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Abstract: Recently, algebraic Routley–Meyer-style semantics was introduced for basic substructural
logics. This paper extends it to fuzzy logics. First, we recall the basic substructural core fuzzy logic
MIAL (Mianorm logic) and its axiomatic extensions, together with their algebraic semantics. Next,
we introduce two kinds of ternary relational semantics, called here linear Urquhart-style and Fine-style
Routley–Meyer semantics, for them as algebraic Routley–Meyer-style semantics.
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1. Introduction

The author [1] recently introduced algebraic Routley–Meyer-style (ARM for simplicity)
semantics for basic substructural logics. Here, the term ARM semantics means semantics
with operations interpreting ternary relations, the frames of which have the same structures
as algebraic semantics. This paper extends it to fuzzy logics. To this end, we first recall
some historical facts associated with Routley–Meyer semantics.

Using binary accessibility relations, Kripke [2–4] first established relational seman-
tics, the so-called Kripke Semantics, for modal and intuitionistic logics. Since then, many
semantics have been introduced as its generalizations. In particular, Urquhart provided
operational semantics, called Urquhart semantics in [1]; for relevant implication see [5–7].
From an operational semantic point of view, this semantics is interesting since instead of
binary relations for accessibility it has groupoid operations. More precisely, it provides the
valuation of implication using the binary operation ◦ such that

(→◦U ) a  A→ B if and only if (iff) for any b ∈ X, b  A implies a ◦ b  B,

instead of using the binary relation R such that

(→RK ) a  A→ B iff for any b ∈ X, aRb and b  A imply b  B.

Urquhart semantics has the following additional valuations for extensional conjunc-
tion and disjunction: For sentences A, B,

(∧) a  A ∧ B iff a  A and a  B; and

(∨) a  A ∨ B iff a  A or a  B.

As is well known, these three valuation conditions do not work together for substruc-
tural logics in general. As Urquhart himself mentioned in [7,8], while sentences such as
(a) ((A → (B ∨ C)) ∧ (B → C)) → (A → C) are valid in their semantics, the distributive
substructural logic R of relevance does not prove such sentences. Because of this negative
fact, Routley–Meyer [9–11] instead introduced the so-called Routley–Meyer semantics for
implication as a ternary relational semantics (see [12]).

Please note that Urquhart [7] provided the binary operational valuation for implication
(→◦U ), whereas Fine [13] did the following ternary relational valuation for implication.
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(→◦F ) a  A→ B iff for all b, c ∈ X, a ◦ b ≤ c and b  A imply c  B.

Although these two valuations are not free from the above negative fact, they have
been extensively used in substructural logics: Using (→◦U ), many logicians such as Došen
and Ono have introduced similar semantics for modal and substructural logics [14–16]; with
the title “Kripke-style semantics”, Montagna–Ono [17], Montagna–Sacchetti [18], and Yang
[19,20] introduced similar semantics for substructural fuzzy logics. Using (→◦F ), logicians
such as Ono–Komori [21], Ishihara [22], and Kamide [23] have introduced analogous
semantics for some (modal) substructural logics (For more detailed introduction of these
semantics, see [1]).

The starting point for the current work is the observation that, as the author [1] men-
tioned, using ternary relation Rabc, the valuations (→◦U ) and (→◦F ) can be rephrased as:

(→RU ) a  A→ B iff for all b, c ∈ X, if Rabc (:= a ◦ b = c (dfU)) and b  A, then c  B, (We
take c in place of a ∗ b in a ∗ b  B because a ◦ b = c. This was introduced by Dunn
in [24]) and

(→RF ) a  A → B iff for all b, c ∈ X, if Rabc (:= a ◦ b ≤ c (dfF)) and b  A, then c  B,
(As Došen [15] and Dunn [25,26] already mentioned, Fine [13] interpreted Rabc as
a ◦ b ≤ c. Although Urquhart [7] did not consider to reinterpret (→◦U ) using ternary
relation, Bimbó and Dunn [27] and Restall [12] introduced such reformulation.),
respectively.

In particular, using (→RU ) and (→RF ), the author first introduced ARM semantics for
basic substructural logics in general. Then, since fuzzy logics are also substructural logics
and further prove sentences such as (a), one can ask the following.

Q : Could one establish ARM semantics, i.e., operational and ternary relational semantics
equivalent to algebraic semantics, for basic substructural fuzzy logics, using the
clauses (∧), (∨), and either (→RU ) or (→RF ) together?

As a positive answer to this question, we introduce such semantics with the conditions
(∧), (∨) and the corresponding implication conditions for basic (core) fuzzy logics. (A logic
L is called fuzzy if it is complete on linearly ordered models, and core fuzzy if it is fuzzy
on [0, 1] (see [28,29])). This will verify that the clauses (∧), (∨), and either (→RU ) or (→RF )
work together for basic substructural fuzzy logics.

The more detailed other reasons to study this are as follows: The first and most
important reason is that while algebraic Kripke-style (briefly AK) semantics (The term AK
semantics means semantics with operations in place of binary accessibility relations, the
frames of which have the same structures as algebraic semantics.) for substructural fuzzy
logics have been introduced extensively (see, e.g., [17–20,30–32]), ARM semantics for such
logics have not. Only, the author [33,34] introduced such semantics for MTL (Monoidal
t-norm logic) and its involutive extension IMTL. In particular, the author [1] introduced
ARM semantics for substructural logics in general, whereas he did not for substructural
fuzzy logics. This is the direct specific reason to consider ARM semantics for fuzzy logics
in general.

The following are more reasons related to ARM semantics itself, some of which are
mentioned in [1]. First, “the definitions (dfU) and (dfF) provide more intuitive ways to
understand or interpret the ternary relation R. Please note that using the ternary relation
R in Rxyz itself we cannot say how to understand or interpret R, whereas we can say it
using x ∗ y = z and x ∗ y ≤ z”. Second, this semantics provides a direct way to understand
equivalence relations between algebraic and relational semantics. “An n-ary operation is
an n+1-ary relation, but not always conversely. If one shows its converse, one can state
an equivalence between the operation and the relation”. Associated with this, most well-
known method to consider this equivalence is to use ‘canonical extensions’ investigated
with the titles such as ‘representation’ and ‘duality’ (see [35–41]). However, the way to



Axioms 2021, 10, 273 3 of 16

use (dfU) and (dfF) is different from it and more direct in the sense that the way defines
ternary relations by virtue of binary operations and (in)equations. The third is the fact that
ARM semantics uses forcing relations. It means that this semantics is a study still in the
tradition of relational semantic research. The last but not least one is that ARM semantics
is a common area between algebraic semantics and ternary relational semantics. Since
algebraic semantics and ARM semantics are both based on the same algebraic structures,
this last semantics gives a chance to study similarities and differences between algebraic
semantics and relational semantics.

We organize the paper as follows. In Section 2, we first recall some basic (core) fuzzy
logics, together with their algebraic semantics. In Section 3, we introduce ARM semantics
for them. More precisely, we introduce ARM semantics with (→RU ) in Section 3.1 and that
with (→RF ) in Sectio 3.2. In Section 4, we consider advantages and limitations of these two
semantics as ARM semantics.

We finally note that, as in [1], our ARM semantics in Sections 3.1 and 3.2 provides
frames as some reducts of their corresponding algebras and defines ternary relations using
binary operations and (in)equations. However, unlike the semantics in [1], this semantics
is provided based on linear theories. More precisely, it is an ARM semantics with linearly
ordered models. In this sense, this semantics is a novel one to connect n-nary operations and
n+1-nary relations. By ARM` semantics, we henceforth mean this kind of ARM semantics.

2. Algebraic Semantics for Basic Core Fuzzy Logics

Here we recall the most basic substructural core fuzzy logic MIAL and its axiomatic
extensions (extensions for short) and their algebraic semantics (See [42] for more detailed
introduction of these logics and semantics). The language for these logics is provided over
a countable propositional language with Fm (a set of formulas) built from VAR (a set of
propositional variables), propositional constants t, f , F, T, and connectives→, , ∧, ∨, &.
We further define A↔ B and At as (A→ B) ∧ (B→ A) and A ∧ t, respectively.

The variables are denoted by lowercase Latin letters p, q, r, . . . and the formulas by
uppercase ones A, B, C . . .. Theories as sets of formulas are denoted by uppercase Greek
letters Γ, ∆, . . .. Please note that variables are also formulas. We provide a consequence
relation, denoted by `, on axiom systems.

Definition 1 ([43,44]). MIAL consists of the axioms and rules below:
(A ∧ B)→ A, (A ∧ B)→ B (∧-elimination, ∧-E);
((A→ B) ∧ (A→ C))→ (A→ (B ∧ C)) (∧-introduction, ∧-I);
A→ (A ∨ B), B→ (A ∨ B) (∨-introduction, ∨-I);
((A→ C) ∧ (B→ C))→ ((A ∨ B)→ C) (∨-elimination, ∨-E);
F→ A (ex falsum quodlibet, EF);
(t→ A)↔ A (push and pop, PP);
A→ (B→ (B&A)) (&-adjunction, &-Adj);
A→ (B (A&B)) (&-adjunction, &-Adj );
(At&Bt)→ (A ∧ B) (&∧);
(B&(A&(A→ (B→ C))))→ C (residuation, Res′);
((A&(A (B→ C)))&B)→ C (residuation, Res′ );
((A→ (A&(A→ B)))&(B→ C))→ (A→ C) (transitivity, T′);
((A ((A B)&A))&(B→ C))→ (A C) (transitivity, T′ );
(A→ B)t ∨ ((C&D)→ (C&(D&(B→ A)t))) (prelinearity, PLαC,D );
(A→ B)t ∨ ((C&D)→ ((C&(B→ A)t)&D)) (prelinearity, PLα′C,D

);
(A→ B)t ∨ ((C → (D → ((D&C)&(B→ A)t))) (prelinearity, PLβC,D );
(A→ B)t ∨ ((C → (D ((C&D)&(B→ A)t))) (prelinearity, PLβ′C,D

);
A→ B, A ` B (modus ponens, mp);
A ` At (adjU);
A ` (C&D)→ (C&(D&A)) (α);
A ` (C&D)→ ((C&A)&D) (α′);
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A ` C → (D → ((D&C)&A)) (β);
A ` C → (D ((C&D)&A)) (β′).

A logic is called an extension of a logic L if it is obtained from L by adding further
axioms.

Definition 2. The following are basic structural axioms:
(exchange, e) A&B→ B&A;
(expansion, p) (A&A)→ A;
(contraction, c) A→ (A&A);
(left weakening, i) A→ (B→ A);
(right weakening, o) f → A;
(associativity, a) A&(B&C)↔ (A&B)&C.
MIALS, S ⊆ {e, p, c, i, o, a}, is a substructural (core) fuzzy logic extending MIAL.

Example 1. The following well-known core fuzzy logics are extensions of MIAL.

(1) Micanorm logic MICAL is MIALe.

(2) Uninorm logic UL is MIALea.

(3) Monoidal t-norm logic MTL is MIALeai.

By L`s, we denote the set of substructural fuzzy logics introduced in Definition 2, i.e.,
L`s = {MIALS : S ⊆ {e, p, c, i, o, a}}.

A theory of L` ∈ L`s (L`-theory for short) is a set Γ of formulas such that Γ `L` A
entails A ∈ Γ. Since ∅ ⊆ Γ, the set of theorems of L` is a subset of all L`-theories. We define
a proof in an L`-theory Γ as a sequence of formulas, the elements of which are either axioms
of L`, members of Γ, or derived from its precedent elements using rules of L`. For each pair
of formulas A, B and a theory Γ, if Γ ` A→ B or Γ ` B→ A, we call Γ a linear theory.

Definition 3. A bounded, pointed residuated lattice-ordered groupoid with unit (bprlu-
groupoid for simplicity) is an algebra A = (A, ⊥, >, 0, 1, \, /, ∧,∨, ◦) such that: (A, ◦, 1)
is a unital groupoid; (A, ⊥, >, ∧, ∨) is a bounded lattice; 0 is an arbitrary element in A; for all
a, b, c ∈ A, a ◦ b ≤ c iff a ≤ c/b iff b ≤ a\c (residuation).

Please note that the notations ‘∧’ and ‘∨’ are used both as propositional connectives
and as algebraic operators.

Definition 4 (L`-algebras). Let a1 be a ∧ 1. A bprlu-groupoid is a MIAL-algebra if it satisfies
the following prelinearity properties: for all a, b, c, d ∈ A,

(PLAαC,D
) 1 ≤ (a\b)1 ∨ ((c ◦ d)\(c ◦ (d ◦ (b\a)1)));

(PLA
α′C,D

) 1 ≤ (a\b)1 ∨ ((c ◦ d)\((c ◦ (b\a)1) ◦ d));

(PLAβC,D
) 1 ≤ (a\b)1 ∨ ((c\(d\((d ◦ c) ◦ (b\a)1)));

(PLA
β′C,D

) 1 ≤ (a\b)1 ∨ ((c\(((d ◦ c) ◦ (b\a)1)/d)).

The following are the (in)equations corresponding to the structural axioms above: for all
a, b, c ∈ A,

(eA) a ◦ b ≤ b ◦ a;
(pA) a ◦ a ≤ a;
(cA) a ≤ a ◦ a;
(iA) a ≤ 1;
(oA) 0 ≤ a;
(aA) a ◦ (b ◦ c) = (a ◦ b) ◦ c.
Thus, for any S ⊆ {eA, pA, cA, iA, oA, aA}, MIALS-algebras are defined with S. We call

all these algebras L`-algebras and linearly ordered L`-algebras L`-chains.
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Given an L`-algebra A, an A-valuation is defined as a map v : Fm → A such that
v(#(A1, . . . , An)) = #A(v(A1, . . ., An)), where # ∈ {F, T, f , t,→, , ∧, ∨, &} and #A ∈ {⊥,
>, 0, 1, \, /, ∧, ∨, ◦}. A formula A is said to be an A-tautology if for each A-valuation
v, 1 ≤ v(A). An A-valuation v is said to be an A-model of an L`-theory Γ if 1 ≤ v(A)
for all A ∈ Γ. By Mod(Γ, A), we denote the class of all A-models of Γ. Over a class L`
of L`-algebras, a formula A is called a semantic consequence of Γ, denoted by Γ |=L` A,
if Mod(Γ ∪ {A},A) = Mod(Γ,A) for all A ∈ L`. If A is a semantic consequence of Γ
with respect to regarding {A} whenever A is provable in Γ on L`, A is called an L`-algebra.
By MOD(L`) and MOD`(L`), we denote the set of such algebras and the set of linearly
ordered ones, respectively, and write Γ |=L` A and Γ |=`

L` A instead of Γ |=MOD(L`) A and
Γ |=MOD`(L`) A, respectively.

Theorem 1 (Completeness). For a theory Γ over L` ∈ L`s and a formula A, Γ `L` A iff Γ |=L` A
iff Γ |=`

L` A.

Proof. As a corollary of Theorem 3.1.8 in [45], we obtain the claim.

An L`-algebra is said to be standard if it has the real interval [0, 1] as its carrier set.

Theorem 2 ([42]). Let ε be a unit element in [0, 1].

(i) For L` ∈ L`
T = {MIALT : T ⊆ {e, p, c, i, o}}, Γ `L` A iff for each standard L`-algebra and

for each valuation v, ε ≤ v(B) for all B ∈ Γ implies ε ≤ v(A).

(ii) For L` ∈ L`
U such that {i, a} ⊆ U ⊆ {e, p, c, i, o, a}, Γ `L` A iff for each standard

L`-algebra and for each valuation v, ε ≤ v(B) for all B ∈ Γ implies ε ≤ v(A).

Example 2. For L` ∈ {MIALa, MIALac, MIALap, MIALao, MIALaco, MIALcpo, MIALacpo}, L`

is not standard complete since (A) 1 ≤ (z\y) ∨ ((x\y)\(1/(z\a))) or (B) x ◦ y ≤ 1 iff y ◦ x ≤ 1
holds in standard L`-algebras but not in general in linearly ordered L`-algebras (see [42,46]).

3. ARM` Semantics

In this section, we deal with the ARM semantics for fuzzy extensions of the basic
substructural logics introduced in [1]. As in [1], we introduce two kinds of ARM` semantics:
one is the semantics with the definition (dfU) and linearly ordered models, called here linear
Urquhart-style Routley–Meyer semantics (briefly U-RM` semantics), and the other is the
semantics with the definition (dfF

′) below and linearly ordered models, called here linear
Fine-style Routley–Meyer semantics (briefly F-RM` semantics). Please note that unlike the
semantics in [1], these two semantics are provided using linear theories in place of closed
theories. However, these semantics still have the same structures as algebraic semantics
and so are ARM semantics.

3.1. U-RM` Semantics

Here we consider U-RM` semantics for L`
eq = {MIALeq : eq ⊆ {e, o, a}}. We first

define several Routley–Meyer (RM for short) frames.

Definition 5.

(i) (RM frames [1]) An RM frame is a structure F = (F, 1, R) such that 1 is a special element
in F and R ⊆ F3. We call the elements of F nodes.

(ii) (Linear RM frames) A linear RM (briefly, RM`) frame is an RM frame F = (F, 1,≤, R),
where (F,≤) is a linearly order set.

(iii) ((Residuated) Urquhart operational RM` frames) An Urquhart operational RM` (briefly,
U-RM`) frame is an RM` frame F = (F, 1, ◦,≤, R), where ◦ is a groupoid operation satisfying
(dfU) a ◦ b = c := Rabc. A U-RM` frame is called residuated if for any a, b ∈ F, the sets
{c : a ◦ c ≤ b} and {c : c ◦ a ≤ b} have suprema.
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(iv) (Bounded, pointed U-RM` frames) A U-RM` frame is said to be pointed if it further has an
arbitrary element 0, and bounded if it further has top and bottom elements > and ⊥.

(v) (U-RM` MIAL frames) A U-RM` MIAL frame is a bounded pointed residuated U-RM`

frame, where ◦ is left-continuous and conjunctive and R satisfies the postulates below: for any
a ∈ F,

p1. R1aa

p2. Ra1a.

(vi) (U-RM` L`
eq frames) Consider the definitions and postulates below: for any a, b, c, d ∈ F,

df1. R2a(bc)d := (∃x)(Raxd ∧ Rbcx)

df2. R2abcd := (∃x)(Rabx ∧ Rxcd)

pe. Rabc implies Rbac.

po. R10a iff R1⊥a, where ⊥ is the bottom element in F.

pa. R2abcd iff R2a(bc)d.

For any eq ⊆ {pe, po, pa}, U-RM` MIALeq frames are defined, along with their correspond-
ing postulates. We call all these frames U-RM` L`

eq frames (briefly U-L`
eq frames).

Remark 1. Definition 1 has some interesting facts to note.

(1) ([1]) The definition of an RM frame in (i) is the same as that of a frame structure for R+

(the positive R), which eliminates all the definitions and postulates for the ternary relation R
introduced in [8].

(2) The definitions in (ii) and (iii) are a fuzzy specification of partially ordered RM frames and
(residuated) Urquhart operational RM frames introduced in [1]. (Please note that if ≤ is
a partial ordering in place of a linear ordering in (ii) and (iii), the definitions in (ii) and
(iii) form partially ordered RM frames and (residuated) Urquhart operational RM frames
introduced in [1].)

(3) ([1]) The postulates p1 and p2 in (v) are for a unit element since we have that 1◦ a = a = a ◦ 1
using (dfU).

(4) ([1]) The indices of the postulates in (vi) denote their corresponding axioms. For example,
the postulate pe is for the exchange axiom e. In particular, (dfU) assures that the postulates
satisfy the equational forms of their corresponding algebraic properties. For instance, using
the postulate po and (dfU), we have that 0 = 1 ◦ 0 = 1 ◦ ⊥ = ⊥, i.e., 0 = ⊥.

A valuation on a bounded pointed residuated U-RM` frame is a forcing relation 
between the nodes and the propositional variables, propositional constants, and formulas
satisfying the below conditions. For each propositional variable p,

(AHC) b ≤ a and a  p imply b  p;

(min) ⊥  p,

for the propositional constants f , t, and F,

(0) a  f iff a ≤ 0;

(1) a  t iff a ≤ 1;

(⊥) a  F iff a = ⊥, and

for formulas A, B,

(→) a  A→ B iff for all b, c ∈ F, Rbac and b  A imply c  B;

( ) a  A B iff for all b, c ∈ F, Rabc and b  A imply c  B;

(∧) a  A ∧ B iff a  A and a  B;
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(∨) a  A ∨ B iff a  A or a  B;

(&) a  A&B iff there exist b, c ∈ F such that b  A, c  B, and a ≤ b ◦ c.

A valuation on a U-L`
eq frame is a valuation further satisfying that (max) for every

propositional variable p, {a : a  p} has a maximum.

Definition 6 (U-L`
eq model). An U-L`

eq model is a pair (F,), where F is a U-L`
eq frame and 

is a valuation on F. This model is said to be complete if F is a complete frame and  is a valuation
on F.

Definition 7. For a U-L`
eq model (F,), a node a of F and a formula A, a is said to force A if

a  A. A is said to be true in (F,) if 1  A, and valid in the frame F if A is true in (F,) for
any valuation  on F. For a class UL` of U-L`

eq frames and for a theory Γ, by Γ |=UL` A, we mean
that A is valid in F ∈ UL` whenever B is valid in it for all B ∈ Γ. This A is called a semantic
consequence of Γ on UL`.

Now we consider soundness and completeness of L`
eq.

Lemma 1 (Hereditary Lemma).

(i) Let F be a residuated U-RM` frame. For any formula A and for any nodes a, b ∈ F, if a  A
and b ≤ a, then b  A.

(ii) Let be a forcing relation on a U-L`
eq frame and A be a formula. Then the set {a ∈ F : a  A}

has a maximum.

Proof. It is easy to prove (i). For the proof of (ii), see Proposition 3.3 in [30] and Lemma
2.11 in [18].

Lemma 2. 1  A→ B iff for any a ∈ F, a  A implies a  B.

Proof. (⇒) See Lemma 3 in [1]. (⇐) Suppose Ra1b and a  A and that a  A implies a  B.
We prove b  B. Using the suppositions and (dfU), we obtain that a  B and a = a ◦ 1 = b;
therefore, b  B.

Theorem 3 (Soundness). For a linear theory Γ over L` ∈ L`
eq, a formula A, and a class UL` of all

U-L`
eq frames, Γ `L` A only if Γ |=UL` A.

Proof. For the system MIAL, we consider the axiom (EF) as an example. For (EF), by
Lemma 2, we assume that a  F and show that a  A. This result directly follows from the
supposition and the condition (⊥). The other axioms and rules for MIAL can be proved
similarly.

For the other systems, we need to consider the other structural axioms, i.e., S ∈ {e, o, a}.
(e): Suppose that a  A&B. We have to prove that a  B&A. By the supposition and

the condition (&), there are b, c ∈ F such that b  A, a ≤ b ◦ c, and c  B. Then, pe and
(dfU) ensure that b ◦ c = c ◦ b and so a ≤ c ◦ b. Hence, we obtain a  B&A by (&).

(o): Suppose that a  f . We have to prove a  A. Please note that MIALo proves
F↔ f . Then, since po and (dfU) assure that 0 = ⊥, we can obtain that a  A using (⊥) and
(EF).

(a): Suppose a  A&(B&C). We have to prove a  (A&B)&C. By the supposition, the
condition (&), and (dfU), there are b, c ∈ F so that b  A, a ≤ b ◦ c, and c  B&C; therefore,
for some d, e, we have that d  B, c ≤ d ◦ e, and e  C. Then, b ◦ c ≤ b ◦ (d ◦ e) and so
b ◦ c ≤ (b ◦ d) ◦ e since pa, df1, df2, and (dfU) assure that b ◦ (d ◦ e) = (b ◦ d) ◦ e. Since
b ◦ d ≤ b ◦ d and a ≤ (b ◦ d) ◦ e, we may take some x so that a ≤ x ◦ e and x ≤ b ◦ d. Hence,
by the condition (&), we obtain x  A&B; therefore, a  (A&B)&C. The proof for the other
direction is analogous.
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The following shows a connection between postulates for U-L`
eq frames and algebraic

(in)equations for the structural axioms of L` ∈ L`
eq.

Proposition 1. The postulates for U-L`
eq frames introduced in Definition 1 as pe, po, and pa are

reducible to algebraic (in)equations eA, oA, and aA, respectively.

Proof. We show that peq, eq ∈ {e, o, a}, is reducible to eqA.
(e): Using pe and (dfU), we obtain that for arbitrary a, b, c ∈ F, c = a ◦ b implies

c = b ◦ a; therefore, a ◦ b ≤ b ◦ a, i.e., eA, since a ◦ b = b ◦ a.
(o): Using po and (dfU), we obtain that a = 1 ◦ 0 = 0 iff a = 1 ◦ ⊥ = ⊥ for any a ∈ F

and so 0 ≤ a, i.e., 0A, since 0 = ⊥.
(a): Using pa, df1, df2, and (dfU), we obtain that for arbitrary a, b, c, d ∈ F, there is x

such that x = a ◦ b and d = x ◦ c and thus d = (a ◦ b) ◦ c iff x′ = b ◦ c and d = a ◦ x′ for
some x′ and so d = a ◦ (b ◦ c); therefore, (a ◦ b) ◦ c = a ◦ (b ◦ c), i.e., aA.

Corollary 1. Every U-L`
eq, eq ∈ {o, e}, frame is embeddable into a complete U-L`

eq frame.

Proof. This corollary directly follows from Theorem 2 and Proposition 1.

The next proposition connects algebraic semantics and U-RM` semantics for L` ∈ L`
eq.

Proposition 2.

(i) The {>,⊥, 1, 0,≤, ◦} reduct of an L`-chain A is a U-L`
eq frame, which is complete iff A

is complete.

(ii) Let F = (F,>,⊥, 1, 0,≤, ◦) be a U-L`
eq frame. Then, the structure A = (F, >, ⊥, 1, 0, min,

max, \, /, ◦) is an L`-algebra (where min and max are meant on ≤).

(iii) If F is the {>,⊥, 1, 0,≤, ◦} reduct of an L`-chain A and v is a valuation in A, then (F,) is
a U-L`

eq model and for any formula A and for any a ∈ A, it holds that a  A iff a ≤ v(A).

(iv) Let (F,) be a U-L`
eq model and A be the L`-algebra defined as in (ii). Define for every

propositional variable p, v(p) = max{a ∈ F : a  p}. Then, for every formula A,
v(A) = max{a ∈ F : a  A}.

Proof. Here we consider (iii) because the proof for (i) and (ii) is easy and (iv) follows
almost directly from (iii) and Lemma 1 (ii). We consider the induction steps, where
A = B → C and A = B  C. For the induction step of A = B&C, see Proposition 3.9
in [33]. The proof for the other cases is easy.

Suppose A = B → C. By the condition (→), a  B → C iff for any b, c ∈ F, Rbac
and b  B entail c  C, hence by the induction hypothesis, iff for any b, c ∈ F, b ◦ a = c
and b ≤ v(B) entail c ≤ v(C) and so iff v(B) ◦ a ≤ v(C); therefore, iff a ≤ v(B)→ v(C) =
v(B→ C) by residuation. The proof for the case A = B C is analogous.

Theorem 4 (Completeness). Let Γ be a linear theory on L` ∈ L`
eq, A a formula, and UL` a class

of all U-L`
eq frames.

(i) Γ `L` A iff Γ |=UL` A.

(ii) Let L` ∈ L`
eq′ , eq′ = {e, o}, and UL`c a class of all complete U-L`

eq′ frames. Then, Γ `L` A iff
Γ |=UL`c A.

Proof. (i) follows from Proposition 2 and Theorems 1 and 3 and (ii) from Proposition 2
and Theorems 2 (i) and 3.
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Example 3. Among the examples introduced in Example 1, the systems MICAL and UL have
U-RM` semantics but MTL does not since the postulates e, a are equationally definable by (dfU) but
the postulate i is not. Therefore, we can say the following.

(1) Micanorm logic MICAL has a U-RM` semantics.

(2) Uninorm logic UL has a U-RM` semantics.

(3) Monoidal t-norm logic MTL does not have a U-RM` semantics.

Please note that one is capable of defining the ternary relation R using (dfU) and
the forcing relation  using ≤. This means that for L` ∈ L`

eq, U-RM` semantics can be
considered in the context of algebraic semantics and vice versa.

As in [1], using the definition (dfU) and the valuation conditions (→) and ( ), we can
show the following derived conditions of a valuation.

Proposition 3 ([1]).

(i) For any b ∈ F, b  A implies b ◦ a  B iff for any b, c ∈ F, Rbac and b  A imply c  B.

(ii) For any b ∈ F, b  A implies a ◦ b  B iff for any b, c ∈ F, Rabc and b  A imply c  B.

Proposition 3 ensures that, as far as we accept (dfU), the conditions of a valuation are
reducible to those of AK semantics for L`

eq. Thus, U-RM` semantics for L`
eq can be reduced

to the AK semantics for L`
eq with the definition (dfU). Therefore, this semantics can be

called ARM` semantics reducible to AK semantics.

3.2. F-RM` Semantics

Here we consider F-RM` semantics for L`s. We first define some further RM frames.

Definition 8.

(i) (Operational RM frame [1]) An operational RM frame is a structure F = (F, 1,≤, ◦, R),
where (F, 1, R) is an RM frame, (F, 1, ◦) is a groupoid with unit, and R satisfies the postulates
below: for all a, b, c ∈ F,

ps. R1ab and R1ba imply a = b;

pt. R1ab and R1bc imply R1ac;

p≤. a ≤ b iff R1ba.

(ii) ((Residuated) Fine operational RM` frame) Linear RM frames are defined as in Definition 5
(ii). A Fine operational RM` frame (F-RM` frame for short) is an operational RM frame,
where ◦ satisfies (dfF

′) a ◦ b ≥ c := Rabc (Notice that ≤ in (dfF
′) is considered order reversely.

Please compare it with ≤ in (dfF).) and R satisfies the postulate below: for all a, b ∈ F,

p0. R1ab or R1ba.

Residuated F-RM` frames are defined as in Definition 5 (iii).

(iii) (Bounded, pointed F-RM` MIAL frames) Bounded, pointed F-RM` frames are defined as in
Definition 5 (iv). An F-RM` MIAL frame is a bounded pointed residuated F-RM` frame,
where ◦ is conjunctive and left-continuous.

(iv) (F-L` frames) Consider the definitions and postulates df1, df2, pe, po, pa and the below
additional postulates: for all a, b, c, d ∈ F,

pp. Raab implies R1ab.

pc. Raaa

pi. Rabc implies R1bc.
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For any S ⊆ {pe, pp, pc, pi, po, pa}, F-RM` MIALS frames are defined, along with their
corresponding postulates. We call all these frames F-L` frames.

Remark 2.

(1) One is capable of showing that (F, ≤) is a linearly ordered set, using (dfF
′), identity a ≤ a, ps,

pt, and p0 in F-RM` frames and so these frames are linearly ordered.

(2) ([1]) The indices of the postulates in (iv) denote their corresponding axioms. For example,
the postulate pp is for the expansion axiom p. Moreover, (dfF

′) assures that those postulates
satisfy their corresponding algebraic properties.

The conditions for a valuation on an F-L` frame are the same as in Section 3.1 except
for the following:

(&R) a  A&B iff there exist b, c ∈ F so that Rbca, b  A and c  B.

We can prove Proposition 3 and the condition (&) using (dfF
′). Moreover, we can

further show the following additional derived condition.

Proposition 4. a ≤ v(A) ◦ v(B) iff there exist b, c ∈ F such that Rcba, b ≤ v(A) and c ≤ v(B).

Proof. (⇒) Assume that a ≤ v(A) ◦ v(B). We take b, c satisfying that b = v(A) and
c = v(B). Then, using (dfF

′), we can obtain that Rcba, b ≤ v(A), and c ≤ v(B). (⇐)
Suppose that Rcba, b ≤ v(A) and c ≤ v(B). Then, using (dfF

′), we obtain a ≤ b ◦ c,
b ≤ v(A), and c ≤ v(B); therefore, a ≤ v(A) ◦ v(B).

Notice that Lemmas 1 and 2 also hold for F-L` frames and models.

Theorem 5 (Soundness). For a linear theory Γ over L` ∈ L`s, a formula A, and a class FL` of all
F-L` frames, Γ `L` A only if Γ |=FL` A.

Proof. We need to consider the structural axioms c, p, i. For c, we assume that a  A and
show that a  A&A. By the supposition, pc, and (&), we obtain that a  A&A. The proof
for the other ones p, i is analogous.

Now, we recall a connection between postulates for F-L` frames and algebraic (in)equations
for the structural axioms of L` ∈ L`s.

Proposition 5 ([1]). The postulates for F-L` frames introduced in Definition 1 are reducible to
algebraic (in)equations for the structural axioms of L` introduced in Definition 4.

The next proposition connects F-RM` semantics and algebraic semantics for L`s.

Proposition 6.

(i) The {>,⊥, 1, 0,≤, ◦} reduct of an L`-chain A is an F-L` frame, which is complete iff A
is complete.

(ii) Let F = (F,>,⊥, 1, 0,≤, ◦) be an F-L` frame. Then, the structure A = (F, >, ⊥, 1, 0, max,
min, ◦, \, /) is an L`-algebra.

(iii) If F is the {>,⊥, 1, 0,≤, ◦} reduct of an L`-chain A and v is a valuation in A, then (F,) is
an F-L` model and for all formulas A and for all a ∈ A, we obtain that a  A iff a ≤ v(A).

(iv) Let (F,) be an F-L` model and A be the L`-algebra defined as in (ii). Define for every
propositional variable p, v(p) = max{a ∈ F : a  p}. Then, for every formula A,
v(A) = max{a ∈ F : a  A}.
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Proof. As above, we prove (iii). We consider the induction steps, where A = B&C,
A = B→ C and A = B C, since the other cases can be easily proved.

Suppose A = B&C. The condition (&R) assures that a  B&C iff there are b, c ∈ F
so that b  B, c  C, and Rbca, hence by the induction hypothesis and (dfF

′), iff there are
b, c ∈ F such that b ≤ v(B), c ≤ v(C), and a ≤ b ◦ c. It then holds true that a ≤ b ◦ c ≤
v(B) ◦ v(C) = v(B&C). Conversely, suppose a ≤ v(B) ◦ v(C) = v(B&C) and take b = v(B)
and c = v(C). Then we can obtain b  B, c  C and a ≤ b ◦ c; hence, a  B&C by (&R)
and (dfF

′).
Suppose A = B → C. The condition (→) assures that a  B → C iff for all b, c ∈ F,

Rbac and b  B entail c  C, hence by the induction hypothesis and (dfF
′), iff for all b, c ∈ F,

c ≤ b ◦ a and b ≤ v(B) entail c ≤ v(C). Then, we obtain a ≤ v(B)\v(C) = v(B→ C) since
c ≤ b ◦ a ≤ v(B) ◦ a ≤ v(C). Suppose conversely that a ≤ v(B)\v(C) = v(B → C). Then
we have that v(B) ◦ a ≤ v(C) and so c ≤ v(C) for c ≤ b ◦ a and b ≤ v(B). This ensures that
Rbac and b  B entail c  C; hence, a  B→ C by (→).

The proof of the case A = B C is analogous to the case A = B→ C.

Theorem 6 (Completeness). Let Γ be a linear theory over L` ∈ L`s, A a formula, and FL` a class
of all F-L` frames.

(i) Γ `L` A iff Γ |=FL` A.

(ii) Let L` be a member of L`
S′ = {MIALS′ : S′ ⊆ {e, p, c, i, o}} or L`

S′′ such that {i, a} ⊆ S′′ ⊆
{e, p, c, i, o, a}, and FL`c a class of all complete F-L` frames. Then, Γ `L` A iff Γ |=FL`c A.

Proof. (i) follows from Proposition 6 and Theorems 1 and 5 and (ii) from Proposition 6
and Theorems 2 and 5.

Example 4. All the systems introduced in Example 1 have F-RM` semantics since the postulates
e, a, i are inequationally definable by (dfF

′). However, the non-fuzzy system R+ (the positive R) does
not have such semantics since, while F-RM` semantics validates sentences such as (a) in Section 1,
R+ does not proves such sentences. Therefore, we can say the following.

(1) Micanorm logic MICAL has an F-RM` semantics.

(2) Uninorm logic UL has an F-RM` semantics.

(3) Monoidal t-norm logic MTL has an F-RM` semantics.

(4) The positive relevance logic R+ does not have an F-RM` semantics.

As above, one is capable of defining the ternary relation R using (dfF
′) and the forcing

relation  using ≤. This means that for L` ∈ L`s, F-RM` semantics can be considered in the
context of algebraic semantics and vice versa.

4. Advantages and Limitations of ARM` Semantics
4.1. Advantages and Limitations: General

Here we consider the advantages and limitations of U-RM` and F-RM` semantics as
ARM` semantics in general. The most important advantage of these semantics is that the
clauses (∧), (∨), and either (→RU ) or (→RF ) can be used together. Please note that these
clauses are not working together on distributive substructural logic systems in general,
whereas they are still working on linearly ordered related substructural systems (see
Examples 3 and 4). This means that these semantics use the standard clauses (∧), (∨), and
so are more powerful than such semantics introduced in [1] in a pragmatic sense. Because
most people working for semantics of a formal system would be familiar with these
standard clauses and thus U-RM` and F-RM` semantics would be easier to understand
to them. (Please note that in fuzzy logic prime theories are interchangeable with linear
theories (see, e.g., [29]) and so the clause (∨) can be used in ARM` semantics. Note also
that the ARM semantics in [1] uses closed theories in place of linear theories.)
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ARM` semantics is also very powerful in a philosophical sense that one may understand
concretely the connections between nodes to force a formula. For instance, the inequation
(eA) shows that any pair of nodes a, b must be exchangeable in order to force the formula
(A&B)→ (B&A) in the logic MIALe (= MICAL). Hence, one can say that the basic feature
of the postulate pe is the commutativity property. Please note that it is not easy for us to
understand that the postulate pe has the commutativity feature if we do not interpret it
using the definition (dfU) (or (dfF

′)). The definition (dfU) says that the ternary relation R
for accessibility is replaced by the operator ◦ and equality = and similarly for the definition
(dfF

′). Using these definitions, one can achieve an intuitive understanding of the meaning
of pe.

As is well known, Routley–Meyer semantics for relevance logics need not require
structures equivalent to algebraic semantics for those logics. For example, the Routley–
Meyer semantics for R introduced by Dunn [8] has the ternary relation R indefinable by
(dfU) and (dfF

′) and the postulates for this semantics cannot be interpreted by those defini-
tions (see [1,8]). Thus, related to accessibility, we may introduce two different approaches
to Routley–Meyer-style semantics: One is Routley–Meyer-style semantics based on accessi-
bility relations themselves and the other is that instead based on accessibility operations.
The Routley–Meyer semantics for R above is a representative example of the former sort
and the ARM` semantics for the substructural fuzzy logics here is a representative example
of the latter sort. Therefore, ARM` semantics as a representative of the latter sort is very
useful to deal with substructural fuzzy logics.

However, on the other side of the same coin, ARM` semantics has clear limitations.
First, it does not have its own semantics distinguished from algebraic semantics in that
frames for the ARM` semantics have the same structures as algebraic semantics. In this
sense, ARM` semantics is not very interesting in terms of the novelty of semantics. Second,
it is not applicable to Routley–Meyer frames not having such algebraic structures. Thirdly, it
is not applicable to non-fuzzy substructural logics in general. These three are the limitations
of U-RM` and F-RM` semantics as ARM` semantics in general.

4.2. Advantages and Limitations: Specific

Here we deal with comparative advantages and limitations between U-RM` and
F-RM` semantics. We first introduce advantages of each semantics. First, consider U-RM`

semantics. As mentioned in Section 3.1, Position 3 implies that this semantics can be
regarded as ARM` semantics reducible to AK semantics. This shows that U-RM` semantics
is related to both Kripke-style semantics and algebraic semantics. More precisely, U-RM`

semantics belongs to a common area of algebraic, Kripke-style, and Routley–Meyer-style
semantics. This is the most important logical advantage of U-RM` semantics in that it
provides a chance to investigate similarities and differences between the three sorts of
semantics. U-RM` frames have the postulates p1, p2, whereas F-RM` frames do not. This
means that U-RM` frames have relational conditions for a unit element but F-RM` frames
do not. This is another advantage of U-RM` semantics in a technical point of view for
relational semantics when it is compared to F-RM` semantics.

Next, consider F-RM` semantics. Proposition 6 assures that if one accepts (dfF
′), one

is capable of providing ARM` semantics being equivalent to algebraic semantics for L`s.
This implies that F-RM` semantics can cover all the systems introduced in Definition 2.
This is the most important logical advantage of F-RM` semantics in that this semantics
as one sort of ARM` semantics is as powerful as algebraic semantics. Please note that,
as is shown in Section 3.2, substructural (core) fuzzy logics being algebraically complete
are also complete regarding this sort of semantics and vice versa. F-RM` frames have the
postulates ps, pt, p≤, p0, whereas U-RM` frames do not. This means that F-RM` frames
have relational conditions for the linear ordering of ≤ but U-RM` frames do not. Moreover,
it has the relational clause (&R) defined using the ternary relation R for a valuation of the
intensional conjunction &. These provide a technical advantage of F-RM` semantics for
relational semantics when it is compared to U-RM` semantics.
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We next introduce limitations of each semantics. Like the face and back of a coin, the
advantages of U-RM` provide limits of F-RM` semantics, and the advantages of F-RM`

give limitations of U-RM` semantics. We state this. For the limitations of U-RM` semantics,
first consider the following example.

Example 5. As in [1], (dfU) does not work for the postulates pp, pc, and pi introduced in Section
3.2. To verify this, apply (dfU) to pc, pp, and pi. Then, we obtain the following:

p′c. a ◦ a = a.

p′p. b = a ◦ a implies b = 1 ◦ a.

p′i. c = a ◦ b implies c = 1 ◦ b.

Since p′c implies p′p and vice versa, the postulates pc and pp are the same; therefore, the
MIALc-RM (MIALp-RM resp) frame validates the axiom p (c resp), which is not provable in
MIALc (MIALp resp). Similarly, the postulate pi implies that b = a ∗ b and thus the MIALi-RM
frame validates formulas such as ϕ→ (ψ&ϕ), which is not provable in MIALi.

This example shows that as semantics for basic (core) fuzzy logics U-RM` semantics is
less powerful than F-RM` semantics in a logical point of view. Moreover, using the ternary
relation R, one cannot provide the postulates for the above linear ordering and the clause
(&R). These two are the limitations of U-RM` semantics compared to F-RM` semantics.

For the limitations of F-RM` semantics, first consider the following example, which
can be easily verified.

Example 6. Using the definition (dfF
′) and the valuation conditions (→) and ( ), one can prove

the following.

(i) For any b ∈ F, b  A implies b ◦ a  B only if for any b, c ∈ F, Rbac and b  A imply
c  B.

(ii) For any b ∈ F, b  A implies a ◦ b  B only if for any b, c ∈ F, Rabc and b  A imply
c  B.

However, one cannot prove the reverse direction of each (i) and (ii) and so cannot do Proposi-
tion 3.

This example shows that F-RM` semantics is not reducible to AK semantics. Therefore,
such semantics can be called ARM` semantics irreducible to AK semantics for L`s. It
implies that F-RM` semantics is not helpful to study a common area between Kripke-style
semantics and Routley–Meyer-style semantics. Hence, F-RM` semantics is less powerful
than U-RM` semantics in a logical research of common areas between different sorts of
semantics. Moreover, using the ternary relation R, one cannot provide the postulates for
the unit element. These two are the limitations of F-RM` semantics compared to U-RM`

semantics.
As a summary we note the following facts. First, U-RM` semantics covers all the (core)

fuzzy systems with equationally definable substructural axioms, whereas F-RM` semantics
those systems with inequationally definable substructural axioms. Second, in these two
sorts of ARM` semantics, (dfU) and (dfF

′) provide ways to interpret the ternary relation R
using binary operation ◦ and (in)equation. Third, these two semantics are not applicable to
Routley–Meyer-style semantics irreducible to algebraic one. For instance, while the RM
semantics for R introduced in [8] requires the postulate Raaa for the rule (mp), U-RM` and
F-RM` semantics cannot have a = a ◦ a (by (dfU)) and a ≤ a ◦ a (by (dfF

′)), respectively, as
semantic postulates for MIAL.

5. Discussion and Conclusions

We investigated ARM semantics for substructural (core) fuzzy logics based on mi-
anorms. More precisely, we provided U-RM` and F-RM` semantics as two sorts of ARM
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semantics for them. We in particular deal with advantages and limitations of these seman-
tics.

We note that U-RM` and F-RM` semantics provide frames as some reducts of their
corresponding algebras and so are ARM` semantics for fuzzy extensions of substructural
logics. Especially, those semantics define ternary relations using binary operations and
(in)equations like the semantics for substructural logics in [1]. However, unlike these
semantics, they are provided based on linear theories and conditions for linear ordering,
and so work for linearly ordered models. As mentioned in Section 1, ARM` semantics as
a relational semantics for substructural fuzzy logics in general is a novel one to connect
n-nary operations and n+1-nary relations.

The author [47] introduced implicational tonoid fuzzy logics as fuzzy extensions of
implicational tonoid logics, the class of logics satisfying transitivity, reflexivity, tonicity,
and modus ponens introduced by the author and Dunn [48]. Please note that all the logic
systems introduced in Definition 2 can be regarded as such fuzzy logics because they also
satisfy the conditions for an implicational tonoid logic and are complete over linearly
ordered models. Hence, this investigation can be thought of as an introduction of ARM
semantics for concrete implicational tonoid fuzzy logics.

However, any more exact connection between semantics for implicational tonoid
fuzzy logics and those for substructural (core) fuzzy logics is not studied here. For instance,
while the former logics do not introduce any concrete connectives, the substructural (core)
fuzzy logics do. For these logics, the connectives ∨ and ∧ need to be interpreted by join
and meet as lattice operators and need their corresponding relational consideration. Thus,
in the context of implicational tonoid fuzzy logics, these things have to be dealt with.
Furthermore, while non-operational RM semantics can be established for substructural
logics, e.g., the system R (see [8]), such semantics for the fuzzy logics is not considered
either. The author has a plan to study these two in the future, i.e., leave these for another
day. By these two works, we can fill gaps between abstract logic (implicational tonoid
fuzzy logics) and concrete logic (substructural (core) fuzzy logics) and between algebraic
and non-algebraic Routley–Meyer-style semantics.

It is well known that lattices can be defined as ordered sets and as algebraic structures.
To show the equivalence between the first relational definition of a lattice and its second
algebraic definition, one has to have some definitions such as (b) x ≤ y iff join(x, y) = y
iff meet(x, y) = x. Similarly, we can consider the algebraic and ARM semantics and the
definitions (dfU) and (dfF

′) regarding substructural (core) fuzzy logics. Associated with this,
the author [49] studied basic logico-algebraic properties of micanorms characterizing the
logic MICAL such as (left-)continuity, residuated implications, conjunctive and disjunctive
micanorms, idempotent, nilpotent, and divisor micanorms, and so on. This implies that
such theoretic applications of micanorms can be considered in the context of U-RM` and
F-RM` frames. Namely, one can treat such properties as applications of U-RM` and F-RM`

frames. More exact treatment of such applications is an another problem to solve in the
future.
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