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Abstract: The purpose of this paper is to reduce the complexity of computing the components of
the integral Fm-transform, m ≥ 0, whose analytic expressions include definite integrals. We propose
to use nontrivial quadrature rules with nonuniformly distributed integration points instead of the
widely used Newton–Cotes formulas. As the weight function that determines orthogonality, we
choose the generating function of the fuzzy partition associated with the Fm-transform. Taking
into account this fact and the fact of exact integration of orthogonal polynomials, we obtain exact
analytic expressions for the denominators of the components of the Fm-transformation and their
approximate analytic expressions, which include only elementary arithmetic operations. This allows
us to effectively estimate the components of the Fm-transformation for 0 ≤ m ≤ 3. As a side result, we
obtain a new method of numerical integration, which can be recommended not only for continuous
functions, but also for strongly oscillating functions. The advantage of the proposed calculation
method is shown by examples.
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1. Introduction

The use of numerical integration methods manifests itself in various aspects of compu-
tation related to many problems of functional analysis, numerical solutions of differential
and integral equations and their applications. In particular, the Gaussian quadrature rules
considered in the monographs [1,2] are used in the analysis of the influence of numerical
integration methods on the accuracy of solutions to various equations. As some exam-
ples, let us refer to fractional differential equations with a nonsingular Mittag–Leffler
kernel [3], second-kind fuzzy Fredholm integral equations [4], variational equations [5,6]
and second-order elliptic equations solved using non-parametric nonconforming quadrilat-
eral elements [7].

In all the publications mentioned above, the Gaussian quadrature rules demonstrate
their usefulness over other numerical integration methods in providing better approxima-
tion quality. In [8], this conclusion was confirmed for the finite element method based on
the analysis of the dependence of the approximation quality on the numerical integration
methods used. Similar dependencies were also studied in [9] for the p-version of finite ele-
ments and in [10] in connection with the approximation of eigenvalues. Later in [10,11], the
above dependencies were discussed in the problem of approximation of linear functionals
and approximation of eigenvalues.

As in the approaches mentioned above, the main attention in the proposed study
is paid to the analysis of the effects of numerical integration in the calculation of the
components of the fuzzy (F-)transforms of higher degrees. The importance of this seemingly
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narrow problem stems from the fact that the theory of F-transforms is regarded as a
methodology for fuzzy functional analysis. The latter has become important with numerous
applications in integral and differential calculus, image processing and computer vision,
time series analysis, and neural network computing, see [12] and the references therein.

An extended view of this study shows its importance for any calculation of weighted
projections of functional objects (images, signals, etc.) on an appropriate orthogonal basis,
which may consist of eigenfunctions of various integral operators. This increases the value
of the proposed results for the rapidly growing set of data-driven methodologies used in
modern data analysis, now enriched with the F-transform, and especially its more powerful
higher degree version [13].

Since the F-transform method requires the calculation of weighted orthogonal projec-
tions (F-transform components) onto orthogonal polynomials, it is important to reduce its
complexity. Therefore, the main technical focus of this study is devoted to efficient and
easy-to-implement methods of numerical integration. In addition, we will focus on three-
point and four-point quadrature rules because it is generally not true that a quadrature
formula with a large number of integration points guarantees optimal convergence [1,7].

To calculate the components of the Fm-transform of a higher degree, m ≥ 0, the two-
point Gaussian quadrature rules were first used in [14]. There we proposed an approximate
analytical expression for the F1-transform components.

In the current paper, we extend the applicability of these rules to Fm-transforms,
where m ≤ 3. For general weight functions and their special triangular-shaped forms,
exact analytic expressions are found for the integration points x1, . . . , xN and the weights
w1, . . . , wN , where N ≤ 4. This allows us to explicitly write the N-point quadrature Gauss
formulas for N ≤ 4 and obtain exact expressions for the integrals of polynomial integrands
up to degree 7. In combination with the inverse F-transform, this result significantly reduces
the computational complexity of various approximations based on analytic expressions
for the inverse F-transform. The N ≤ 4 constraint, offset by the corresponding number of
fuzzy partition elements, guarantees that the inverse F-transform easily controls the quality
of the approximation.

As an advantage of this approach, we show that low degree polynomials combined
with a dense fuzzy partition provide comparable quality and lower computational complex-
ity compared to high degree polynomial approximations over the entire domain. Another
advantage is that the quadrature rule in its analytic form with local polynomial approxima-
tion based on the F-transform can be used as a technical step in an operational method [4]
for solving (fuzzy) integral and differential equations.

Summing up, we can say that this article contributes and innovates two areas: approx-
imation theory based on higher degree F-transforms and numerical methods of integration.
In the second mentioned area, we give direct descriptions of integration points and weights
for N-point Gaussian quadrature formulas, N ≤ 4, with an arbitrary positive weight func-
tion, and obtain exact expressions for integrals of (weighted) polynomials as integrands
up to the degree 7. In the first direction, direct analytic expressions are proposed for the
inverse Fm-transforms with m ≤ 3, where the latter include only arithmetic operations. This
significantly reduces the computational complexity of this method (based on the integral
F-transform) by eliminating the need for numerical integration.

The paper has the following structure: In Section 2, we give preliminaries related to
the Gaussian quadrature formulas and the higher degree Fm-transforms. In Section 3, we
formulate and give the technical details of our main result on 3- and 4-point Gaussian
quadrature rules, where the weight function is the membership function of a fuzzy partition
element. In Section 4, we define the 3- and 4-point Gauss quadrature rules for the particular
weight function with a triangular shape.

Finally, in Section 6, on various numerical tests, we show the usefulness of the Gauss
quadrature rules proposed here for calculating the components of the (direct and inverse)
Fm-transform (m ≤ 3) and numerical integration.
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2. Preliminaries

Below, we give a brief overview of the development of quadrature rules for numer-
ical integration. Scientific research in this area is still in demand due to the many new
forms of differential and integral calculus, including fuzzy and various fractional versions,
see [3–7,9,11] and citations therein. Without going into numerous details, we recall the
main facts related to the Gaussian quadrature rules [15–19] and show the most stable trends
in their use.

The N-point Gaussian quadrature rule of the form (1) is a numerical integration rule
that gives an exact result for polynomials of degree 2N− 1 or less with an appropriate choice
of integration points xi and weights wi, where i = 1, . . . , N, see e.g., [1,19]. Generalized
formulation ∫ b

a
ω(x) f (x)dx ≈

N

∑
i=1

wi f (xi), (1)

where ω : [a, b]→ R+ is a weight function, was developed by Carl Gustav Jacobi in 1826.
The choice of ω affects the choice of integration points xi and weights wi, so if p1, . . . , pN
are ω-weighted orthogonal polynomials with degrees corresponding to their indices, then
x1, . . . , xN are the roots of pN . The weights w1, . . . , wN are found using the property that (1)
is exact for polynomials of degree 2N − 1 or less. Moreover, if the weight function ω is
symmetric with respect to the central point (a + b)/2, then the roots are symmetric with
respect to this point, and the weights satisfy the condition: wi = wN+1−i. These two
properties halve the computational complexity.

Depending on the choice of the weight function ω, Gaussian quadrature rules are
given by the names of their authors, see [15,18]. The most famous are Gauss–Legendre
(ω(x) = 1), Gauss–Jacobi (ω(x) = (1− x)α(1 + x)β, α, β > −1) and Chebyshev–Gauss
quadrature rules (ω(x) = 1/

√
1− x2) considered on the interval [−1, 1]. There are many

algorithms for computing integration points xi and weights wi of Gaussian quadrature
rules. The most popular are the Golub–Welsh algorithm [19] requiring O(N2) operations,
Newton’s method for solving pN(x) = 0, requiring O(N2) operations, and asymptotic
formulas for large N, requiring O(n) operations.

In this study, we develop quadrature Gaussian rules where the weight functions are
the membership functions A1, . . . , An : [a, b]→ [0, 1] of an h-uniform fuzzy partition, and
the corresponding orthogonal polynomials are defined as in [14]. The original idea was
proposed in [14]. In this article, the 2-point Gaussian quadrature formula was found and
applied to calculate the components of the F1-transform. Based on the approach proposed
in [14], we develop 3- and 4-point Gaussian quadrature formulas and use them to calculate
the components of Fm-transformations, where m ≤ 3.

2.1. Fuzzy Partition

The notion of fuzzy partition has been evolved in the theory of fuzzy sets being
adjusted to various requests to a space structure. The closest form to that which we use in
this paper has been introduced in [20].

Definition 1 (Fuzzy partition). Let [a, b] be an interval on R, n ≥ 2, and let x0, x1, . . ., xn,
xn+1 be nodes such that a = x0 = x1 < . . . < xn = xn+1 = b. We say that fuzzy sets
A1, . . . , An : [a, b] → [0, 1], which are identified with their membership functions, constitute a
fuzzy partition of [a, b] if for k = 1, . . . , n, they fulfill the following conditions:

1. Normality: Ak(xk) = 1;
2. Locality: Ak(x) = 0 if x 6∈ [xk−1, xk+1];
3. Continuity: Ak(x) is continuous on [a, b];
4. Positiveness on support: Ak(x) > 0 if x ∈ (xk−1, xk+1);

5. Ruspini condition:
n
∑

k=1
Ak(x) = 1, x ∈ [a, b].

The membership functions A1, . . . , An are called basic functions.
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We say that the fuzzy partition A1, . . . , An, n ≥ 3, is h-uniform, where h = b−a
n−1 , if nodes

x1, . . . , xn are h-equidistant, i.e., xk+1 = xk + h, k = 1, . . . , n − 1, and there exists an even
function A0 : [−1, 1]→ [0, 1] such that A0(0) = 1, and for all k = 1, . . . , n,

Ak(x) = A0

(
x− xk

h

)
, x ∈ [xk−1, xk+1] . (2)

We call A0 a generating function of the uniform fuzzy partition.

Below, we introduce a set of Hilbert spaces, each of which is defined by a set of
square-integrable functions on the corresponding element of the fuzzy partition and the
basic function associated with it. We use the notation [14].

Let us fix [a, b] and its fuzzy partition A1, . . . , An, n ≥ 3. Let k be a fixed integer
from {2, . . . , n− 1}, Ak a basic function and L2(Ak) a set of square-integrable functions
f : [xk−1, xk+1]→ R. Denote L2(a, b) as a set of functions f : [a, b]→ R, such that

∫ b

a
( f (x))2dx < ∞.

Let us recall [14], and denote the inner product of f and g in L2(Ak) as

〈 f , g〉k =

∫ xk+1
xk−1

f (x)g(x)Ak(x)dx∫ xk+1
xk−1

Ak(x)dx
=

∫ xk+1
xk−1

f (x)g(x)Ak(x)dx

h
, (3)

and the corresponding norm ‖.‖k as

‖ f ‖k =
√
〈 f , f 〉k.

We remind that the functions f and g ∈ L2(Ak) are orthogonal in L2(Ak) if 〈 f , g〉k = 0.
By [14], L2(Ak) together with the inner product (3) is a Hilbert space. Let k be a

fixed integer from {2, ..., n − 1}, and let {1, x − xk, (x − xk)
2, . . . , (x − xk)

m}, m ≥ 0,
be a linearly independent system of polynomials, restricted to the support of Ak and
translated to the new origin xk. Let us apply the Gram–Schmidt orthogonalization to the
system {1, x− xk, (x− xk)

2, . . . , (x− xk)
m} and convert it to the orthogonal polynomials

P0
k , P1

k , . . . , Pm
k such that, for l = 0, . . . , m− 1,

P0
k = 1, Pl+1

k = (x− xk)
l+1 −

l

∑
i=0

λl
i P

i
k, (4)

where λl
i =

〈(x−xk)
l+1,Pi

k〉k
<Pi

k ,Pi
k>k

, and 〈Pi
k, Pi

k〉k 6= 0, i = 0, . . . , m.

Remark 1. It is easy to see that for all k = 2, ..., n− 1; r ∈ N and x ∈ [xk−1, xk+1],

P2r
k (−(x− xk)) = P2r

k (x− xk),

P2r+1
k (−(x− xk)) = −P2r+1

k (x− xk). (5)

Example 1. Let us give an example of the first five orthogonal polynomials P0
0 , P1

0 , . . . , P4
0 in

L2(A0), where A0 : [−1, 1]→ [0, 1] is some fixed generating function and 〈·, ·〉0 is the correspond-
ing inner product:
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P0(x) =1,

P1(x) =x,

P2(x) =x2 − 〈x2, 1〉0 = x2 − I0
2 ,

P3(x) =x3 − 〈x
4, 1〉0
〈x2, 1〉0

x = x3 −
I0
4

I0
2

x,

P4(x) =x4 − 〈x
6, 1〉0 − 〈x4, 1〉0〈x2, 1〉0
〈x4, 1〉0 − 〈x2, 1〉20

(x2 − 〈x2, 1〉0)− 〈x4, 1〉0 =

x4 −
I0
6 − I0

2 I0
4

I0
4 − (I0

2 )
2

x2 +
I0
2 I0

6 − (I0
2 )

2 I0
4

I0
4 − (I0

2 )
2
− I0

4 =

x4 −
I0
6 − I0

2 I0
4

I0
4 − (I0

2 )
2

x2 +
I0
2 I0

6 − (I0
4 )

2

I0
4 − (I0

2 )
2

.

Above, we have made use of the following notation:

I0
2 =

∫ 1

−1
x2 A0(x)dx, I0

4 =
∫ 1

−1
x4 A0(x)dx, I0

6 =
∫ 1

−1
x6 A0(x)dx. (6)

2.2. Fm-Transform

In this section, we repeat definitions of the direct and inverse Fm-transform as they
appeared in [14]. Let k be a fixed integer from {2, ..., n− 1} and Lm

2 (Ak) be a linear subspace
of L2(Ak) spanned by P0

k , P1
k , ..., Pm

k . It is easy to see that Lm
2 (Ak) consists of all polynomials

of degree l ≤ m restricted to the support of Ak. Moreover,

L0
2(Ak) ⊂ L1

2(Ak) ⊂ . . . Lm
2 (Ak) ⊂ . . . .

Definition 2. Let f : [a, b] → R be a function from L2(a, b), and let m ≥ 0 be a fixed integer.
Denote Fm

k as the k-th orthogonal projection of f |[xk−1,xk+1]
on Lm

2 (Ak), k = 2, . . . , n − 1. We
say that the n− 2-tuple (Fm

2 , . . . , Fm
n−1) is an Fm-transform of f with respect to A2, . . . , An−1, or

formally,

Fm[ f ] = (Fm
2 , . . . , Fm

n−1). (7)

Fm
k is called the k-th Fm-transform component of f .

In [14], it was proved that

Fm
k = ck,0P0

k + ck,1P1
k + . . . + ck,mPm

k ,

where

ck,i =
〈 f , Pi

k〉k
〈Pi

k, Pi
k〉k

=

∫ xk+1
xk−1

f (x)Pi
k(x)Ak(x)dx∫ xk+1

xk−1
Pi

k(x)Pi
k(x)Ak(x)dx

, k = 2, ..., n− 1, (8)

for i = 0, . . . , m.
An inverse Fm-transform of a function f is defined as a linear combination of basic

functions with “coefficients” given by the Fm-transform components.

Definition 3. Let f : [a, b] → R be a given function, m ≥ 0, and let (Fm
2 , . . . , Fm

n−1) be the
Fm-transform of f with respect to full fuzzy sets in the partition A2, . . . , An−1. Then, the following
function f m

F,n : [a, b]→ R

f m
F,n(x) =

n−1

∑
k=2

Fm
k Ak(x) (9)
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is called the inverse Fm-transform of f with respect to (Fm
2 , . . . , Fm

n−1) and A2, . . . , An−1.

In general, the inverse Fm-transform of f ∈ L2(a, b) is different from f . However for
m ≥ 1, it approximates f with the following quality estimate [14]:

∫ b−h

a+h
| f (x)− f m

F,n(x)|dx ≤ O(h2), (10)

where the h-uniform partition A2, . . . , An−1 of [a, b] fulfills the Ruspini condition on
[a + h, b− h], and functions f and Ak, k = 1, ..., n are four times continuously differentiable
on [a, b].

2.3. The Quadrature Formula

To calculate the components of the Fm-transform of a higher degree, m ≥ 1, it is
necessary to compute a number of definite integrals given in (8). At least half of them
are integrals of weighted polynomials, and other are integrals of functions with the same
weight. For their precise and approximate computation, we propose to use Gaussian
quadrature rules (1) specified by basic functions of the corresponding fuzzy partition. This
idea was firstly used in [14] for the computation of the F1-transform components. In the
current paper, we extend the applicability of these rules to Fm-transforms, where m ≤ 3.

Let us fix [a, b] and its h-uniform fuzzy partition A1, . . . , An, n ≥ 3. Let k be a fixed
integer from {2, . . . , n − 1}, Ak a basic function, and L2(Ak) a set of square-integrable
functions f : [xk−1, xk+1]→ R.

Definition 4 ([14]). The N-point Gaussian quadrature rule of the form (1) with the weight function
Ak has the form

∫ xk+1

xk−1

f (x)Ak(x)dx ≈
N

∑
i=1

wi f (tk
i ). (11)

The integration points tk
i and weights wi, i = 1, . . . , N, are assumed to be chosen so

that (11) is exact for all polynomials of the highest possible degree.

Lemma 1 ([14]). If tk
1, . . . , tk

N are roots of the polynomial PN
k and

∫ xk+1

xk−1

Pl(x)Ak(x)dx =
N

∑
i=1

wiPl(tk
i ), (12)

holds true for all polynomials Pl of degrees 0 ≤ l ≤ N − 1 and some coefficients w1, ..., wN ,
then (12) holds true for all polynomials Pl of degree 0 ≤ l ≤ 2N − 1.

Remark 2. In the proposed contribution, we are looking for quadrature formulas that are exact
for all polynomials of degrees 4 and 6, respectively. By lemma 1 we see that the values N = 3 and
N = 4, respectively, are suitable for this purpose.

3. Main Results

In this section, we will discuss how to construct 3- and 4-Gaussian quadrature formulas
with the membership function Ak as a weight function. We will discuss 3- and 4-quadrature
formulas in the two subsequent subsections separately. Then we will show how to use
these results and obtain exact analytical expressions for the denominators of components
ck,2 and ck,3 given in (8), where k = 2, 3. This becomes possible because their integrands
are polynomials of the fourth and sixth degrees respectively so that the proposed 3- and 4-
Gaussian quadrature rules are exact for these polynomials.

Assume that interval [a, b] has an h-uniform fuzzy partition A1, ..., An which will
be fixed throughout this section. Since the domains of membership functions A1 and
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An are only half size of domains of other membership functions, we will consider two
separate cases:

(i) Regular, when k = 2, ..., n− 1.
(ii) Boundary, when k = 1, n.

Let us fix the value of k, 1 ≤ k ≤ n, and make some useful notations

I2 =
∫ xk+1

xk−1

(x− xk)
2 Ak(x)dx,

I4 =
∫ xk+1

xk−1

(x− xk)
4 Ak(x)dx,

I6 =
∫ xk+1

xk−1

(x− xk)
6 Ak(x)dx, (13)

δ̃ =

√
I2

h
, δ =

√
I4

I2
. (14)

3.1. Domain Extension

In this subsection, we redefine the F-transform components for the boundary case (ii),
i.e., for the case k = 1 or k = n. At first, we extend the given interval [a, b] to [a− h, b + h],
where h is a parameter of an h-uniform fuzzy partition.

Let us denote L2(A1) and L2(An) as

L2(A1) =
{

f : [a− h, x2]→ R
∣∣∣ ∫ x2

a−h
f 2(x)dx < ∞

}
,

L2(An) =
{

f : [xn−1, b + h]→ R
∣∣∣ ∫ b+h

xn−1

f 2(x)dx < ∞
}

.

Extend domains of A1 and An to [a− h, x2] and [xn−1, b + h], respectively, and define
(as in [21])

Aex
1 (x) =

{
A1(x) for all x ∈ [a, x2],
A1(2a− x) for all x ∈ [a− h, a),

(15)

Aex
n (x) =

{
An(x) for all x ∈ [xn−1, b],
An(2b− x) for all x ∈ (b, b + h].

(16)

The corresponding inner products are defined in the same way as in (3):

〈 f , g〉1 =

∫ x2
a−h f (x)g(x)Aex

1 (x)dx
h

, for all f , g ∈ L2(A1),

〈 f , g〉n =

∫ b+h
xn−1

f (x)g(x)Aex
n (x)dx

h
, for all f , g ∈ L2(An). (17)

Similarly to Example 1, we apply the Gram–Schmidt orthogonalization and construct
the orthogonal polynomials P0

1 , ..., Pm
1 and P0

n , ..., Pm
n as follows:

P0
1 (x) = 1, Pl+1

1 = (x− a)l+1 −
l

∑
i=0

λl
i,1Pi

0(x), for all x ∈ [a− h, x2],

P0
n(x) = 1, Pl+1

n = (x− b)l+1 −
l

∑
i=0

λl
i,nPi

0(x), for all x ∈ [xn−1, b + h], (18)
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where λl
i,1 =

<(x−a)l+1,Pi
1>1

<Pi
1,Pi

1>1
, λl

i,n = <(x−b)l+1,Pi
n>n

<Pi
n ,Pi

n>n
, and < Pi

1, Pi
1 >1 6= 0, < Pi

n, Pi
n >n 6= 0,

i = 0, . . . , l.
Let Lm

2 (A1)
(

Lm
2 (An)

)
be a linear subspace of L2(A1)

(
L2(An)

)
spanned by P0

1 , ..., Pm
1(

P0
n , ..., Pm

n
)
. It is easy to see that Lm

2 (A1) and Lm
2 (An) have all properties of Lm

2 (Ak), k =
2, ..., n− 1.

Let us extend f ∈ L2(a, b) to f ex (similar to [21]), where f ex : [a− h, b + h]→ R,

f ex(x) =


f (x) if x ∈ [a, b],
f (2a− x) if x ∈ [a− h, a),
f (2b− x) if x ∈ (b, b + h].

(19)

Obviously, f ex|[a−h,x2]
∈ Lm

2 (A1) and f ex|[xn−1,b+h] ∈ Lm
2 (An).

Definition 5. Let f : [a, b]→ R be a function from L2(a, b) and f ex be its extension to [a− h, b +
h]. Define the Fm-transform components Fm

1 and Fm
n f ex similarly to Definition 2 and as follows:

Fm
1 = c1,0P0

1 + c1,1P1
1 + ... + c1,mPm

1 ,

Fm
n = cn,0P0

n + cn,1P1
n + ... + cn,mPm

n ,

where for i = 0, ..., m (as in (8)),

c1,i =
〈 f ex, Pi

1〉1
〈Pi

1, Pi
1〉1

=

∫ b
a−h f ex(x)Pi

1(x)Aex
1 (x)dx∫ b

a−h Pi
1(x)Pi

1(x)Aex
1 (x)dx

=
2
∫ x2

a f (x)Pi
1(x)A1(x)dx∫ x2

a−h Pi
1(x)Pi

1(x)Aex
1 (x)dx

,

cn,i =
〈 f ex, Pi

n〉n
〈Pi

n, Pi
n〉n

=

∫ b+h
a f ex(x)Pi

n(x)Aex
n (x)dx∫ b+h

a Pi
n(x)Pi

n(x)Aex
n (x)dx

=
2
∫ b

xn−1
f (x)Pi

n(x)An(x)dx∫ b+h
xn−1

Pi
n(x)Pi

n(x)Aex
n (x)dx

. (20)

The n-tuple (Fm
1 , Fm

2 , ..., Fm
n−1, Fm

n ) is an extended Fm-transform of f ex with respect to the extended
partition Aex

1 , A2, . . . , An−1, Aex
n , or formally,

Fm[ f ex] = (Fm
1 , ..., Fm

n ).

Accordingly, we extend the Definition 3 of the inverse Fm-transformat to the function
f ex. By the quality estimate (10), we have

∫ b

a
| f (x)− f m,n

ex (x)|dx ≤ O(h2),

where the h-uniform partition Aex
1 , A2, ...An−1, Aex

n of [a, b] fulfills the Ruspini condition on
[a, b].

3.2. 3-Point Quadrature Rule with Weight Function Ak

In this subsection, we find the parameters of the 3-point quadrature formula (11)
specified in Definition 4. By Lemma 1, this means to find the roots tk

1, tk
2, tk

3 of the
polynomial P3

k (x) and the coefficients w1 , w2 , w3, such that∫ xk+1

xk−1

Pl(x)Ak(x)dx = w1Pl(tk
1) + w2Pl(tk

2) + w3Pl(tk
3), (21)

is satisfied for all polynomials Pl of degree 0 ≤ l ≤ 2.
By Example 1,

P3
k (x) = (x− xk)

3 − I4

I2
(x− xk), (22)
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and it is orthogonal to P0
k , P1

k , P2
k with respect to (3). It is easy to see that the roofs of P3

k are
tk
1 = xk −

√
I4
I2
= xk − δ,

tk
2 = xk,

tk
3 = xk +

√
I4
I2
= xk + δ.

(23)

Let us denote

ρ =
I2
2

2hI4
, w1 = w3 = hρ, w2 = h(1− 2ρ). (24)

First, consider the case when k = 2, ..., n− 1.

Lemma 2. For all polynomials Pl of degree l, 0 ≤ l ≤ 2, the equality∫ xk+1

xk−1

Pl(x)Ak(x)dx = w1Pl(tk
1) + w2Pl(tk

2) + w3Pl(tk
3), (25)

where w1, w2, w3 are specified in (24), holds true.

Proof. Case 1: For l = 0, we have P0(x) = α with α ∈ R. Firstly, we compute the left side
of (25): ∫ xk+1

xk−1

P0(x)Ak(x)dx =
∫ xk+1

xk−1

αAk(x)dx = αh = h(ρα + (1− 2ρ)α + ρα)

= h(ρP0(tk
1) + (1− 2ρ)P0(tk

2) + ρP0(tk
3))

= w1P0(tk
1) + w2P0(tk

2) + w3P0(tk
3).

Case 2: For l = 1, we have P1(x) = α + βx with α, β ∈ R. We compute the left side
of (25) ∫ xk+1

xk−1

P1(x)Ak(x)dx =
∫ xk+1

xk−1

(α + βxk)Ak(x) + β
∫ xk+1

xk−1

(x− xk)Ak(x)dx

= (α + βxk)
∫ xk+1

xk−1

Ak(x)dx = h(α + βxk). (26)

On the right hand side of (25), we have

P1(tk
1) = P1(xk − δ) = α + β(xk − δ) = α + βxk − βδ,

P1(tk
2) = P1(xk) = α + βxk,

P1(tk
3) = P1(xk + δ) = α + β(xk + δ) = α + βxk + βδ.

By the direct computation, we see that the left hand side of (25) is equal to its right hand side:∫ xk+1

xk−1

P1(x)Ak(x)dx = h(α + βxk)

= h
(

ρ(α + βxk − βδ) + (1− 2ρ)(α + βxk) + ρ(α + βxk + βδ)
)

= w1P1(tk
1) + w2P1(tk

2) + w3P1(tk
3).
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Case 3: For l = 2, we have P2(x) = α + βx + γx2 with α, β, γ ∈ R. At first, we rewrite
P2(x) into

P2(x) = α + βx + γx2 = γ
(
(x− xk)

2 − I2

h

)
+ (2γxk + β)(x− xk) + γx2

k + βxk + α + γ
I2

h

= γP2
k (x) + (2γxk + β)P1

k (x) + γx2
k + βxk + α + γ

I2

h
.

Then, the left hand side of (25) becomes∫ xk+1

xk−1

P2(x)Ak(x)dx =γ
∫ xk+1

xk−1

P2
k (x)Ak(x)dx + (2γxk + β)

∫ xk+1

xk−1

P1
k (x)Ak(x)dx

+
(

γx2
k + βxk + α + γ

I2

h

) ∫ xk+1

xk−1

Ak(x)dx

=h
(

γx2
k + βxk + α + γ

I2

h

)
= h

(
α + βxk + γx2

k + 2γ
I2
2

2hI4

I4

I2

)
=h
(

γx2
k + βxk + α + 2ργδ2

)
. (27)

Using

P2(tk
1) = P2(xk − δ) = α + β(xk − δ) + γ(xk − δ)2 = α + βxk + γx2

k − βδ− 2γxkδ2 + γδ2,

P2(tk
2) = P2(xk) = α + βxk + γx2

k ,

P2(tk
3) = P2(xk + δ) = α + β(xk + δ) + γ(xk + δ)2 = α + βxk + γx2

k + βδ + 2γxkδ2 + γδ2,

we easily come to

ρP2(tk
1) + (1− 2ρ)P2(tk

2) + ρP2(tk
3) = α + βxk + γx2

k + 2ργδ2. (28)

By (27) and (28),∫ xk+1

xk−1

P2(x)Ak(x)dx = h
(
ρP2(tk

1) + (1− 2ρ)P2(tk
2) + ρP2(tk

3)
)

= w1P2(tk
1) + w2P2(tk

2) + w3P2(tk
3).

Therefore, Equation (25) holds true for all polynomials Pl of 0 ≤ l ≤ 2.

Corollary 1. Let [a, b] be an interval on R, and A1, ..., An be an h-uniform fuzzy partition of [a, b],
and α, β, γ be arbitrary real numbers. Then∫ xk+1

xk−1

(α + βx)Ak(x)dx = h(α + βxk),∫ xk+1

xk−1

(α + βx + γx2)Ak(x)dx = h
(

γx2
k + βxk + α + γ

I2

h

)
.

Proof. Based on Equations (26) and (27).

Corollary 2. The quadrature formula (25) holds true for all polynomials of degree 0 ≤ l ≤ 5.

Now we consider the cases k = 1 and k = n where the 3-point quadrature rule (11),
specified by N = 3, and parameters in (23) and (24), is used for a general L2(a, b) function in-
cluding polynomials. Therefore, this rule gives an approxamate value of the corresponding
integral.
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Lemma 3. Let [a, b] be arbitrary interval and A1, ..., An is its h-uniform fuzzy partition. Let
Aex

1 , Aex
n extend A1 and An as in (15) and (16), respectively. For any f ∈ L2(a, b) and its

extension f ex ∈ L2(a− h, b + h),∫ x2

a
f (x)A1(x)dx ≈ w3 f (t1

3) +
1
2

w2 f (t1
2), (29)

∫ b

xn−1

f (x)Andx ≈ w1 f (tn
1 ) +

1
2

w2 f (tn
2 ), (30)

where w1, w2, w3 are in (24).

Proof. On the left hand side of (29), we have∫ x2

a
f (x)A1(x)dx =

1
2

∫ x2

a−h
f ex(x)Aex

1 (x)dx ≈ h
2
(ρ f ex(a− δ) + (1− 2ρ) f ex(a) + ρ f ex(a + δ))

= h
(

ρ f (a + δ) +
1
2
(1− 2ρ) f (a)

)
= w3 f (t1

3) +
1
2

w2 f (t1
2).

Equation (30) can be proved similarly.

Theorem 1. Let A1, ..., An be the h-uniform fuzzy partition of an interval [a, b], f ∈ L2(a, b) and
n-tuple (F2

1 , ..., F2
n) is an the extended F2-transform of f ex with respect to Aex

1 , ..., Aex
n . Then for

any k = 1, ..., n, the calculation of the component of the F2-transform F2
k , where

F2
k = ck,0P0

k + ck,1P1
k + ck,2P2

k ,

can be performed using approximate analytical expressions for the coefficients ck,0, ck,1, ck,2, based
on the three-point quadrature rules (11) given by N = 3, and the parameters in (23) and (24).
Specifically,

ck,0 ≈
∑3

i=1 wi f (tk
i )

h
, for all k = 2, ..., n− 1,

c1,0 ≈
2w3 f (t1

3) + w2 f (t1
2)

h
,

cn,0 ≈
2w1 f (tn

1 ) + w2 f (tn
2 )

h

ck,1 ≈
∑3

i=1 wi(tk
i − xk) f (tk

i )

hδ̃2
, for all k = 2, ..., n− 1,

c1,1 ≈
2w3δ f (t1

3)

hδ̃2
,

cn,1 ≈
−2w1δ f (tn

1 )

hδ̃2
,

ck,2 ≈
∑3

i=1 wi

[
(tk

i − xk)
2 − δ̃2

]
f (tk

i )

h(2ρδ4 − δ̃4)
, for all k = 2, ..., n− 1,

c1,2 ≈
2w3

(
δ2 − δ̃2

)
f (t1

3)− w2δ̃2 f (t1
2)

h(2ρδ4 − δ̃4)
,

cn,2 ≈
2w1

(
δ2 − δ̃2

)
f (tn

1 )− w2δ̃2 f (tn
2 )

h(2ρδ4 − δ̃4)
. (31)
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Proof. First of all, we note that an exact analytical estimate of the denominators in the
expressions for ck,0, ck,1 was proved in [14]. Therefore, we will focus on the calculation of
ck,2, the general expression of which is given in (8).

We begin with the estimation of I2 and I4. Using Lemma 2 and Theorem 4 in [14], we
have

I2 =
∫ xk+1

xk−1

(x− xk)
2 Ak(x)dx =

h
2

(
(tk

1 − xk)
2 + (tk

2 − xk)
2
)
=

h
2

2δ̃2 = hδ̃2,

I4 =
∫ x2

a−h
(x− a)4 Aex

1 (x)dx =
∫ b+h

xn−1

(x− b)4 Aex
n (x)dx =

∫ xk+1

xk−1

(x− xk)
4 Ak(x)dx

= h
(

ρ(xk − δ− xk)
4 + (1− 2ρ)(xk − xk)

4 + ρ(xk + δ− xk)
4
)
= 2hρδ4.

Therefore, for k = 2, ..., n− 1, the denominator of ck,2 is∫ xk+1

xk−1

(
P2

k (x)
)2

Ak(x)dx =
∫ xk+1

xk−1

[
(x− xk)

2 − δ̃2
]2

Ak(x)dx

=
∫ xk+1

xk−1

[
(x− xk)

4 − 2δ̃2(x− xk)
2 + δ̃4

]
Ak(x)dx

=
∫ xk+1

xk−1

(x− xk)
4 Ak(x)dx− 2δ̃2

∫ xk+1

xk−1

(x− xk)
2 Ak(x)dx

+ δ̃4
∫ xk+1

xk−1

Ak(x)dx

=I4 − 2δ̃2 I2 + hδ̃4 = 2hρδ4 − 2hδ̃4 + hδ̃4 = h(2ρδ4 − δ̃4).

Obviously, the denominators of c1,2 and cn,2∫ x2

a−h

(
P2

1 (x)
)2

Aex
1 (x)dx =

∫ b+h

xn−1

(
P2

n(x)
)2

Aex
n (x)dx

=
∫ xk+1

xk−1

(
P2

k (x)
)2

Ak(x)dx = h(2ρδ4 − δ̃4).

Apply the formulas (29) and (30) to calculate the numerators of the components, the
theorem is proved.

3.3. 4-Point Quadrature Rule with Weight Function Ak

In this subsection, we construct the quadrature formula specified in Definition 4 where
N = 4. By Lemma 1, this means to find the roofs tk

1, tk
2, tk

3, tk
4 of P4

k (x) and coefficients
w1, w2, w3, w4 that satisfy

∫ xk+1

xk−1

Pl(x)Ak(x)dx = w1Pl(tk
1) + w2Pl(tk

2) + w3Pl(tk
3) + w4Pl(tk

4), (32)

for all polynomials Pl of degree 0 ≤ l ≤ 3.
Firstly, let us start with finding the polynomial P4

k (x). From exercise Ex.1, it follows
that for all k = 1, ..., n, we have

P4
k (x) = (x− xk)

4 − hI6 − I2 I4

hI4 − I2
2
(x− xk)

2 +
I2 I6 − I2

4
hI4 − I2

2
. (33)

Lemma 4. The equation

X2 − hI6 − I2 I4

hI4 − I2
2

X +
I2 I6 − I2

4
hI4 − I2

2
= 0 (34)



Axioms 2022, 11, 501 13 of 29

have two positive real distinct roofs.

Proof. By the Cauchy–Schwarz inequality, we have

I2 =
∫ xk+1

xk−1

(x− xk)
2 Ak(x)dx ≤

√∫ xk+1

xk−1

(x− xk)4 Ak(x)dx

√∫ xk+1

xk−1

Ak(x)dx =
√

hI4.

Assume the equality occurs. Then, for all x ∈ (xk−1, xk+1),

(x− xk)
2
√

Ak(x) =
√

Ak(x)⇔ x− xk = 1.

This is contradictory. Therefore, we have

I2
2 < hI4. (35)

Similarly, by the Cauchy–Schwarz inequality for I4, we have

I4 =
∫ xk+1

xk−1

(x− xk)
4 Ak(x)dx

≤
√∫ xk+1

xk−1

(x− xk)6 Ak(x)dx

√∫ xk+1

xk−1

(x− xk)2 Ak(x)dx =
√

I2 I6,

and the inequality is strict. Therefore, we have

I2
4 < I2 I6. (36)

Additionally, multiplying each side of the inequalities (35) and (36) respectively, we have

I2
2 I2

4 < hI2 I4 I6 ⇔ I2 I4 < hI6. (37)

By inequalities (35), (36) and (37), we have

⇔


hI4 − I2

2 > 0,
I2 I6 − I2

4 > 0,
hI6 − I2 I4 > 0.

⇔

 P =
I2 I6−I2

4
hI4−I2

2
> 0,

S = hI6−I2 I4
hI4−I2

2
> 0.

(38)

Hence,

∆ = S2 − 4P =

[
hI6 − I2 I4

hI4 − I2
2

]2

− 4
I2 I6 − I2

4
hI4 − I2

2
.

In next step, we prove that ∆ > 0. Since polynomials P4
k and P0

k are orthogonal, i.e.,
< P4

k , P0
k >k= 0. Therefore,∫ xk+1

xk−1

P4
k (x)Ak(x)dx =

∫ xk+1

xk−1

P4
k (x)P0

k (x)Ak(x)dx = h < P4
k , P0

k >k= 0.

There exists x0 ∈ (xk−1, xk+1) such that P4
k (x0) < 0. Let us consider

dP4
k (x)
dx

= 4(x− xk)
3 − 2

hI6 − I2 I4

hI4 − I2
2
(x− xk) = 0⇔


x′1 = xk,

x′2 = xk −
√

hI6−I2 I4
2(hI4−I2

2 )
,

x′3 = xk +

√
hI6−I2 I4

2(hI4−I2
2 )

.
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It is clearly that x′2, x′3 are minima of P4
k . It means

P4
k (x′2) = P4

k (x′3) ≤ P4
k (x0) < 0

⇔ (hI6 − I2 I4)
2

4(hI4 − I2
2 )

2
− hI6 − I2 I4

2(hI4 − I2
2 )

hI6 − I2 I4

hI4 − I2
2

+
I2 I6 − I2

4
hI4 − I2

2
< 0

⇔− 1
4
(hI6 − I2 I4)

2

(hI4 − I2
2 )

2
+

I2 I6 − I2
4

hI4 − I2
2

< 0.

Therefore,

∆ =
(hI6 − I2 I4)

2

(hI4 − I2
2 )

2
− 4

I2 I6 − I2
4

hI4 − I2
2

> 0. (39)

From (39) and (38), by Viet theorem, Equation (34) has two distinct positive roofs.

Since Lemma 4, P4
k has four distinct roofs. Let two positive real number δ1, δ2 satisfyδ2

1 + δ2
2 = S = hI6−I2 I4

hI4−I2
2

δ2
1δ2

2 = P =
I2 I6−I2

4
hI4−I2

2

. (40)

Then, the integration points are the roofs of P4
k where

tk
1 = xk + δ1,

tk
2 = xk + δ2,

tk
3 = xk − δ1,

tk
4 = xk − δ2.

(41)

Let us denote

w1 = w3 = hρ̃, w2 = w4 = hη̃, (42)

where ρ̃ and η̃ are real numbers that satisfy

{
ρ̃ + η̃ = 1

2 ,
ρ̃δ2

1 + η̃δ2
2 = I2

2h .
(43)

Now, we consider the case k = 2, ..., n− 1. Let k be a fixed integer from {2, ..., n− 1}.

Lemma 5. For all polynomials Pl of the degree l, where 0 ≤ l ≤ 3,∫ xk+1

xk−1

Pl(x)Ak(x)dx = w1Pl(tk
1) + w2Pl(tk

2) + w3Pl(tk
3) + w4Pl(tk

4), (44)

where ω1, ω2, ω3, ω4 are in (42), holds true.
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Proof. Case 1: For l = 0, we have P0(x) = α with a ∈ R. At first, let us compute the left
hand side of (44):∫ xk+1

xk−1

P0(x)Ak(x)dx =
∫ xk+1

xk−1

αAk(x)dx

=
∫ xk+1

xk−1

(ρ̃αAk(x) + η̃αAk(x) + ρ̃αAk(x) + η̃αAk(x))dx

=h(ρ̃P0(tk
1) + η̃P0(tk

2) + ρ̃P0(tk
3) + η̃P0(tk

4))

=w1P0(tk
1) + w2P0(tk

2) + w3P0(tk
3) + w4P0(tk

4).

Case 2: For l = 1, we have P1(x) = α + βx with α, β ∈ R. Let us compute the values
of P1 at the points tk

r , r = 1, 2, 3, 4:
P1(tk

1) = α + βxk + βδ1,
P1(tk

2) = α + βxk + βδ2,
P1(tk

3) = α + βxk − βδ1,
P1(tk

4) = α + βxk − βδ2.

Then, the right hand side of (44) has the form

ρ̃P1(tk
1) + η̃P1(tk

2) + ρ̃P1(tk
3) + η̃P1(tk

4) = α + βxk. (45)

Following Corollary 1, the left hand side of (44) is equal to its left hand side in accordance
with its formal expression∫ xk+1

xk−1

P1(x)Ak(x)dx = h(α + βxk) = h(ρ̃P1(tk
1) + η̃P1(tk

2) + ρ̃P1(tk
3) + η̃P1(tk

4))

= w1P1(tk
1) + w2P1(tk

2) + w3P1(tk
3) + w4P1(tk

4).

Case 3: For l = 2 we have P2(x) = α + βx + γx2 with α, β, γ ∈ R. Let us compute the
values of P2 at the points tk

r , r = 1, 2, 3, 4:
P2(tk

1) = P2(xk + δ1) = α + βxk + γx2
k + βδ1 + 2γxkδ1 + γδ2

1 ,
P2(tk

2) = P2(xk + δ2) = α + βxk + γx2
k + βδ2 + 2γxkδ2 + γδ2

2 ,
P2(tk

3) = P2(xk − δ1) = α + βxk + γx2
k − βδ1 − 2γxkδ1 + γδ2

1 ,
P2(tk

4) = P2(xk − δ2) = α + βxk + γx2
k − βδ2 − 2γxkδ2 + γδ2

2 .

Then, on the right hand side of (44), we have

ρ̃P2(tk
1) + η̃P2(tk

2) + ρ̃P2(tk
3) + η̃P2(tk

4) = α + βxk + γx2
k + 2γ(ρ̃δ2

1 + η̃δ2
2)

= α + βxk + γx2
k + γ

I2

h
. (46)

Following Corollary 1, the left hand side of (44) is equal to its right hand side in accordance
with its formal expression

∫ xk+1

xk−1

P2(x)Ak(x)dx = h

(
α + βxk + γx2

k + γ
I2

h

)

= h

(
ρ̃P2(tk

1) + η̃P2(tk
2) + ρ̃P2(tk

3) + η̃P2(tk
4)

)
= w1P2(tk

1) + w2P2(tk
2) + w3P2(tk

3) + w4P2(tk
4).
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Case 4: For l = 3, we have P3(x) = α + βx + γx2 + τx3 with α, β, γ, τ ∈ R. Let us
compute the values of P3 at the points tk

r , r = 1, 2, 3, 4,
P3(tk

1) = α + βxk + γx2
k + τx3

k + βδ1 + 2γxkδ1 + γδ2
1 + 3τx2

kδ1 + 3τxkδ2
1 + τδ3

1 ,
P3(tk

2) = α + βxk + γx2
k + τx3

k + βδ2 + 2γxkδ2 + γδ2
2 + 3τx2

kδ2 + 3τxkδ2
2 + τδ3

2 ,
P3(tk

3) = α + βxk + γx2
k + τx3

k − βδ1 − 2γxkδ1 + γδ2
1 − 3τx2

kδ1 + 3τxkδ2
1 − τδ3

1 ,
P2(tk

4) = α + βxk + γx2
k + τx3

k − βδ2 − 2γxkδ2 + γδ2
2 − 3τx2

kδ2 + 3τxkδ2
2 − τδ3

2 .

Then, the right hand side of (44) has the form

ρ̃P3(tk
1) + η̃P3(tk

2) + ρ̃P3(tk
3) + η̃P3(tk

4) =α + βxk + γx2
k + τx3

k + 2γ(ρ̃δ2
1 + η̃δ2

2)

+ 6τxk(ρ̃δ2
1 + η̃δ2

2)

=α + βxk + γx2
k + τx3

k + 2(γ + 3τxk)(ρ̃δ2
1 + η̃δ2

2)

=α + βxk + γx2
k + τx3

k + (γ + 3τxk)
I2

h
. (47)

Then, we transform P3(x) to

P3(x) =τ

(
(x− xk)

3 − I4

I2
(x− xk)

)
+ (3τxk + γ)

(
(x− xk)

2 − I2

h

)
+ (3τx2

k + 2γxk + τ
I4

I2
+ β)(x− xk) + τx3

k + γx2
k + βxk + α + (3τxk + γ)

I2

h

=τP3
k (x) + (3τxk + γ)P2

k (x) + (3τx2
k + 2γxk + τ

I4

I2
+ β)P1

k (x)

+ τx3
k + γx2

k + βxk + α + (3τxk + γ)
I2

h
.

The right hand side of (44) is

∫ xk+1

xk−1

P3(x)Ak(x)dx = h
(

τx3
k + γx2

k + βxk + α + (3τxk + γ)
I2

h

)
.

By (47), both sides of (44) are equal, and we have

∫ xk+1

xk−1

P3(x)Ak(x)dx = h

(
ρ̃P3(t1) + η̃P3(t2) + ρ̃P3(t3) + η̃P3(t4)

)
= w1P3(t1) + w2P3(t2) + w3P3(t3) + w4P3(t4).

Therefore, Equation (44) holds true for all polynomials Pl of 0 ≤ l ≤ 3.

Corollary 3. The quadrature formula (44) holds true for all polynomials Pl of degree 0 ≤ l ≤ 7.

Now we consider the cases k = 1 and k = n where the 4-point quadrature rule (11),
specified by N = 4, and parameters in (41) and (42), is used for a general L2(a, b) function in-
cluding polynomials. Therefore, this rule gives an approximate value of the corresponding
integral.

Lemma 6. Let [a, b] be arbitrary interval and A1, ..., An is its h-uniform fuzzy partition. Let
Aex

1 , Aex
n extend A1 and An as in (15) and (16), respectively. For any f ∈ L2(a, b), and its

extension f ex ∈ L2(a− h, b + h),
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∫ x2

a
f (x)A1(x)dx ≈ w1 f (t1

1) + w2 f (t1
2), (48)

∫ b

xn−1

f (x)An(x)dx ≈ w3 f (tn
3 ) + w4 f (tn

4 ). (49)

where w1, w2, w3 are in (42).

Proof. On the left hand side of (48), we have∫ x2

a
f (x)A1(x)dx =

1
2

∫ x2

a−h
f ex(x)Aex

1 (x)dx

≈ h
2
(ρ̃ f ex(a + δ1) + η̃ f ex(a + δ2) + ρ̃ f ex(a− δ1) + η̃ f ex(a− δ2))

= h
(

ρ̃ f (a + δ1) + η̃ f (a + δ2)
)
= w1 f (t1

1) + w2 f (t1
2).

Equation (49) can be proved similarly.

Theorem 2. Let A1, ..., An be an h-uniform fuzzy partition of the interval [a, b], f ∈ L2(a, b), and
n-tuple (F3

1 , ..., F3
n) is an extended F3-transform of f ex with respect to Aex

1 , ..., Aex
n . Then for any

k = 1, ..., n the calculation of the component of the F3-transform F3
k , where

F3
k = ck,0P0

k + ck,1P1
k + ck,2P2

k + ck,3P3
k ,

can be performed using approximate analytical expressions for the coefficients ck,0, ck,1, ck,2, ck,3,
based on the four-point quadrature rules (11) given by N = 4, and the parameters in (41) and (42).
Specifically,

ck,0 ≈
∑4

i=1 wi f (tk
i )

h
, for all k = 2, ..., n− 1,

c1,0 ≈
2w1 f (t1

1) + 2w2 f (t1
2)

h
,

cn,0 ≈
2w3 f (tn

3 ) + 2w4 f (tn
4 )

h

ck,1 ≈
∑4

i=1 wi f (tk
i )(t

k
i − xk)

hδ̃2
, for all k = 2, ..., n− 1,

c1,1 ≈
2w1δ1 f (t1

1) + 2w2δ2 f (t1
2)

hδ̃2
,

cn,1 ≈
−2w3δ1 f (tn

3 )− 2w4δ2 f (tn
4 )

hδ̃2
, (50)

ck,2 ≈
∑4

i=1 wi f (tk
i )
(
(tk

i − xk)
2 − δ̃2

)
h(2ρδ4 − δ̃4)

, for all k = 2, ..., n− 1,

c1,2 ≈
2w1(δ

2
1 − δ̃2) f (t1

1) + 2w2(δ
2
2 − δ̃2) f (t1

2)

h(2ρδ4 − δ̃4)
,

cn,2 ≈
2w3(δ

2
1 − δ̃2) f (tn

3 ) + 2w4(δ
2
2 + δ̃2) f (tn

4 )

h(2ρδ4 − δ̃4)
, (51)
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ck,3 ≈
∑4

i=1 wi f (tk
i )
(
(tk

i − xk)
3 − δ2(tk

i − xk)
)

h
[
2ρ̃δ6

1 + 2η̃δ6
2 − 4ρδ6 + δ4δ̃2

] , for all k = 2, ..., n− 1,

c1,3 ≈
2w1δ1(δ

2
1 − δ2) f (t1

1) + 2w2δ2(δ
2
2 − δ2) f (t1

2)

h
[
2ρ̃δ6

1 + 2η̃δ6
2 − 4ρδ6 + δ4δ̃2

] ,

cn,3 ≈
−2w3δ1(δ

2
1 − δ2) f (tn

3 )− 2w4δ2(δ
2
2 − δ2) f (tn

4 )

h
[
2ρ̃δ6

1 + 2η̃δ6
2 − 4ρδ6 + δ4δ̃2

] . (52)

Remark 3. It is important to note that in (50)–(52) the parameters tk
i and wi, where i = 1, 2, 3, 4,

differ from given in (31), although they have the same designation.

Proof. First of all, we note that the exact numerical estimate of the denominators in the
expressions for ck,0, ck,1, ck,2 was proved in Theorem 1 and [14]. Therefore, we will be
focused on the calculation of ck,3, the general expression of which is given in (8).

We begin with the estimation of I6. Using Lemma 2, Theorem 1 and Theorem 4 in [14],
we have

I2 =
∫ xk+1

xk−1

(x− xk)
2 Ak(x)dx = hδ̃2,

I4 =
∫ xk+1

xk−1

(x− xk)
4 Ak(x)dx = 2hρδ4,

I6 =
∫ xk+1

xk−1

(x− xk)
6 Ak(x)dx = h(ρ̃(t1 − xk)

6 + η̃(t2 − xk)
6 + ρ̃(t3 − xk)

6 + η̃(t4 − xk)
6)

= h(2ρ̃δ6
1 + 2η̃δ6

2).

Therefore, for k = 2, ..., n− 1, the denominator of ck,3 is

∫ xk+1

xk−1

(
P3

k (x)
)2

Ak(x)dx =
∫ xk+1

xk−1

[
(x− xk)

3 − δ2(x− xk)
]2

Ak(x)dx

=
∫ xk+1

xk−1

[
(x− xk)

6 − 2δ2(x− xk)
4 + δ4(x− xk)

2
]

Ak(x)dx

=
[

I6 − 2δ2 I4 + δ4 I2

]
= h

[
2ρ̃δ6

1 + 2η̃δ6
2 − 4ρδ6 + δ4δ̃2

]
. (53)

Obviously, the denominators of c1,3 and cn,3 also are

∫ x2

a−h

(
P3

1 (x)
)2

Aex
1 (x)dx =

∫ b+h

xn−1

(
P3

n(x)
)2

Aex
n (x)dx

=
∫ xk+1

xk−1

(
P3

k (x)
)2

Ak(x)dx = h
[
2ρ̃δ6

1 + 2η̃δ6
2 − 4ρδ6 + δ4δ̃2

]
.

Applying Formulas (48) and (49) to calculate the numerators of the components, the
theorem is proved.

4. Triangular Generating Function

In this section, we calculate the exact values of the denominators in the expressions for
ck,2 and ck,3, where the generating function A0 has a triangular shape. Namely, we consider
an h-uniform partition A1, ..., An of the interval [a, b] with a triangular generating function
A0 : [−1, 1]→ [0, 1], such that

A0(x) = 1− |x|.

In this case, we obtain simplified expressions for the ck,2 components in F2[ f ], and the ck,3
components in F3[ f ], where k = 1, . . . , n.
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Theorem 3. Let an h-uniform partition [a, b] be given by triangular basic functions A1, ..., An
with generating function A0(x) = 1− |x|, x ∈ [−1, 1]. Then for each k = 2, . . . , n − 1, the
coefficients ck,0, . . . , ck,3 will be as follows

ck,0 =

∫ xk+1
xk−1

f (x)Ak(x)dx

h
≈ ∑4

i=1 wi f (tk
i )

h
, (54)

ck,1 =
6
∫ xk+1

xk−1
f (x)(x− xk)Ak(x)dx

h3 ≈
6
[

∑4
i=1 wi f (tk

i )(t
k
i − xk)

]
h3 , (55)

ck,2 =
180

∫ xk+1
xk−1

f (x)
(
(x− xk)

2 − h2

6

)
Ak(x)dx

7h5

≈
180
[

∑4
i=1 wi f (tk

i )
(
(tk

i − xk)
2 − h2

6

)]
7h5 , (56)

ck,3 =
2100

∫ xk+1
xk−1

f (x)
(
(x− xk)

3 − 2h2

5 (x− xk)
)

Ak(x)dx

19h7

≈
2100

[
∑4

i=1 wi f (tk
i )
(
(tk

i − xk)
3 − 2h2

5 (tk
i − xk)

)]
19h7 , (57)

where tk
i and wi are the parameters defined in (41) and (42), and

Ak(x) = 1−
(
|x− xk|

h

)
, x ∈ [xk−1, xk+1] .

Proof. Let us remark that the precise values of ck,0, ck,1 was computed in [14]. Therefore,
we will be focused on the computation for ck,2, ck,3. We already have I2 = h3

6 . Below, we
estimate I4, I6 given in (13):

I4 =
∫ xk+1

xk−1

(x− xk)
4 Ak(x)dx =

∫ xk+1

xk−1

(x− xk)
4dx +

∫ xk

xk−1

(x− xk)
5

h
dx−

∫ xk+1

xk

(x− xk)
5

h
dx

=
2h5

5
− h5

3
=

h5

15
,

I6 =
∫ xk+1

xk−1

(x− xk)
6 Ak(x)dx =

∫ xk+1

xk−1

(x− xk)
6dx +

∫ xk

xk−1

(x− xk)
7

h
dx−

∫ xk+1

xk

(x− xk)
7

h
dx

=
2h5

7
− h7

4
=

h7

28
.

Hence, the polynomials P3
k (x) and P4

k (x) in (22) and (33) are

P3
k (x) = (x− xk)

3 − 2h2

5
(x− xk),

P4
k (x) = (x− xk)

4 − 31
49

h2(x− xk)
2 +

19
490

h4.

Then, the parameters δ, δ̃ and δ1, δ2 in (14) and (40) have the values

δ̃ =

√
I2

h
=

h√
6

,
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δ =

√
I4

I2
= h

√
2
5

,

δ1 = h

√
31
98
− 3

98

√
327

5
, δ2 = h

√
31
98

+
3

98

√
327

5
.

Now, we compute ρ, ρ̃ and η̃ in (24) and (43). We have

ρ =
I2
2

2hI4
=

(
h3

6

)2

2h h5

15

=
1

36
2

15
=

5
24

,

ρ̃ =
1
4
+

11
9

√
5

327
,

η̃ =
1
4
− 11

9

√
5

327
.

Therefore, the denominators of ck,2 and ck,3 have values

h(2ρδ4 − δ̃4) =
7h5

180
,

h(2ρ̃δ6
1 + 2η̃δ6

2 − 4ρδ6 + δ4δ̃2) =
19h7

2100
.

Using the 4-point quadrature rules (11) given by N = 4, we approximate the numera-
tors of (54), (55), (56) and (57). Then, the theorem is proved.

The components c1,j and cn,j for j = 0, 2, 3 can be easily calculated by the method
similar to that used above.

5. Theoretical Error Estimate

In parallel with the main goal of this article, aimed at reducing the complexity of
calculating the components of the integral Fm-transform for m ≥ 0, we have contributed to
numerical integration methods based on Gaussian quadratures. In this section, we give
theoretical error estimates for quadrature rules defined by a new type of weight functions
that generate a fuzzy partition. We also compare the approximation qualities of numerical
integration methods based on already known quadrature rules and those obtained.

By [19], the general error estimate of the N-point Gaussian quadrature rule is as
follows: ∫ b

a
ω(x) f (x)dx−

N

∑
i=1

wi f (xi) =
f (2N)(ξ)

(2N)!
< pN , pN >, (58)

where ξ is an arbitrary value in (a, b), and pN is a monic orthogonal polynomial of degree
N. It is easy to see that the only last term, i.e. the value of the inner product < pN , pN >, is
influenced by the numerical method. Therefore, below, we evaluate this term separately.

We consider the case when the weight function ω is the generating function A0 of the
fuzzy partition, as well as its translations A1, . . . , An over the nodes x1, . . . , xn. Let [a, b] be
an arbitrary real interval, and A1, ..., An be its h-uniform fuzzy partition. Given (58), we will
evaluate < pN , pN > for N = 3, 4 and for each interval [xk−1, xk+1] , where k = 1, . . . , n.
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Lemma 7. Let P3
k (x) and P4

k (x) be the orthogonal polynomials shown in (22) and (33), respectively.
Then,

< P3
k , P3

k >k≈ O(h7), < P4
k , P4

k >≈ O(h9).

Proof. By (53), we immediately have

< P3
k , P3

k >k= I6 − 2δ2 I4 + δ4 I2 ≈ O(h7).

For < P4
k , P4

k >, we have

P4
k = x4 −

3

∑
i=0

λ3
i Pi

k,

where λ3
i , defined in [14], is shown explicitly in (33), and < P4

k , Pl
k >k= 0 for all l = 0, ..., 3.

After the substitution, we have

< P4
k , P4

k >k=< x4, P4
k >k=

∫ xk+1

xk−1

(x− xk)
8 Ak(x)dx− hI6 − I2 I4

hI4 − I2
2

∫ xk+1

xk−1

(x− xk)
6 Ak(x)dx

+
I2 I6 − I2

4
hI4 − I2

2

∫ xk+1

xk−1

(x− xk)
4 Ak(x)dx

≈O(h9)−O(h9) + O(h9).

Since < P4
k , P4

k >k> 0 then < P4
k , P4

k >k≈ O(h9).

We substitute the estimates obtained in Lemma 7 into (58), and thus find the error
estimates for the 3- and 4-point quadrature Gaussian rules determined by the weight
functions that form the fuzzy partition.

First, consider the case where the analytic expression of the integrand of a definite
integral contains a weight function. Let us denote

Cm
s (a, b) = { f ∈ Cm(a, b) : f (i)+ (a) = f (i)− (b) = 0, for i = 1, ..., m}.

Lemma 8. Let the general estimate in (58) be determined by the basic function Ak as a weight
function. Then, the error estimate for the N-point Gaussian quadrature rule is as follows:

(i) for N = 3 and arbitrary f ∈ C6
s (a, b),

∫ xk+1

xk−1

f (x)Ak(x)dx =
3

∑
i=1

wi f (tk
i ) + O(h7), for all k = 2, ..., n− 1,

∫ x2

a
f (x)A1(x)dx =

(
w3 f (t1

3) +
1
2

w2 f (t1
2)
)
+ O(h7),∫ b

xn−1

f (x)An(x)dx =
(
w1 f (tn

3 ) +
1
2

w2 f (tn
2 )
)
+ O(h7),

where the roots tk
i , k = 2, ..., n− 1 are given in (23);



Axioms 2022, 11, 501 22 of 29

(ii) for N = 4 and arbitrary f ∈ C8
s (a, b), the 4-point Gaussian quadrature rule specified by basic

function Ak as a weight function is as follows:

∫ xk+1

xk−1

f (x)Ak(x)dx =
4

∑
i=1

wi f (tk
i ) + O(h9), for all k = 2, ..., n− 1,∫ x2

a
f (x)A1(x)dx =

(
w1 f (t1

1) + w2 f (t1
2)
)
+ O(h9),∫ b

xn−1

f (x)An(x)dx =
(
w3 f (tn

3 ) + w4 f (tn
4 )
)
+ O(h9),

where the roots tk
i , k = 2, ..., n− 1 are given in (41).

Proof. The proof of Lemma 8 easily follows from Lemma 7 and Equation (58).

Second, we estimate the definite integral taken from an arbitrary sufficiently smooth
function.

Theorem 4. Let A1, ..., An be an h-uniform fuzzy partition of [a, b]. Then,

(i) for an arbitrary function f ∈ C6
s (a, b), the following estimate holds:

∫ b

a
f (x)dx =

n−1

∑
k=2

3

∑
i=1

wi f (tk
i ) +

(
w3 f (t1

3) +
1
2

w2 f (t1
2)
)
+
(

w1 f (tn
1 ) +

1
2

w2 f (tn
2 )
)
+ O(h6).

where the roots tk
i , i = 1, 2, 3, k = 2, ..., n− 1, are given in (23) and weights w1, w2, w3 are

in (24).
(ii) For an arbitrary function f ∈ C8

s (a, b), and an h-uniform fuzzy partition A1, ..., An, of [a, b],
the following estimate holds:

∫ b

a
f (x)dx =

n−1

∑
k=2

4

∑
i=1

wi f (tk
i ) +

(
w1 f (t1

1) + w2 f (t1
2)
)
+
(

w3 f (tn
3 ) + w4 f (tn

4 )
)
+O(h8).

where the roots tk
i , i = 1, ..., 4, k = 2, ..., n− 1, are given in (41), and weights w1, w2, w3, w4

are in (42).

Proof. By the assumption, functions A1, ..., An establish an h-uniform fuzzy partition of
[a, b]. Therefore, using Definition 1 and the Ruspini condition, we rewrite

∫ b

a
f (x)dx =

n

∑
k=1

∫ xk+1

xk−1

f (x)Ak(x)dx.

We apply Lemma 8 to each summand and proceed as follows below.

(i) Let f ∈ C6
s (a, b), then,∫ b

a
f (x)dx =

n−1

∑
k=2

∫ xk+1

xk−1

f (x)Ak(x)dx +
∫ x2

a
f (x)A0(x)dx +

∫ b

xn−1

f (x)An+1dx

=
n−1

∑
k=2

3

∑
i=1

wi f (tk
i ) +

(
w3 f (t1

3) +
1
2

w2 f (t1
2)
)
+
(

w1 f (tn
1 ) +

1
2

w2 f (tn
2 )
)
+ O(h6). (59)
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(ii) Let f ∈ C8
s (a, b), then,

∫ b

a
f (x)dx =

n−1

∑
k=2

∫ xk+1

xk−1

f (x)Ak(x)dx +
∫ x2

a
f (x)A1(x)dx +

∫ b

xn−1

f (x)Andx

=
n−1

∑
k=2

4

∑
i=1

wi f (tk
i ) +

(
w1 f (t1

1) + w2 f (t1
2)
)
+
(

w3 f (tn
3 ) + w4 f (tn

4 )
)
+ O(h8).

Remark 4. It is worth noting that the proposed estimate in (59) is better than if we used the
composite trapezoidal rule or Simpson’s rule (by [1], the order of estimation of the error of the
composite Simpson rule is 4 vs. 6 in the proposed case) under the same conditions as for the (fuzzy)
partition into sub-intervals of length h.

6. Numerical Tests

In this section, we show the usefulness of the Gaussian quadrature rules proposed
above, defined by a new weight function and a new type of partitioning of the integration
domain. Numerical tests were carried out to support two directions of scientific research:
to reduce the complexity of calculating the components of the Fm-transform and its inverse,
as well as to numerically substantiate a new method of numerical integration.

6.1. Towards Improving the Quality of Approximation by the Inverse F2- and F3-Transform

In all the examples in this subsection, the focus is on computing the inverse Fm-
transform, where m = 2, 3, defined by a fuzzy partition with triangular basis functions.
This problem is important for obtaining a good approximation using only algebraic func-
tions. Since the calculation of the components of the Fm-transform is based on numerical
integration, we use numerical methods and therefore we can evaluate their effectiveness by
analyzing the quality of the approximation obtained by the inverse Fm-transforms.

In the examples below, we consider original functions with different smoothness char-
acteristics and apply different quadrature rules to calculate the Fm-transform components.
In all examples, we show that with the help of the proposed quadrature rules, a better
quality of approximation can be achieved when compared with similar (in terms of the
number of integration points) trapezoid rules and Gaussian quadratures based on Legendre
or Chebyshev polynomials.

Example 2 (Smooth original function). In this example, we compute the inverse F2-transform
to approximate function f (x) = sin x2

ex given in the domain [0, 2.5]. For the computation of the
components we use the composite trapezoid rule and the here proposed 3-point quadrature rule with
the triangular weight functions Ak. Figure 1 shows the graphs of the original function and two
corresponding inverse F2-transforms. The error functions are presented in Figure 2 and show the
obvious advantage of the proposed method.

Example 3. (Slightly oscillatory original function) Similar to Example 2, we compute the inverse
F2-transform to approximate function f (x) = x2(sin x2)2 given in the domain [0, 3]. For the
computation of the components we use the composite trapezoid rule and the here proposed 3- point
quadrature rule with the triangular weight functions Ak. Figure 3 shows the graphs of the original
function and two corresponding inverse F2-transforms.

The error functions are presented in Figure 4 and show an easily observable advantage of the
proposed method.
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Figure 1. Original function f (x) = sin x2

ex and its two inverse F2-transforms whose components were
calculated using the trapezoid rule and the here proposed 3-point Gaussian quadrature rule.

Figure 2. Error functions of two approximations of the original function in Example 2, given by
inverse F2-transforms calculated using the trapezoid and the suggested quadratures. In the latter
case, the errors are practically equal to zero.
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Figure 3. Original function f (x) = x2(sin x2)2 and its two inverse F2-transforms whose components
were calculated using the trapezoid rule and the here proposed 3-point Gaussian quadrature rule.

Figure 4. Error functions of two approximations of the original function in Example 3, given by
inverse F2-transforms calculated using the trapezoid and the suggested quadratures. In the latter
case, the errors are practically equal to zero.

Example 4 (Strongly oscillatory original function). Let f (x) = sin ex2
be considered in [0, 2].

Because f oscillates strongly, the Newton–Cotes formulas based on equidistant points are ineffi-
cient [1]. Therefore, we increase the degree of the F-transform from 2 (previous examples) to 3 and
perform calculations using 3 different four-point Gaussian quadrature rules based on Legendre,
Chebyshev and the F-transform polynomials proposed here. Figure 5 shows the graphs of the original
function and three corresponding inverse F3-transforms. The error functions are presented in
Figure 6 and as in the above examples, they show an easily observable advantage of the proposed
method.
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Figure 5. Original function f (x) = sin ex2
and its three inverse F3-transforms whose components

were calculated using the Legendre rule, Chebyshev and the here proposed 4-point Gaussian quadra-
ture rule.

Figure 6. Error functions of three approximations of the original function in Example 4, given by
inverse F3-transforms calculated using the Legendre, Chebyshev and the suggested quadratures. In
the latter case, the errors are zero almost everywhere.
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6.2. Towards a New Method of Numerical Integration

Example 5. This example confirms the results stated in Theorem 4. We use various Gaussian
quadrature methods to approximate the integrals of functions with different smoothness. We consider
three functions

f1(t) = |t− 1|, t ∈ [0, 2],

f2(t) = t2(sint(t2))2 A0(2t− 1), t ∈ [0, 1]

f3(t) =

{
10 if 0 ≤ t ≤ 2,
−1 if 2 ≤ t ≤ 3,

where A0(t) = 1− |t|.

Remark 5. In the domains under consideration, the functions f1, f2 are non-differential, while the
function f3 is discontinuous.

In Table 1, we show the errors of the approximate values of the definite integrals calcu-
lated from the functions from Example 5 using various Gaussian methods in comparison
with their exact values. We use the following abbreviations:

- 4 points quadrature rule with weight function Ak (4.Gauss-FT).
- 3 points quadrature rule with weight function Ak (3.Gauss-FT).
- 2 points Legendre method (2.Gauss-Leg).
- 3 points Legendre method (3.Gauss-Leg).
- 4 points Legendre method (4.Gauss-Leg).
- 5 points Legendre method (5.Gauss-Leg).
- 4 points Chebyshev method (4.Gauss-Cheb).

Table 1. The error estimates for various quadrature rules used in Example 5.

Methods
Integrals ∫ 2

0 f1(t)dt
∫ 1

0 f2(t)dt
∫ 3

0 f3(t)dt

4.Gauss-FT 0 4.0768×10−6 0
3.Gauss-FT 1.1102× 10−16 2.3293× 10−4 0.3208
2.Gauss-Leg 0.1547 0.0139 5.5
3.Gauss-Leg 0.1393 8.0056× 10−4 1.8333
4.Gauss-Leg 0.0425 1.3610× 10−4 5.5
5.Gauss-Leg 0.0551 2.3937× 10−4 0.8067

4.Gauss-Cheb 0.1107 0.0011 5.1467

7. Conclusions

In this study, we focused on efficient numerical methods that we could use to calculate
higher degree F-transform components. The latter are expressed as weighted orthogonal
polynomials with weights given by fuzzy partition elements (basic functions) and coeffi-
cients (projections onto the corresponding polynomials) expressed using certain integrals.
Therefore, in search of effective methods of numerical integration, we came to Gaussian
quadrature rules, the accuracy of which depends on the number of integration points.

In this manuscript, we analyzed the 3- and 4-point Gaussian quadrature rules and
found all their parameters, which allowed us to obtain exact analytical expressions for the
values of certain integrals, in which the integrands are polynomials up to (inclusive) 7th
degree. With their help, we have obtained good approximate estimates of the components
of the Fm-transform for m ≤ 3, expressed without the use of definite integrals.

In addition, we have shown that our results can be useful for the numerical integration
of arbitrary (integrable) functions. In this case, we gave an estimate of the error and
compared it with the estimates of similar methods. We have shown that the approximation
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quality of the proposed method is at least two order better in comparison with the trapezoid
and Simpson rules. We have compared our approach with other Gaussian quadrature rules,
based on Legendre or Chebyshev polynomials. Finally, we performed numerical tests and
confirmed all theoretical results.

In the future, we plan to use the received approximate estimates of the components
of the Fm-transform for m ≤ 3, in all applications of F-transform methodology, where the
main factors are accuracy and computational complexity. This includes numerical solutions
of various differential and integral equations, processing images and time series.
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