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1. Introduction

An integer n is called a balancing number if there exists another integer r, called a
balancer, corresponding to n, such that the following Diophantine equation holds

1 + 2 + · · ·+ (n− 1) = (n + 1) + (n + 2) + · · ·+ (n + r). (1)

For example, 6 is a balancing number with balancer 2. We allow 1 to be the first balancing
number with the first balancer 0. Let Bm be the m-th balancing number and Rm be the
m-th balancer. Then we have that {Bm}m≥1 = {1, 6, 35, 204, . . .} (OEIS: A001109) and
{Rm}m≥1 = {0, 2, 14, 84, . . .} (OEIS: A053141). The problem of determining all balancing
numbers in the set of natural numbers leads to a second order linear recursive sequence or
a Pell equation. In [1], Behera and Panda prove that the square of any balancing number is
a triangular number. In fact, it is easy to derive that n is a balancing number if and only if
n2 is a triangular number, and if and only if 8n2 + 1 is a perfect square. They also proved
that the balancing sequence {Bm}m≥1 fulfilled the recursive relation

Bm+1 = 6Bm − Bm−1,

for all m ≥ 2 with initials B1 = 1, B2 = 6. According to the recursive relation, it forces that
B0 = 0.

From (1), we have
r2 + (2n + 1)r− n(n− 1) = 0,

or

r =
−2n− 1 +

√
8n2 + 1

2
.

Since r is an integer, then 8n2 + 1 must be an odd square, say 8n2 + 1 = t2 with t odd. We
have

n2 =

(
t−1

2

)(
t+1

2

)
2

= T(t−1)/2,

where Tm := m(m + 1)/2 is the m-th triangular number. The m-th Lucas-balancing number
may be defined by Cm :=

√
8B2

m + 1 and {Cm}m≥0 = {1, 3, 17, 99, 577, . . .}(OEIS: A001541).
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In addition, one can check that Cm+1 = 6Cm − Cm−1 and the relation Rm = Cm−2Bm−1
2 for

any m ≥ 1 .
Similarly, one can define the cobalancing numbers with cobalancers as the solutions

in n, r to the Diophantine equation

1 + 2 + · · ·+ n = (n + 1) + (n + 2) + · · ·+ (n + r). (2)

From (2), it implies that n is a cobalancing number if and only if n(n + 1) is a triangular
number, and if and only if 8n2 + 8n + 1 is a perfect square. Throughout this paper, let
bm, rm and cm :=

√
8b2

m + 8bm + 1 be the m-th cobalancing number, the m-th cobalancer,
and the m-th Lucas-balancing number, respectively. For example, b1 = r1 = 0 and c1 = 1.

Various possible generalizations of balancing numbers, balancers, and Lucas-balancing
numbers have been studied by several authors from many aspects. In [2], Panda defined
sequence balancing numbers with sequence balancers as follows. Let {um}m≥1 be a se-
quence of real numbers. We call a pair (um, k) a sequence balancing number with sequence
balancer if

u1 + u2 + · · ·+ um−1 = um+1 + um+2 + · · ·+ um+k.

Kovács, Liptai and Olajos [3] introduced the concept of sequence balancing numbers to the
sequence of arithmetic progressions. They defined the (a, b)-type balancing numbers with
the (a, b)-type balancer as solutions of the Diophantine equation

(a + b) + (2a + b) + · · ·+ (a(n− 1) + b) = (a(n + 1) + b) + · · ·+ (a(n + r) + b), (3)

where a > 0 and b ≥ 0 are coprime integers. In [3], several effective finiteness and explicit
results about (a, b)-type balancing numbers had been given. In particular, Kovács et al.
proved the following theorem.

Theorem 1 (Theorem 2 in [3]). If a2 − 4ab− 4b2 = 1, then there is no perfect power (a, b)-type
balancing number.

Thus, a question naturally arises: can we determine all (a, b)-type balancing numbers
in the set of arithmetic progressions? In this paper, we will provide an answer to this
question. In other words, we search “few” balances in the set of arithmetic progressions.
First, we must be clear about the terminology and notation. We denote the m-th (a, b)-type
balancing number, if it exists for infinitely many m, by B(a,b)

m . Note that when (a, b) = (1, 0),
we get nothing but the original balancing number Bm. Instead of requesting integers a > 0
and b ≥ 0, our definition of (a, b)-type balancing should only exclude from the cases a = 0
or gcd(a, b) 6= 1. For the former case a = 0, it is trivial. For the later case, we just notice for
any integer d 6= 0 that

B(da,db)
m = dB(a,b)

m .

Without loss of generality, we may assume that a > 0, for otherwise, use the above identity
by putting d = −1. For our convenience, let B(a,b)

0 = b. We allow that 1 is the first balancing

number, i.e., B1 = 1, as well as B(a,b)
1 = a + b. The (a, b)-type balancer is defined to be the

least number r, which satisfies (3) and the m-th (a, b)-type balancer is denoted by R(a,b)
m if

it exists.
This paper is organized as follows. In Section 2, we present a sufficient and necessary

condition for the existence of the (a, b)-type balancing number B(a,b)
m for infinitely many

m. Precisely, we show numbers B(a,b)
m exist for infinitely many m if and only if a | 2b.

Moreover, we sort and classify all (a, b)-type balancing numbers and provide explicit
formulae for them. In Section 3, we discuss the (a, b)-type cobalancing numbers, the (a, b)-
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type cobalancers, and the (a, b)-type Lucas-cobalancing numbers. We summarize the paper
in the conclusion section.

2. Main Results

The problem of determining all (a, b)-type balancing numbers in the set of arithmetic
progressions leads to the equation x2 − 8y2 = c. In the following, we derive the condition
a | 2b as a sufficient and necessary condition for the existence of the (a, b)-type balancing
number B(a,b)

m for infinitely many m.
On one hand, from (3) we have

n(n− 1)
2

a + (n− 1)b = arn +
r(r + 1)

2
a + br,

or
ar2 + (2an + a + 2b)r− (n− 1)(an + 2b) = 0. (4)

We solve the equation in r directly to get

r = −n +
−a− 2b±

√
8(an + b)2 + (a2 − 4ab− 4b2)

2a
.

It “forces” that the number 8(an + b)2 + (a2− 4ab− 4b2) must be a perfect square. We then
define the m-th (a, b)-type Lucas-balancing number by

C(a,b)
m :=

√
8
(

B(a,b)
m

)2
+ a2 − 4ab− 4b2.

Note that both a and C(a,b)
m have the same parity. Now we have, for all m ≥ 1,(

C(a,b)
m

)2
− 8
(

B(a,b)
m

)2
= a2 − 4ab− 4b2.

On the other hand, multiplying Equation (4) by 4a (note that a 6= 0), we get

(2(an + b) + a(2r + 1))2 − 8(an + b)2 =a2 − 4ab− 4b2

=(±(a− 2b))2 − 8b2.
(5)

Let x = 2a(n + r) + a + 2b and y = an + b. We may rewrite (5) as

x2 − 8y2 = c, (6)

where c = a2 − 4ab − 4b2 = (±(a − 2b))2 − 8b2. To solve Equation (6), we solve the
following Pell equation in two variables u, v:

u2 − 8v2 = 1.

The fundamental solution is (u, v) = (3, 1) and, thus, all the solutions can be determined by

u + v
√

8 = (3 +
√

8)m,

for any m ≥ 0. Notice that (x, y) = (±(a− 2b), b) is an initial solution of the Equation (6).
Hence, all solutions of the Equation (6) takes the form

x + y
√

8 =
(
±(a− 2b) + b

√
8
)
(3 +

√
8)m.
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Suppose that (3 +
√

8)m = xm + ym
√

8. It is easy to prove that both sequences
{xm}m≥1, {ym}m≥1 satisfy the same recurrence relation as below

xm+1 = 6xm − xm−1,

for m ≥ 2 and with initials x1 = 3, x2 = 17 and y1 = 1, y2 = 6, respectively. Therefore,
we conclude that xm = Cm and ym = Bm, the m-th Lucas-balancing number, and the m-th
balancing number.

Now, we get

x + y
√

8 =
(
±(a− 2b) + b

√
8
)
(Cm + Bm

√
8).

It immediately implies that

B(a,b)
m = bCm ± (a− 2b)Bm.

Whether the positive or negative sign it takes, the key to guarantee is B(a,b)
m ≥ B(a,b)

1 = a + b.
In light of Cm = 3Bm − Bm−1 (this follows easily by strong induction on m), we may rewrite
the explicit formulae for the (a, b)-type balancing number as

B(a,b)
m = (a + b)Bm − bBm−1;

B(a,b)
m = bBm+1 − (a + b)Bm.

(7)

For example, when (a, b) = (2, 1), we have B(2,1)
m = Cm = 3Bm − Bm−1 for all m ≥ 1.

Another example, when a = b = 1, we relabel the (1, 1)-type balancing numbers according
to Equation (7). That is, for k ≥ 1,

B(1,1)
0 = 1,

B(1,1)
2k−1 = 2Bk − Bk−1;

B(1,1)
2k = Bk+1 − 2Bk.

Indeed, we have {B(1,1)
m }m≥0 = {1, 2, 4, 11, 23, 64, 134, 373, 781, . . .} (OEIS:A006452) and that

B(1,1)
m = 6B(1,1)

m−2 − B(1,1)
m−4, for m ≥ 4.

Actually the number B(1,1)
m is an integer n, such that 8n2− 7 is a perfect square. Thus, n2− 1

is a triangular number. In [4], Subramaniam studied such an integer n, which he called the
almost square triangular number (ASTN) of type β, such that n2 − 1 is triangular. See also
Theorem 2.2.2 in [2].

In addition, we see that the x-solutions of Equation (5) are given by

2B(a,b)
m + a(2R(a,b)

m + 1) = 8bBm ± (a− 2b)Cm,

C(a,b)
m = |2B(a,b)

m + a(2R(a,b)
m + 1)| ≥ 0.

(8)

In light of B(a,b)
m = bCm ± (a− 2b)Bm and Rm = Cm−2Bm−1

2 , we can solve for R(a,b)
m from (8):

R(a,b)
m =

(
6b
a
− 1
)

Bm −
2b
a

Cm +
Cm − 1

2
=

2b
a

Bm−1 + Rm;

R(a,b)
m =

(
1 +

2b
a

)
Bm −

Cm + 1
2

=
2b
a

Bm − Rm − 1,
(9)

and the recursive relation R(a,b)
m+1 = 6R(a,b)

m − R(a,b)
m−1 + 2 for all m ≥ 2.

http://oeis.org/A006452
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Recall that 8n2 + 1 is an odd square if n is a balancing number. Thus, the number Cm
must be an odd integer for each positive integer m. Hence, we conclude that

R(a,b)
m ∈ Z ⇐⇒ a | 2b.

That is, under the restriction of gcd(a, b) = 1, the positive integer a is taken either 1 or 2.
We summarize the above discussion in the following theorem.

Theorem 2. Let a, b be two coprime integers with a 6= 0. The sufficient and necessary condition
for the existence of the (a, b)-type balancing number B(a,b)

m , the (a, b)-type balancer R(a,b)
m , and the

(a, b)-type Lucas-balancing number C(a,b)
m for all m ≥ 1 is a | 2b.

We now give explicit formulae for the (a, b)-type balancing numbers with the (a, b)-
type balancers by distinguishing four cases, according to a = 1 or a = 2.

(Case 1: (a, b) = (1, b), b ≥ 0.) If b = 0, we get exactly the original balancing number
and balancer, B(1,0)

m = Bm, R(1,0)
m = Rm. For b ≥ 1, in this case, the two relations in (7) make

sense, since both B(a,b)
m ≥ 1 + b for all m. Hence, we just relabel and conclude that the

explicit formula for the (1, b)-type balancing numbers is given by, for all k ≥ 1,

B(1,b)
0 = b,

{
B(1,b)

2k−1 = (b + 1)Bk − bBk−1;

B(1,b)
2k = bBk+1 − (b + 1)Bk.

In light of (8) and (9), the corresponding (1, b)-type balancers R(1,b)
m and Lucas-balancing

numbers C(1,b)
m are then given by{

R(1,b)
2k−1 = 2bBk−1 + Rk, C(1,b)

2k−1 = 8bBk + (1− 2b)Ck;

R(1,b)
2k = 2bBk − Rk − 1, C(1,b)

2k = 8bBk − (1− 2b)Ck,

for all k ≥ 1.
(Case 2: (a, b) = (1,−c), c ≥ 1.) In this case, we search the balances in the sequence

{n− c}n≥1 = {1− c, 2− c, . . . ,−1, 0, 1, . . . , c− 1, c, c+ 1, . . .}. By definition, B(1,−c)
1 = 1− c.

We see that the first few elements of the sequence {n− c}n≥1 are negative, and they must cancel
each other out with the first few positive elements. In fact, if c /∈ {B(1,t)

` + R(1,t)
` + 1}t≥0,`≥2,

then it is easy to see that B(1,−c)
m = B(1,c−1)

m for all m ≥ 2. If c = B(1,t)
` + R(1,t)

` + 1 for some

t ≥ 0 and for some ` ≥ 2, then B(1,−c)
2 = −B(1,t)

` and B(1,−c)
m = B(1,c−1)

m−1 for all m ≥ 3. To see
this, just notice the identity

(−B(1,t)
` − R(1,t)

` ) + (−B(1,t)
` − R(1,t)

` + 1) + · · ·+ (−B(1,t)
` − 1)

=(−B(1,t)
` + 1) + (−B(1,t)

` + 2) + · · ·+ (t + 2) + (t + 1).

The above identity holds by the definition of balancing numbers with the balancer.
The corresponding (1,−c)-type balancers R(1,−c)

m are given as below. By definition,
R(1,−c)

1 = 0. Moreover, we have

R(1,−c)
2 =


2, if c = 1;
R(1,c−1)

2 = 2c− 3, if c > 1 and c /∈ {B(1,t)
` + R(1,t)

` + 1}t≥0,`≥2;
B(1,t)
` − t− 1, if c = B(1,t)

` + R(1,t)
` + 1 for some t ≥ 0, ` ≥ 2,

and for m ≥ 3, R(1,−c)
m = R(1,c−1)

m if c /∈ {B(1,t)
` + R(1,t)

` + 1}t≥0,`≥2 and R(1,−c)
m = R(1,c−1)

m−1
for otherwise.
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In addition, we have that C(1,−c)
1 = |3− 2c| and

C(1,−c)
2 =


17, if c = 1;
14c− 17, if c > 1 and c /∈ {B(1,t)

` + R(1,t)
` + 1}t≥0,`≥2;

2t + 1, if c = B(1,t)
` + R(1,t)

` + 1 for some t ≥ 0, ` ≥ 2,

and for m ≥ 3,

C(1,−c)
m =

{
2B(1,c−1)

m + 2R(1,c−1)
m + 1, if c /∈ {B(1,t)

` + R(1,t)
` + 1}t≥0,`≥2;

2B(1,c−1)
m−1 + 2R(1,c−1)

m−1 + 1, if c = B(1,t)
` + R(1,t)

` + 1 for some t ≥ 0, ` ≥ 2.

(Case 3: (a, b) = (2, b), b ≥ 1 odd.) When (a, b) = (2, 1), we obtain that
B(2,1)

m = 3Bm − Bm−1 by (7). Thus, it implies that B(2,1)
m = Cm. So the balancing numbers in

the sequence {3, 5, 7, . . .} are those Lucas-balancing numbers in the sequence of positive
integers. Moreover, by (8) and (9), R(2,1)

m = Bm−1 + Rm and C(2,1)
m = 2(Bm + Bm−1 + Cm).

For b ≥ 3 is an odd integer, we have B(2,b)
0 = b and for all k ≥ 1{

B(2,b)
2k−1 = (b + 2)Bk − bBk−1;

B(2,b)
2k = bBk+1 − (b + 2)Bk.

In viewing of (8) and (9), the corresponding (2, b)-type balancers R(2,b)
m and Lucas-balancing

numbers C(2,b)
m are then given by{

R(2,b)
2k−1 = bBk−1 + Rk, C(2,b)

2k−1 = 8bBk + 2(1− b)Ck;

R(2,b)
2k = bBk − Rk − 1, C(2,b)

2k = 8bBk − 2(1− b)Ck,

for all k ≥ 1.
(Case 4: (a, b) = (2,−c), c ≥ 1 odd.) The simplest subcase c = 1 gives B(2,−1)

m =

Bm + Bm−1. The sequence of integers {B(2,−1)
m }m≥1 begins with 1, 7, 41, 239, 1393, 8119, . . .,

which are related to the square order of simple groups and these numbers are called
NSW numbers [5]. The NSW numbers have nice properties similar to Mersenne numbers
Mp = 2p− 1 with p prime. It is easy to see that NSW numbers verify the recurrence relation

B(2,−1)
m+1 = 6B(2,−1)

m − B(2,−1)
m−1 . E. Barcucci et al. [6] gave a combinatorial interpretation of the

sequence of NSW numbers. Actually, they proved that the cardinality of the set of words
of L having length m is equal to B(2,1)

m+1.

For all m ≥ 1, the corresponding (2,−1)-type balancers R(2,−1)
m and Lucas-balancing

numbers C(2,−1)
m are given by

R(2,−1)
m = Rm − Bm−1, C(2,−1)

m = 4(Cm − 2Bm) = 4(Bm − Bm−1),

respectively.
For c > 1 is an odd integer, we note that B(2,−c)

1 = 2− c. The identity(
−B(2,2t−1)

` − 2R(2,2t−1)
`

)
+
(
−B(2,2t−1)

` − 2R(2,2t−1)
` + 2

)
+ · · ·+

(
−B(2,2t−1)

` − 2
)

=
(
−B(2,2t−1)

` + 2
)
+ · · ·+ (2t− 5) + (2t− 3)
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implies that B(2,−c)
2 = −B(2,2t−1)

` if c = B(2,2t−1)
` + 2R(2,2t−1)

` + 2 for some t ≥ 0 and for

some ` ≥ 2. If c /∈ {B(2,2t−1)
` + 2R(2,2t−1)

` + 2}t≥0,`≥2, we have that B(2,−c)
2 = B(2,c−2)

2 .
For m ≥ 3, we have{

B(2,−c)
m = B(2,c−2)

m if c /∈ {B(2,2t−1)
` + 2R(2,2t−1)

` + 2}t≥0,`≥2;
B(2,−c)

m = B(2,c−2)
m−1 for otherwise.

The corresponding (2,−c)-type balancers R(2,−c)
m are given as below. By definition,

R(2,−c)
1 = 0. Moreover, we have

R(2,−c)
2 =


3 if c = 3
R(2,c−2)

2 = c− 3, if c > 3 odd and c /∈ {B(2,2t−1)
` + R(2,2t−1)

` + 2}t≥0,`≥2;
B(2,2t−1)
` + 2t− 3

2
, if c = B(2,2t−1)

` + R(2,2t−1)
` + 2 for some t ≥ 0, ` ≥ 2,

and for m ≥ 3, R(2,−c)
m = R(2,c−2)

m if c /∈ {B(2,2t−1)
` + R(2,2t−1)

` + 2}t≥0,`≥2 and R(2,−c)
m =

R(2,c−2)
m−1 for otherwise.

Furthermore, we have that C(2,−c)
1 = |6− 2c| for c > 1 odd and

C(2,−c)
2 =


48, if c = 3;
14c− 34, if c > 3 odd and c /∈ {B(2,2t−1)

` + R(2,2t−1)
` + 2}t≥0,`≥2;

|4t− 4|, if c = B(2,2t−1)
` + R(2,2t−1)

` + 2 for some t ≥ 0, ` ≥ 2,

and for m ≥ 3, C(2,−c)
m = 2B(2,c−2)

m + 4R(2,c−2)
m + 2 if c /∈ {B(2,2t−1)

` + R(2,2t−1)
` + 2}t≥0,`≥2

and C(2,−c)
m = 2B(2,c−2)

m−1 + 4R(2,c−2)
m−1 + 2 for otherwise.

3. (a, b)-Type Cobalancing Numbers

Let a, b be two coprime integers with a > 0. We say that an + b is an (a, b)-type
cobalancing number if

(a + b) + (2a + b) + · · ·+ (an + b) = (a(n + 1) + b) + · · ·+ (a(n + r) + b), (10)

with a corresponding number r > 0, which is called the cobalancer. Let b(a,b)
m and r(a,b)

m be
the m-th (a, b)-type cobalancing number, the m-th (a, b)-type cobalancer, respectively.

The Equation (10) is equivalent to

(2(an + b) + a(1− 2r))2 − 8(ar)2 = (a + 2b)2, (11)

or x2 − 8y2 = c with x = 2(an + b) + a(1− 2r), y = ar and c = (a + 2b)2. If c = 0; that is
a = −2b, the equation has no nonzero solution. For c 6= 0, all integral solutions can be
determined by

x + y
√

8 = (a + 2b)(3 +
√

8)m = (a + 2b)(Cm + Bm
√

8),

for any m ≥ 0. It implies that

ar(a,b)
m = (a + 2b)Bm−1 = (a + 2b)rm,

and
b(a,b)

m = b Cm−1 + a
Cm−1 − 1

2
+ (a + 2b)Bm−1. (12)

That is, r(a,b)
m =

(
1 + 2b

a

)
rm and it implies that r(a,b)

m ∈ Z if and only if a | 2b.



Axioms 2021, 10, 350 8 of 9

If we solve the Equation (11) in r directly, we obtain

r = −n +
−a− 2b±

√
8(an + b)2 + 8a(an + b) + a2 − 4ab− 4b2

2a
.

It forces that the number 8(an + b)2 + 8a(an + b) + a2 − 4ab − 4b2 must be a perfect
square number. Thus, we define the m-th (a, b)-type Lucas-cobalancing number by

c(a,b)
m :=

√
8
(

b(a,b)
m

)2
+ 8ab(a,b)

m + a2 − 4ab− 4b2. In other words, for all m ≥ 1,

(
c(a,b)

m

)2
− 2
(

2b(a,b)
m + a

)2
= (a + 2b)2 − 2(a + 2b)2. (13)

Hence, the integral solutions can be determined by

c(a,b)
m + (2b(a,b)

m + a)
√

2 = (a + 2b)(1 +
√

2)(3 + 2
√

2)m−1 (14)

for any m ≥ 1. Then, from (13) and (14), we deduce the identity (12) and also

c(a,b)
m = (a + 2b)(Cm−1 + 4Bm−1). (15)

Notice that when (a, b) = (2,−1), in this case, we have a = −2b, then there do not
exist any (2,−1)-type cobalancing numbers (in the sequence of odd positive integers) and
c(2,−1)

m = 0 for all m ≥ 1. This result coincides with Theorem 2.1.6 given in [2].
According to the identity (12), the following theorem follows easily by induction on m.

Theorem 3. Let a, b be two coprime integers with a > 0, and a | 2b. Then we have for m ≥ 1

b(a,b)
m+1 = 6 b(a,b)

m − b(a,b)
m−1 + 2a,

with initial values b(a,b)
0 = b(a,b)

1 = b. Moreover, for m ≥ 2, we have

r(a,b)
m+1 = 6r(a,b)

m − r(a,b)
m−1, c(a,b)

m+1 = 6c(a,b)
m − c(a,b)

m−1,

with initials r(a,b)
1 = 0, r(a,b)

2 = (1 + 2b
a ), and c(a,b)

1 = a + 2b, c(a,b)
2 = 7a + 14b.

4. Conclusions

Our Theorem 2 says that the only guarantee of having the existence of (a, b)-type
balancing numbers B(a,b)

m for infinitely many m is by satisfying the condition a | 2b.
Although the equation a2 − 4ab − 4b2 = 1 has infinitely many solutions in integers
a > 0, b ≥ 0, it reduces the only one (a, b) = (1, 0) under the conditions a | 2b and
gcd(a, b) = 1. For, we assume that a > 0, b ≥ 0 and 2b = ka for some integer k, then
a2 − 4ab− 4b2 = (1− 2k− k2)a2 = 1. It implies that a = 1 and k = 0 since gcd(a, b) = 1.
That is (a, b) = (1, 0). When (a, b) = (1, 0), the (a, b)-type balancing number is nothing
but the original balancing number. Thus, Theorem 1 actually says that there is no perfect
power in the sequence of balancing numbers.

From the y-solutions of the Pell equation x2 − 8y2 = 1, we see that B(1,0)
m = Bm is the

coefficient of the irrational part in the expansion of (3 +
√

8)m. If m = 2k, for some integer
k ≥ 0, we obtain that

B2k =
k−1

∑
j=0

(
2k

2j + 1

)
32k−2j−18j.

If m = 2k + 1, we obtain that
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B2k+1 =
k

∑
j=0

(
2k + 1
2j + 1

)
32k−2j8j.

Similarly, the Lucas-balancing numbers are all x-solutions of the Pell equation x2− 8y2 = 1.
So, we simply obtain that

C2k =
k

∑
j=0

(
2k
2j

)
32k−2j8j,

and

C2k+1 =
k

∑
j=0

(
2k + 1

2j

)
32k−2j+18j.

Corollary 1. For any integer k ≥ 0, we have

B4k+1 ≡ +1(mod9), B4k+3 ≡ −1(mod9);

B2k ≡ −2k(mod8), B2k+1 ≡ 2k + 1(mod8);

C2k ≡ (−1)k(mod9), C2k+1 ≡ (−1)k+13(k− 1)(mod9);

C2k ≡ 1(mod8), C2k+1 ≡ 3(mod8).

Of course, some explicit formulae of cobalancing and Lucas-cobalancing numbers,
and some modular relations among them, can be obtained in a similar way. We leave it to
the interested reader.
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