 2014; pp. 294-299.
19. Qiao, J.; Hu, B.Q. On the migrativity of uninorms and nullnorms over overlap and grouping functions. Fuzzy Sets Syst. 2018, 354, 1-54. [CrossRef]
20. Qiao, J.; Hu, B.Q. On the distributive laws of fuzzy implication functions over additively generated overlap and grouping functions. IEEE Trans. Fuzzy Syst. 2017. [CrossRef]
21. Qiao, J.; Hu, B.Q. On multiplicative generators of overlap and grouping functions. Fuzzy Sets Syst. 2018, 332, 1-24. [CrossRef]
22. Dimuro, G.P.; Bedregal, B. On residual implications derived from overlap functions. Inf. Sci. 2015, 312, 78-88. [CrossRef]
23. Dimuro, G.P.; Bedregal, B. On the laws of contraposition for residual implications derived from overlap functions. In Proceedings of the 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Los Alamitos, CA, USA, 2-5 August 2015; pp. 1-7.
24. Dimuro, G.P.; Bedregal, B.; Santiago, R.H.N. On (G, N)-implications derived from grouping functions. Inf. Sci. 2014, 279, 1-17. [CrossRef]
25. Qiao, J. On binary relations induced from overlap and grouping functions. Int. J. Approx. Reason. 2019, 106, 155-171. [CrossRef]
26. Qiao, J. On (IO, O)-fuzzy rough sets based on overlap functions. Int. J. Approx. Reason. 2021, 132, 26-48. [CrossRef]
27. Dimuro, G.P.; Bedregal, B.; Bustince, H.; Asiáin, M.J.; Mesiar, R. On additive generators of overlap functions. Fuzzy Sets Syst. 2016, 287, 76-96. [CrossRef]
28. Wang, H. Constructions of overlap functions on bounded lattices. Int. J. Approx. Reason. 2020, 125, 203-217. [CrossRef]
29. Kolesarova, A.; Mesiar, R. 1-Lipschitz power stable aggregation functions. Inf. Sci. 2015, 294, 57-63. [CrossRef]
