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Abstract: Bilateral correlated data frequently arise in medical clinical studies such as otolaryngology
and ophthalmology. Based on an equal correlation coefficient model, this paper mainly aimed to
investigate the statistical inference for the odds ratio of two proportions in bilateral correlated data,
including not only three test procedures but also four confidence interval (CI) constructions. Through
iterative algorithms, all unknown parameters are estimated in order to construct the likelihood ratio,
score and Wald-type tests. Furthermore, the profile likelihood CI, score CI, and Wald-type CI are
obtained by the bisection root-finding algorithm. We provided another Wald-type CI based on an
asymptotic normality property. The performance of the proposed tests were investigated with regard
to empirical type I error rate and power, and CI methods were compared in terms of mean coverage
probability and mean interval width. Numerical simulations show that the score test is more robust,
and has higher power than other tests. The score CI also has a shorter interval width, and its coverage
probability is closer to 0.95. A real example is used to illustrate the proposed methods.

Keywords: correlation coefficient model; odds ratio; likelihood ratio test; score test; Wald-type test;
confidence interval

MSC: 62F03; 62F05; 62F12

1. Introduction

Binary data are often encountered when an investigator takes measurements from
the paired organs of a patient. Observations may be related because they come from
the same patient, such as both eyes, hands, arms, legs, or sides of the face [1-4]. For
example, Mandel et al. [5] conducted a double-blind randomized clinical trial to compare
cefaclor and amoxicillin for the treatment of otitis media with effusion in children with
bilateral tympanocentesis. Sainani [6] reviewed some examples of correlated data and
demonstrated that errors arise when correlations are ignored. Therefore, the misleading
statistical inference may be obtained from ignoring the correlation between the responses
of paired organs [7,8].

For the correlated binary outcomes, we briefly reviewed the developments of three
main statistical models: Ronser’s model, Dallal’s model, and Donner’s model. An interclass
correlation model was proposed by Ronser [9] based on the assumption that the probability
of a response at one side given a response at the other side is proportional to the prevalence
rate of the corresponding group. Ma et al. [10] analyzed the equality of the response rates
for multiple groups under Ronser’s model. Tang et al. [11,12] proposed the test procedures
and asymptotic confidence intervals (CIs) about risk differences based on Ronser’s model.
Dallal [13] pointed out that Ronser’s model will give a poor fit if the characteristic is
almost certain to occur bilaterally with widely varying group-specific prevalence and then
considered that the probability of a response at one side given a response at the other
side to be constant. Under Dallal’s model, Sun et al. [14] derived risk difference tests
for stratified binary data. However, Dallal’s model had its own limitation. Furthermore,
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Donner [15] established an alternative model when the correlation coefficient between two
paired organs is a fixed constant p. Liu et al. [16] derived several statistics from testing
the equality of correlation coefficients for paired binary data. Pei et al. [17] constructed
CI methods for risk differences under Donner’s model. Under these models, the risk
difference, relative risk ratio, and odds ratio are the three most used methods to compare
disease risk among different groups. In the first two forms, various approaches were used
to describe and quantify the statistical inference in a given population. For more details
about this topic, we refer the reader to [18-23]. However, the research into the odds ratio is
still in its infancy and has had fewer achievements for the bilateral correlated data.

It is noteworthy that the odds ratio is a preferred measure of association in prospective,
retrospective, or cross-sectional sampling designs. However, most of the aforementioned
results usually focus on the test or CI problems of risk difference and relative risk ratio. In
this paper, we focused on the study of statistical inference for the odds ratio of two pro-
portions in bilateral correlated data. Under Donner’s model, the novelty and contribution
embody several aspects: (i) three statistics are proposed to test whether the odds ratio J of
response rates equals a specific value dy. The performance of these statistics is investigated
in terms of type I error rate and power. (ii) We propose the use of CI methods for any
specific value dy. These intervals have some advantages; they contain the true value with
a given probability. In addition, these can answer the testing problem and give a range
of values for éy. The remainder of the paper is organized as follows. In Section 2, we
briefly review some notations, data structure, and Donner’s model. The unconstrained and
constrained MLEs are obtained in Section 3. Three different test procedures are proposed
in Section 4, and four asymptotic CI methods are provided in Section 5. In Section 6,
the simulation studies were conducted to investigate the performance of three tests and
four CIs. A real example is used to illustrate our proposed methods in Section 7, and we
conclude in Section 8.

2. Data Structure and Donner’s Model

We randomly allocate a total of N patients into control and treatment groups. In
the comparative experiments, the control group members receive a standard treatment, a
placebo, or no treatment at all. The recorded outcome would be none cured (no response),
unilateral cured (one response), or bilateral cured (two responses). Let m;; be the number
of patients with I(I = 0,1,2) response(s) in the ith group, where | = 0,1,2 and i = 1,2.
Denote the number of patients who have exactly / responses for I = 0,1,2 by m;; =
Y2, my;. Obviously, N = Y2 (Y2 | my; = moy +myy +mpy = myq + mo. Table 1 list
the data structure.

Table 1. Data structure for bilateral binary data.

Group (i)
Number of Responses (1) 1 ) Total
0 mo1 (pot) mo2(Poz) Mo
1 mi1(p11) mi2(p12) myy
2 a1 (po1) m(p22) Myt
Total My Myp N

Let X; be a random variable and represent the number of patients who have /(I =0, 1,2)
response(s) in the ith group, and p;; be the probability that a patient in the ith group has ex-
actly I responses (I =0,1,2,i = 1,2). Denote X; = (Xo;, X1, X2;) and m; = (myg;, my;, my;).
Thus, X; follows a trinomial distribution with unknown parameter vector 6 and its proba-
bility function satisfies
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pi(m;0) = Pr(X; = m;) = Pr(Xo; = mo;, X1; = myj, Xoj = my;)
— m+ ! moy; 1My
- mOz'ml |m21p01 pll p21 4

where po; + p1; + pai = Land my; = Y7 my; fori =1,2.

In clinical research, bilateral correlated data often arise when investigators collect
information from paired organs (or body parts). Donner’s model can be used to capture
the intraclass correlation between observations. Let Z;j; = 1 if there exists a response for
the kth organ (k = 1,2) of the jth patient (j = 1,2,...,m;) in the ith group (i = 1,2);
otherwise, Z;jx = 0. Suppose that

Pr(Zy =1) =m, Corr(Zij, Zip) = p @

for 0 < m; < 1land 0 < p < 1, where 7; represents the probability that the kth organ
of the jth patient in the ith group has a response, and p denotes the common correlation
coefficient between the two random variables Zj;; and Z;p fori = 1,2,j = 1,2,...,my;.
From (1), we have

poi = (1—m) (o — mi+1), pri=2m(1—p)(1—m), pu=m+pm(l—m). (2

The probability function of X; satisfies

-1
pilmi0) = (1 ) (o — 7+ D)2 (1= ) (1 )]
X[ + pri(1 = )] "™, ©

where 0 = (711, 712, p). It follows that the expectation vector E(X;) = (EXo;, EX1;, EX2i),
where E(X;;) = m_;p; for!l = 0,1,2 and i = 1,2. Under the condition that the control
and treatment groups are independent of each other, the joint probability function of the
random vector X = (X3, Xz) can be given by

|
m"" Mo; 1M1 112

|p01 plz pZz 4

-1 Moilmy ;!

||
:N

PX ml/mZI le ml/

where p;;(1 =0,1,2;i = 1,2) are defined in (2).
Following Edwards [24], the odds is the probability of an event occurring, divided
by the probability of that event not occurring. An odds ratio (OR) is the ratio of two odds.

Define the odds ratio as § = % If § = 1, the condition or event under study is
equally likely to occur in both groups. That is to say, 71 = 7r1. If § > 1, it reflects that the
condition or event is more likely to occur in the second group. Otherwise, the condition or
event is less likely to happen in the second group. In this work, we are interested in testing

whether the odds ratio J of the two groups is equal to a specific value, that is
Hp:6=20dygvs. Hy: 6 # &,
and constructing its confidence intervals.

3. Unconstrained and Constrained MLEs

For each observed data m = (mj, my), the likelihood function is defined by

2

m |
L(6|m) = px(m, my;0) = H mpﬁo’p?ﬁ” pa,
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where p;;(I = 0,1,2;i = 1,2) are defined in (2) and W
unknown parameters 711, 772 and p. Thus, the log-likelihood

does not depend on the

1Om) — 3 {moIn(l — 71) (o7 — 1 + 1) + iy In27 (1 — ) (1 — 1)
=1
+my; In(7? + prr; (1 — 717)) }- 4)

For convenience, denote 8 £ (61,6,,603) and the unknown parameter space
Q= {6 = (91,92,63) IGi = 7'[1',63 = p,O S Tti, P S 1,0 S Pri S 1,l = 0,1,2,i = 1,2}

Regularity conditions are required to ensure the almost definite existence of a strongly
consistent root of the log-likelihood equation. These conditions were first proposed by
Chanda [25]. Hereafter, we assume

(A1) For all 8 € (), the derivatives aael , aea alekfaelgeé 33 exist for i,k = 1,2,3. Itis to
ensure the existence of a Taylor expansion.

(A2) For almost all m and every 6 € (), we have

83
90,005

021

o 17‘<F2( m),

Fl (m),

‘<F3 m),

where F; and F, are finitely integrable functions and Eg(F3) < oo for all 8 € Q). It aims to
justify the interchangeability of integration and differentiation for 6.

(A3) For all 6 € ), Fisher’s information numbers [;; = —E (ae 30, ) (4, k =1,2,3) are

finite and non-zero. This condition guarantees that the random variables m have finite,
positive variances.

Under these regularity assumptlons (A1)-(A3), there exists a strongly consistent root
of the log-likelihood aael = 0,i = 1,2,3. In some situations, we cannot obtain the ex-
plicit expression of MLEs through the log-likelihood equations. Ma, Shan, and Liu [10]
provided a two-step method formed by a third-order polynomial and Newton—Raphson
algorithm to solve the problem. Mou and Li [26] compared three iterative algorithms, in-
cluding the Fisher scoring algorithm, the two-step method, and the generalized expectation-
maximization (GEM) algorithm. The result shows that the GEM algorithm takes more
iterations to converge than the Fisher scoring algorithm and two-step method. Thus, we
will use the Fisher scoring algorithm and two-step method to obtain the corresponding
MLEs in this article.

3.1. Unconstrained MLEs

We first considered the unconstrained MLEs under the alternative hypothesis H,.
Let 77; and p be the maximum likelihood estimations (MLEs) of unknown parameters
m;(i =1,2) and p, respectively. Differentiating I to 8 = (711, 712, p) yields the score function

Up(m) = (887’1, aanlz, %)’ where

ol mpi(2mi+p(1—2m) —2) | my(2m —1) | myi (21 + p(1 —27)) 5)
oy (mi—1)(mi(p—1)+1) mi(m — 1) (i +p(1— )

a & i 7T; mi (7 —1)
%71':1(771‘(9_1)"‘1—*—9_1_”i—P(ni_l)) ©

Although the MLE of (71, 712, p) is the solution of the following equations

ol ol ol
877'[1_0, E—O, %—O,



Axioms 2022, 11, 502

50f19

there is no closed-form solution for the above equations. A global iterative algorithm is
usually criticized for being time-consuming and unsatisfactory in terms of its convergence
for searching MLEs with high-dimensional parameters. Thus, we adopt the two-step
method proposed by Ma, Shan, and Liu [10] as follows:

Step 1. For the Equation (5), we transform them into the forms of a third-order
polynomial

m,1(20% —4p +2)700 — [Bmp* — (5mg; + 6my; + Tmo;)p + 2mg; + 3my; + dmy;| T
+[mi(0* — 4p) + 2mgip + my; + 2ma;| i + (my; + my;)p =0, i=1,2. )

Step 2. The iteration procedures are formed in three stages as follows:

2
(i) The initial value of p can be taken as p(0) = (me;fnt)T)z (+m1T1++2mz 7, which is the

same as the estimate under Hy : § = 1 [27]. Based on the initial value p( ), it can reduce
iteration and enhance the algorithm's stability.

(1) (t)

(ii) For a given p(t) we can obtain the solutions of (7), denoted by 77; " and 77, .

(iii) Given 711( )(z =1,2) and p*), the ( + 1)th approximate of p can be derived by the
Newton-Raphson algorithm

921 19l
p(t+1):p(t) ( ) (),p())) ) (1) ())

apz(”1 ) ap(”1 /T "0

where 9/ /dp is given in (6), and

2?1 2 mo; 77 my; mo;(11; — 1)?
X ®)

o Slmp-m+12 " (p—12 " (m—p(m— 1))2}
Repeat steps (ii) and (iii) until convergence and yield global MLEs 7;(i = 1,2) and p.

3.2. Constrained MLEs

In this subsection, we consider the constrained MLEs under the null hypothesis
0: 0 = d. Let (i = 1,2) and p be the constrained MLEs of 7;(i = 1,2) and p,

respectively. Since § = %, we have m, = %ﬁ From (4), the log-likelihood !
can be written by
i(61/m) = moIn((1—my)(mi(p —1) +1)) +my In(2m (m —1)(p — 1))

(1—7tq)(m(0p —1) +1)
(i (6 —1) +1)2
dmi(p +m(d —p))
(m(@—-1)+1)2 °

+my In(7if — 7rip(7my — 1)) + mg In

20my (m —1)(p — 1)

1
(m@-1)+12 "2

+mqp In

There is no explicit solution for the two equations below

al _,

— =0, — =0.
a7y 16=4, ap ls=,

Next, we use the Fisher scoring algorithm for solving the constrained MLEs. To reduce its
iteration and enhance its stability, we take the initial values n%o) = 7 and p(0> = p, where
71 and p are unconstrained MLEs of 711 and p. The Fisher scoring algorithm can obtain the

constrained MLEs of 7t and p as follows
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iy, (5,7, p0) m)

(£+1) (£) -1
45| N Y (PO G 9711 )
[p(tﬂ) ] [pm [( 1P )} A, (8,71, 00 m) ‘5:50
dp

where I~! is the inverse matrix of the Fisher information matrix I for 7r; and p, defined by

s { L1 Iz ] _ [ _E<a 11) _E<B?tzll€lip>

I(rm,0) = Ly I *E(a?:fép) 7E(3;zl)

We provide the detailed process in Appendix A.1.

4. Test Methods
4.1. Likelihood Ratio Test

Let 6 = (711, 7T, p) and 0= (711, 7y, P) be the unconstrained and constrained MLEs of
mi(i = 1,2) and p, respectively. The likelihood ratio test is expressed by

T2 = 2(1(8lm) — 1(B]m)) = 2(1((7, 72, p)lm) — (751, 72, 5) Im)),
% Under the null hypothesis Hy : § = &y, T? asymptotically follows a
chi-square distribution with one degree of freedom. For a given nominal level «, the null
hypotheses Hy will be rejected if T? > X%,l— « Where X%,l— . is the (1 — a)th quantile of the
chi-square distribution with one degree of freedom.

where 71, =

4.2. Wald-Type Log-Linear Test

The log-transformed form of the odds ratio  has an additive structure more rapidly
converging towards normality. It is proper to infer an odds ratio on the log scale. Thus, the
null hypothesis Hy : § = d is equivalent to InJ = In Jy. That is to say,

H() : 11‘1[7'(2/(1 — 71'2)] — 11’1[71’1/(1 — 7'[1)] = 11‘1(50,

which reveals the difference between the log-transformed odds. For simplicity, denote
O;=m;/(1—m;) byi=1,2. Thus, InO, —InO; = Inéy. The asymptotic distribution of 6

is given by \/n(6 — 0) N (0, I3 1) under the regularity conditions (A1)~(A3), where I, !
is the inverse matrix of Fisher information Iy with respect to 8, and

(%) -E(5¥s) -E(E%)

Ip(1,1) Ip(1,2) Ip(1,3) : : '
o2 | (21) 10(22) 10(23) | = | ~E(535) E(al) ~E(525)
lo(3,1) 1p(3,2) Io(3,3) I

0
%1 Call 2?
(o) E(idk)  E(3)
We provide the elements Ip(i,j) (i, j = 1,2,3) of Iy in Appendix A.2.

Denote 7 = (InO4,InOy,Inp) and 77 = (In O4,1n Oz,lnp) where O; = 7;/(1— ;) for
i = 1,2. By the Delta method,

V(i =) 5 N, J, 15T,

where
Banl all’lol aln01 1 0 0
aT(] 37'[2 ap sl (l*ﬂ])
_ aanz aanZ 81n02 _ 0 1 O
]ri = om a7ty ap m(1-m)
dlnp dlnp dlnp 0 0 1
a7y 97Ty dp I
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Denote A = Ind,Ag = Indy and C = (—1,1,0). The MLE A of A satisfies A = Ind = Cj.
Moreover,
Var(A) = Var(Cjj) = CVar()CT = C]ﬁlglfﬁTCT
-1 —1 -1
I (1,1) 215 (1,2) I3 (2,2)

R1-m)2 maml-m)1-m)  #21-m)?

where Igl (1,1), Ieil (1,2) and Igl (2,2) are the (1,1)th, (1,2)th and (2,2)th elements of inverse

matrix I 1. Therefore, a Wald log-linear statistic under Hy has the following form

U var(d) 0 L0y 21T 1-1(22)
a(l-m)?  mm(l-m)(1-m2) ' w3(1-m)?

- (A — Ag)? (Ind —Indy)?

4

where let @ = (7}, 72, p) be the constrained MLEs of 77;(i = 1,2) and p. Similar to the test
statistic T7, the asymptotic distribution of T4, is a chi-square distribution with one degree
of freedom. Reject the null hypothesis Hy if T3, > X%,lf « Where X%,lf . is the (1 —a)th
quantile of the chi-square distribution with one degree of freedom.

4.3. Score Test

Note that m, = 17%%. Under Hy : 0 = Jp, J is the parameter of interest, 711 and

p are nuisance parameters. The score function can be written as U = (%, 0,0). Denote
01 = (6, 11, p). Therefore, the score test is formed by

2
T2 = uI; ' u’ - (M) 19‘1(1,1)( )
1 d=00,711=7t1,0=0 96 ! d=00,711=T1,0=p

where Iy 1(1,1) is the (1,1)th element of the inverse matrix of the Fisher information Ip,,
and

21 &1 Gl
—E(%L —E(-%L —E( 5%
[T (L1) T6,(1,2) T, (1,3) gglz) (agglﬂl) (%‘;?P)
I, = | 1g,(2,1) 1p,(2,2) 15,(2,3) | = —E(m) —E(ﬁ) *E(amép)
191 (3/ 1) 191 (31 2) 191 (

3,3) 21 P21 el
“E() —EGmn)  —E(52)

Appendix A.3 provides the elements Iy, (,7)(i,j = 1,2,3) of Ip,. Under Hy, T2 asymptoti-
cally follows a chi-square distribution with one degree of freedom. The null hypothesis
Hy will be rejected if Tg > )(%,17 « Where )(%,17 . 1s the (1 — a)th quantile of the chi-square
distribution with one degree of freedom.

5. CI Methods
5.1. Profile Likelihood CI

In this subsection, we consider the confidence interval procedure of the odds ratio é by
inverting the likelihood ratio test under the hypotheses Hy : 6 = dg vs. H; : 6 # &y. Based
on the regularity conditions (A1)~(A3), the likelihood ratio test T? = 2(I((7t1, 7T, p) |m) —

1((7t1, 702, ) |m)) LN X3 as m—» + oo, where 7;,p and 77, 0 be the unconstrained and
constrained MLEs of 71;(i = 1,2) and p, respectively. Under Hy, we know that Jy =
7T2/(1—7'L'2)

(1= and Jj is an unknown constant. Thus, another form of the statistic is

T2 = 2(1y((8, 741, 9) [m) — L ((do, 711, ) [m)) 5 22,
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where § = 2/U1=72) Therefore, the 100(1 — )% likelihood CI of odds ratio dy satisfies

T om/(1-m)

Cl(m) = {6 : T} < x},_,}or

CIi(m) = {do : 21 (8, 721, p)|m) — L (0, 701, p)m)) < XxF1_4),

where Xilf . is the (1 — a)th quantile of the chi-square distribution with one degree of
freedom. However, we cannot obtain the explicit upper and lower limits of dy through the
set CIp(m).

Then, we apply the bisection root-finding algorithm to search for the likelihood CI
upper (LU) or lower (LL) limits of Jy satisfying the above inequality. At a confidence level
1 — a, the procedure of the CI upper limit is described by the following steps:

~(0) /120

(i) Let the initial values 7?1.(0) =i = 1,2),[)\(0) = p, and 50) — %, where
& !

7ti(i = 1,2) and p are unconstrained MLEs. Take an initial sign = 1 and step length = 0.1.

(i) Update 61 = §1) 4 sign x step length. Thus, for a given 5(*1), we can obtain
the constrained MLEs ﬁ§t+l) and p(**1) under Hy.

(i) Tf sign x 2(I; (3D, 7D 5Dy m) — 1y (6, 7Y 5H+D) Im)) < sign x
X%,l— o return to step (ii). Otherwise, set sign = —sign and step length = 0.1 x step length,
and then return to step (ii).

(iv) If the step length becomes small enough and the convergence is satisfactory, the

iteration is stopped. The output 5(gt+l) is the likelihood CI upper limit of odds ratio é.

The iteration of the CI lower limit is similar to that of the upper limit besides two points:
(a) set the initial sign = —1 instep (i); (b) for step (i), if sign x 2(I; (31, ﬁ; ), pt+))|m) —

ll((éétﬂ), ﬁitﬂ),ﬁ(t“)ﬂm)) > sign x X%,l—tx’ return to step (ii).

5.2. Wald-Type CI

We provide two methods to construct the Cls of odds ratio Jy based on the Wald-type
statistic. The first method is through the bisection root-finding algorithm. Under Hj, the
Wald-type statistic T3, asymptotically follows a chi-square distribution. Similarly to the
procedure of CI construction in Section 4.1, the 100(1 — a)% Wald-type CI of ¢, satisfies

Clw, (m) = {do : Ty < x7; .} or

(Ind — Indp)?
10;1(1,1) 21, (12) 15*1(2,2)
BA-m)? mml-m)1-7) " B0-m)?

Clwl(m) =<{0: < X%,lfa

A bisection root-finding algorithm obtains the Wald-type CI upper (WU;) and lower (WL,)
limits of &y, satisfying the above inequality. Given a confidence level of 1 — «, the procedure
of the CI upper limit includes steps (i), (ii), (iii)” and (iv), where:

(iii)” If sign x T%V < sign X X%,l— . return to step (ii). Otherwise, set sign = —sign and
step length = 0.1 x step length, and then return to step (ii).

The CI lower limit can be obtained according to the above steps by replacing sign = —1
in step (i) and sign x T3, > sign x X%,l— o in step (iii)".

Another method is based on the asymptotic normality distribution of 4. Obviously,

we have Ty LN N(0,1) since T, LN X3 as m — +o0. Thus, the 100(1 — &) % Wald-type
ClIs of Inéy is given by

5 I51(1,1) 2151(1,2) 151(2,2)
+2z_ - X =< = = — = s
MOERN RO T Rm(-m)(1- 7)) | (- )
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where z1_, 5 is the (1 — & /2)th quantile of the standard normal distribution. The 100(1 — &) %
explicit Wald-type CI upper (WU,) and lower (WL,) limits of 6y are expressed by

N -1(1,1) 21-1(1,2) 1(2,2)
WU, = exp{Ind+zi_ __0 S = 40 = ,
2 P PN RAC 7)) mm(l-m)(1-R) | A1 - &)?
S N (1) - 2151(1,2) 151(2,2)
2 P N RAC 7)) mm(l-m)(1-R) | A1 - )2

The Wald-type CI of Jy is denoted by Cly, = [WLp, Wl,].

5.3. Score CI

Since the statistic T2 N X3, the 100(1 — &) % score CI satisfies CIg(m) = {5y : T2 <
Xilf ) that s,

CIs(m) = {50 : (%)Zlg(l,m < X?,m}-

For a given confidence level 1 — «, the score CI upper (SU) and lower (SL) limits of Jy can
be obtained by the bisection root-finding algorithm, including steps (i), (ii), (iii)” and (iv),
where:

(iii)” If sign x T2 < sign x X%,l— o return to step (ii). Otherwise, set sign = —sign and
step length = 0.1 x step length, and then return to step (ii).

The CI lower limit of §y can be obtained by replacing sign = —1 in step (i) and sign x
TZ > sign x Xil— « in step (iii)”.

6. Simulation Studies
6.1. Odds Ratio Test

In this subsection, we investigate the performance of various test statistics for the odds
ratio ¢ in terms of the behaviors of empirical type I error rates (TIEs) and empirical powers.
10,000 replicates are randomly generated from the null hypothesis Hy or alternative H,
for each configuration. The empirical TIEs of test T(= T%, Tg, T&,) at a nominal level «
are computed by dividing the number of times that the null hypothesis is rejected by
10,000 replicates that come from the null hypothesis Hy. Following Cochran [28] and
Tang et al. [11], a test at a nominal level 0.05 is said to be liberal if the empirical TIE is
greater than 0.06; conservative if the TIE is less than 0.04; and robust if the TIE is between
0.04 and 0.06.

Under the parameter settings: p = 0.4,0.6,0.8, m; = 0.2,0.4,0.6 and m £ myp =
m4y = 50,75,100, and Table 2 provides the empirical TIEs of various tests for Hy : Jy =
1,1.5,2 at a nominal level &« = 0.05, respectively. In the table, if the value of the correspond-
ing TIE is less than 0.04, or greater than 0.06, it is highlighted in bold. We observe that
the empirical TIEs of the likelihood ratio and score tests are closer to 0.05. Thus, these
two tests are more robust than the Wald-type test for the specific parameter settings. To
further compare the three test statistics, we randomly choose 1000 parameter settings:
p€(0,1),m e (0,1)(i =1,2), and m = 50,100, 200. In Figure 1, a set of boxplots shows
the distribution for the empirical TIEs for tests T7, T2, T4, respectively. Among these tests,
the score test is the most robust because its TIEs are closer to the pre-specified nominal
level of 0.05, followed by the likelihood ratio test. However, the Wald-type test is liberal
or conservative under certain conditions. Thus, the score test is recommended based on
empirical TIEs.
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Table 2. Empirical TIEs of tests under Hy : 69 = 1,1.5,2.
m = 50 m =175 m = 100
P T p @ @ o 1 1© 1T
1.0 0.0548 0.0527 0.0586 0.0513 0.0496 0.0533 0.0551 0.0546 0.0570
0.2 1.5 0.0530 0.0514 0.0521 0.0507 0.0492 0.0468 0.0512 0.0494 0.0471
2.0 0.0485 0.0470 0.0408 0.0522 0.0511 0.0422 0.0492 0.0481 0.0386
1.0 0.0538 0.0524 0.0548 0.0529 0.0521 0.0542 0.0511 0.0501 0.0519
04 0.4 1.5 0.0484 0.0474 0.0498 0.0509 0.0509 0.0511 0.0504 0.0498 0.0513
2.0 0.0481 0.0474 0.0494 0.0513 0.0502 0.0517 0.0540 0.0526 0.0546
1.0 0.0543 0.0526 0.0555 0.0517 0.0509 0.0526 0.0498 0.0495 0.0503
0.6 1.5 0.0512 0.0502 0.0513 0.0476 0.0471 0.0467 0.0498 0.0493 0.0485
2.0 0.0508 0.0495 0.0464 0.0505 0.0502 0.0437 0.0497 0.0496 0.0440
1.0 0.0540 0.0522 0.0594 0.0509 0.0492 0.0544 0.0522 0.0508 0.0543
0.2 1.5 0.0532 0.0520 0.0525 0.0504 0.0493 0.0472 0.0509 0.0504 0.0481
2.0 0.0487 0.0462 0.0404 0.0509 0.0491 0.0408 0.0514 0.0501 0.0405
1.0 0.0519 0.0507 0.0540 0.0500 0.0492 0.0513 0.0502 0.0495 0.0512
0.6 0.4 1.5 0.0499 0.0485 0.0515 0.0514 0.0511 0.0522 0.0526 0.0519 0.0529
2.0 0.0496 0.0483 0.0518 0.0521 0.0511 0.0515 0.0508 0.0516 0.0511
1.0 0.0525 0.0510 0.0543 0.0517 0.0512 0.0530 0.0503 0.0499 0.0516
0.6 15 0.0484 0.0469 0.0489 0.0525 0.0515 0.0513 0.0480 0.0475 0.0472
2.0 0.0524 0.0500 0.0468 0.0498 0.0496 0.0444 0.0512 0.0511 0.0453
1.0 0.0533 0.0505 0.0607 0.0533 0.0518 0.0572 0.0522 0.0508 0.0544
0.2 1.5 0.0552 0.0530 0.0544 0.0527 0.0515 0.0511 0.0493 0.0485 0.0467
2.0 0.0496 0.0477 0.0422 0.0520 0.0507 0.0448 0.0544 0.0536 0.0442
1.0 0.0500 0.0493 0.0522 0.0496 0.0491 0.0508 0.0498 0.0495 0.0509
0.8 04 1.5 0.0527 0.0519 0.0533 0.0509 0.0505 0.0523 0.0557 0.0550 0.0556
2.0 0.0532 0.0523 0.0564 0.0526 0.0540 0.0537 0.0514 0.0525 0.0522
1.0 0.0528 0.0517 0.0557 0.0526 0.0520 0.0536 0.0524 0.0522 0.0531
0.6 1.5 0.0504 0.0489 0.0518 0.0520 0.0509 0.0520 0.0534 0.0525 0.0533
2.0 0.0532 0.0514 0.0511 0.0511 0.0522 0.0445 0.0514 0.0521 0.0460
mr . - M= = A
Lo dlde + LT F 1
+ =T T .. |
i . + | ' } : |

.

‘
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Figure 1. Boxplots of empirical TIEs for 1000 parameter settings.

.
TS
Test statistics

We evaluate the empirical powers of the three proposed test statistics by the percent-
age of rejecting Hy with 10,000 replicates that come from the alternative hypothesis H,.
Under Hy : 6 = 1vs. Hy : 6, = 1.2,1.5,2 at &« = 0.05, we still use the parameter settings
p=04,06,08, 7 =0.2,04,0.6 and m = 50,75,100. Table 3 displays the empirical powers
of T?, T2 and T, under the given settings. The power values of the three tests increase
when the sample size m or 6, increases. Given p, 7t1, 6, and m, if the power is the largest
in the table, it is highlighted in bold. Compared with these tests, the largest powers are
mostly found in the score test, the Wald-type test, and the likelihood ratio test. On the
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other hand, we chose some new settings of parameters to illustrate the powers of the
above tests: p = 0.6 and 71; = 0.3,0.4,0.5 for m = 20,40, ...,300 under Hy : Jp = 1 and
H, : 6, =1.2,1.5,2. Figure 2 shows the trajectories of empirical powers for our proposed
tests T?, T2~ and Ta,. As expected, the empirical powers of all tests are larger as the sample
size m increases. Moreover, we observed that the powers of the likelihood ratio and the
score tests are close, but the Wald-type test has lower power under specific conditions.

Overall, the score test is more robust with a higher power than the likelihood ratio
and the Wald-type tests. Therefore, the score statistic is recommended for testing whether
the odds ratio J of response rates is equal to a specific value &.

Table 3. Empirical powers of tests under Hy : §p = 1vs. H; : 6, = 1.2,1.5,2.

m = 50 m =175 m = 100

T? T2 Tz, T? T2 Tz, T? T2 TZ,
12 0.0749 0.0741 0.0768 0.0837 0.0831 0.0834 0.1056 0.1057 0.1036

0.2 15 01702 01720 0.1522 02399 0.2439 0.2141 0.2846 0.2886 0.2591

20 03854 0.3941 02991 05362 0.5458 0.4463 0.6566 0.6654 0.5696

12 0.085 0.0851 0.0862 0.0983 0.0979 0.0981 0.1205 0.1203 0.1199

04 04 15 02147 02158 02101 03190 0.3212 0.3125 0.3920 0.3939 0.3849
20 05164 05216 0.4964 0.6908 0.6954 0.6742 0.8183 0.8214 0.8067

12 0.0855 0.0850 0.0859 0.1007 0.1007 0.1000 0.1226 0.1223 0.1220

0.6 15 02188 0.2201 02135 03152 0.3169 0.3084 0.3858 0.3879 0.3788

20 05193 05242 04984 0.6957 0.6999 0.6809 0.8145 0.8173 0.8042

12 0.0718 0.0707 0.0748 0.0770 0.0765 0.0777 0.0967 0.0962 0.0960

0.2 15 01552 0.1575 0.1401 0.2133 0.2168 0.1923 0.2566 0.2606 0.2302

20 03449 0.3544 02607 0.4828 0.4932 03942 0.6006 0.6100 0.5140

12 0.0845 0.0836 0.0850 0.0915 0.0911 0.0915 0.1152 0.1152 0.1154

06 04 15 01976 0.1988 0.1930 0.2826 0.2844 0.2769 0.3503 0.3516 0.3424
20 04656 04714 04457 0.6384 0.6430 0.6185 0.7607 0.7643 0.7456

12 0.0854 0.0842 0.0866 0.0936 0.0929 0.0935 0.1164 0.1162 0.1160

0.6 15 01908 0.1913 0.1863 0.2825 0.2838 0.2760 0.3495 0.3513 0.3433

20 04654 04729 04452 0.6350 0.6425 0.6163 0.7626 0.7675 0.7493

12 0.0695 0.0679 0.0731 0.0751 0.0747 0.0768 0.0926 0.0925 0.0932

0.2 15 01403 0.1427 0.1276 0.1941 0.1974 0.1724 02305 0.2342 0.2097

20 03112 03239 02377 04344 04457 03500 0.5510 0.5605 0.4567

12 00771 0.0766 0.0785 0.0859 0.0856 0.0868 0.1025 0.1023 0.1024

08 04 15 01816 0.1827 0.1786 0.2417 0.2440 0.2372 03186 0.3210 0.3136
20 04328 04378 04141 05952 0.6012 05769 0.7183 0.7242 0.7031

12 0.0792 0.0783 0.0809 0.0887 0.0886 0.0894 0.1052 0.1052 0.1054

0.6 15  0.1838 0.1849 0.1808 0.2459 0.2478 0.2399 03180 0.3204 0.3117

20 04282 04350 04070 0.5946 0.6019 0.5750 0.7178 0.7256 0.7004

P sl 5,1
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Figure 2. Curves of empirical powers under Hy : 6y = 1.

6.2. CI Construction

In this subsection, we compared the four CI methods through the empirical mean
coverage probability (MCP) and empirical mean interval width (MIW). Under Hy, the MCP
is defined as the proportions of samples that true odds ratio J falls within the constructed
CI, and the MIW is computed by dividing the sum of all widths by the total number of
replicates. For the observed data m, let d;;(m) and 67 (m) be the estimators of the CI lower
limit and upper limit of §y, respectively. The formula of MCP and MIW is expressed by

1 N
MCP = N,(:Zl 1{éy € [6r.(m®), 5, (m¥))]},

1 N
MIW = k;[‘su(m(k)) —op(mW],

where m¥) is the kth sample in the bilateral design, and I(-) is an indicator function. Here,
the number of replicates N = 10,000.

We consider the exact sample sizes and parameter setups for calculating the empirical
TIE and power. Ten thousand replicates are generated from a trinomial distribution for each
configuration, upon which MCP and MIW are computed. We list the performance of four
CI methods in Table 4. In the table, if the value of MCPs is less than 0.94, or greater than 0.96,
then it is bold. We observed that the MCPs of CI;, Cls, and Clyy, are close to the confidence
level of 0.95. Some MCPs of the Cly, method are slightly conservative, i.e., slightly above
0.95. On the other hand, the CIs method has the shortest MIWs, followed by CI;, then
Cly, and Cly,. Although the CIy, method is slightly more conservative than Clyy,, it has
shorter MIWs than Cly,. The result reveals that the bisection root-finding algorithm is
more effective than the asymptotic normality method in constructing the interval.

In conclusion, the CIs method performs better with the satisfactory MCPs and the
shortest MIWs among the proposed methods. Thus, the CI method based on the score
statistic is recommended to construct the interval of odds ratio dy.
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Table 4. MCPs and MIWs of CI methods.

MCPs MIWs
Y T 5() m
CIp CIg Cly, Cly, CIy, CIg Cly, Cly,
50 0.9493 0.9523 0.9830 0.9452 2.0316 1.9674 2.1187 5.5245
1.0 75 0.9453 0.9466 0.9704 0.9423 1.5344 15018 1.5711 2.9333
100 0.9442 0.9448 0.9649 09425 1.2713 1.2512 1.2923 1.7555
50 0.9475 0.9492 0.9745 0.9492 29290 2.8005 3.1746 8.2801
0.2 1.5 75 0.9449 0.9463 0.9654 0.9479 22036 2.1224 2.3304 4.8852
100 0.9460 0.9467 0.9624 0.9488 1.8224 1.7568 1.9075 2.9070
50 0.9472 0.9501 0.9726 0.9555 3.8250 3.5607 4.3147 10.725
2.0 75 0.9456 0.9464 0.9680 0.9539 2.8792 2.6584 3.1555 6.7246
100 0.9453 0.9460 0.9645 0.9566 2.3808 2.1818 2.5795 4.1505
50 0.9485 0.9496 0.9518 0.9473 1.5394 15225 1.5367 1.6188
1.0 75 0.9468 0.9474 0.9488 0.9460 1.1985 1.1902 1.1969 1.2290
100 0.9458 0.9469 0.9479 0.9451 1.0129 1.0080 1.0119 1.0303
50 0.9481 0.9493 0.9499 0.9472 23032 22362 23022 2.4288
0.4 0.4 1.5 75 0.9448 0.9458 0.9462 0.9451 1.7860 1.7360 1.7889 1.8407
100 0.9473 0.9479 0.9489 0.9469 1.5066 1.4641 1.5100 1.5401
50 0.9478 0.9487 0.9498 0.9473 3.1016 29648 3.1195 3.3004
2.0 75 0.9449 0.9456 0.9458 0.9452 2.3874 22899 24076 2.4824
100 0.9447 0.9442 09451 0.9442 2.0080 1.9323 2.0304 2.0740
50 0.9477 0.9503 0.9534 0.9463 1.5410 1.5188 1.5399 1.6211
1.0 75 0.9479 0.9485 0.9498 0.9470 1.1945 1.1820 1.1943 1.2265
100 0.9475 0.9479 0.9493 09468 1.0104 1.0025 1.0103 1.0287
50 0.9686 0.9694 0.9779 0.9568 2.3816 2.3061 24202 3.0219
0.6 1.5 75 0.9488 0.9497 0.9541 0.9496 1.8622 1.8107 1.8940 2.0624
100 0.9447 0.9448 0.9505 0.9453 1.5702 1.5296 1.5959 1.6858
50 0.9522 0.9507 0.9542 0.9504 3.3840 3.3309 3.4267 3.6675
2.0 75 0.9488 0.9436 0.9502 0.9470 2.6095 2.5402 2.6397 2.7368
100 0.9508 0.9421 0.9623 0.9421 2.1988 2.1379 23058 2.1379
50 0.9499 0.9522 0.9897 0.9450 2.2557 2.1620 2.3876 7.2516
1.0 75 0.9428 0.9447 0.9747 0.9388 1.6813 1.6380 1.7318 4.0515
100 0.9475 0.9488 0.9693 0.9455 1.3810 1.3539 1.4082 2.2598
50 0.9505 0.9526 0.9777 0.9519 3.2400 3.0097 3.5806 10.147
0.2 1.5 75 0.9439 0.9454 0.9684 0.9473 24165 22439 25794 6.4631
100 0.9457 0.9467 0.9653 0.9490 1.9799 1.8306 2.0828 3.8025
50 0.9473 0.9496 0.9731 0.9550 4.2432 3.6543 4.9050 12.504
2.0 75 0.9438 0.9453 0.9681 0.9543 3.1368 2.6729 3.4960 8.4027
100 0.9455 0.9465 0.9660 0.9559 25611 2.1940 2.8188 5.3252
50 0.9484 0.9497 0.9535 0.9471 1.6799 1.6372 1.6812 1.7960
1.0 75 0.9465 0.9472 0.9488 0.9438 1.2961 1.2737 1.2967 1.3371
100 0.9454 0.9460 0.9481 09446 1.0922 1.0775 1.0926 1.1152
50 0.9485 0.9499 0.9524 0.9474 24973 23678 2.5249 2.6951
0.6 0.4 1.5 75 0.9463 0.9472 0.9480 0.9452 19173 1.8280 1.9388 2.0037
100 09471 09474 09484 0.9468 1.6092 15373 1.6314 1.6683
50 0.9491 0.9499 0.9514 0.9483 3.3828 3.2200 3.4235 3.6697
2.0 75 0.9480 0.9477 0.9496 0.9470 25817 2.4907 2.6138 2.7080
100 0.9455 0.9446 09465 09444 21741 21157 21988 2.2527
50 0.9521 0.9530 0.9573 0.9500 1.6774 1.6321 1.6835 1.7933
1.0 75 0.9471 0.9471 09503 0.9465 1.2904 1.2657 1.2941 1.3347
100 0.9494 09494 09515 0.9483 1.0904 1.0734 1.0936 1.1162
50 0.9508 0.9500 0.9568 0.9587 25422 24373 2.5845 3.1324
0.6 1.5 75 0.9483 0.9488 0.9544 0.9483 2.0101 1.9410 2.0545 2.2830
100 09474 0.9477 0.9535 0.9481 1.6926 1.6416 1.7286 1.8467
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Table 4. Cont.

MCPs MIWs
CIp CIg Cly, Cly, CIy, CIg Cly, Cly,

50 0.9498 0.9509 0.9677 0.9435 3.8470 3.6810 4.1480 4.3245

2.0 75 0.9462 0.9426 0.9619 0.9534 2.8526 2.7697 3.0117 3.4562

100  0.9552 0.9417 0.9686 0.9579 2.3734 2.3234 24872 29232

50 0.9528 0.9555 0.9922 0.9464 2.5289 2.3713 2.7335 8.7236

1.0 75 0.9463 0.9479 0.9783 0.9425 1.8500 1.7662 1.9150 5.3330

100  0.9475 0.9490 0.9715 0.9445 1.5029 1.4441 1.5372 3.0518

50 0.9501 0.9527 0.9787 0.9490 3.6306 3.1170 4.1349 11.568

0.2 1.5 75 0.9446 0.9460 0.9705 0.9472 2.6451 22278 2.8486 7.9263
100  0.9464 0.9472 0.9660 0.9507 2.1423 1.7948 22715 4.9722

50 0.9491 09510 0.9746 0.9551 4.6967 3.5029 b5.6867 13.775

2.0 75 0.9450 0.9468 0.9689 0.9552 3.3559 2.5244 3.8704 9.9300

100  0.9454 0.9455 0.9674 0.9549 2.6568 2.0836 3.0760 6.6606

50 0.9500 0.9507 0.9560 0.9478 1.8165 1.7262 1.8307 2.0030

1.0 75 0.9453 0.9455 0.9488 0.9434 1.3881 1.3349 1.3975 1.4489

100  0.9473 09475 09492 09462 1.1663 1.1254 1.1726 1.2006

50 0.9467 0.9485 0.9510 0.9454 2.6973 2.5073 2.7506 2.9965

0.8 0.4 1.5 75 0.9471 09475 0.9493 0.9457 2.0383 1.9086 2.0880 2.1704
100  0.9447 09453 09465 0.9445 1.7059 1.6064 1.7512 1.7970

50 0.9510 0.9520 0.9543 0.9487 3.6860 3.4993 3.7225 4.0628

2.0 75 0.9460 0.9441 0.9469 0.9449 2.7847 2.6841 2.8147 2.9357

100  0.9457 0.9435 0.9469 0.9456 2.3368 2.2760 2.3590 2.4272

50 09501 09512 0.9564 0.9462 1.8097 1.7452 1.8189 1.9620

1.0 75 0.9483 0.9486 0.9522 0.9466 1.3874 1.3450 1.3960 1.4484

100  0.9468 0.9472 09498 0.9461 1.1667 1.1337 1.1736 1.2018

50 0.9481 0.9494 0.9614 0.9624 29340 2.8031 3.0144 3.3773

0.6 1.5 75 0.9471 09476 0.9546 0.9512 21868 2.1098 22356 2.5099
100  0.9490 0.9498 0.9558 0.9501 1.8275 1.7677 1.8656 2.0184

50 0.9478 0.9495 0.9684 0.9623 4.2564 4.0509 4.6223 3.3772

2.0 75 0.9483 0.9404 0.9639 0.9512 3.1063 3.0129 3.2850 2.5099

100  0.9483 0.9400 0.9612 0.9501 2.5767 2.5198 2.7035 2.0184

7. An Example

Mandel et al. (1982) conducted a double-blinded randomized clinical trial at two sites
comparing cefaclor and amoxicillin for the treatment of acute otitis media with effusion
(OME) in 214 children (293 ears). Each child underwent bilateral tympanocentesis and
was randomly assigned to receive a 14-day course of either cefaclor or amoxicillin. Table 5
shows the OME status at 14 days in 75 children with bilateral OME. In this section, the
real example was used to illustrate the performance of our proposed test statistics and
CI methods (Table 5). According to Table 5, we have mg; = 14,my; = 9,my = 21,
mop = 15,m1p = 3,mp = 13 and my1 = 44,m, = 31. At a nominal level & = 0.05, we
have 7(%1_“ = X%,o.% = 3.8415and z;_, /7 = zp975 = 1.96.

Table 5. OME status after 14-day course of antibiotic treatment.

Treatment
OME Status Total
Cefaclor Amoxicillin
None cured 14 15 29
Unilateral cured 9 3 12
Bilateral cured 21 13 34
Total 44 31 75

We first tested whether the two cured rates of cefaclor and amoxicillin are clinically
equal; thatis, Hy : 6 = 1vs. H; : § # 1. Under the alternative hypothesis H,, the
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unconstrained MLEs of p and 7t;(i = 1,2) are p = 0.6747, 711 = 0.5767 and 77, = 0.4660.
The constrained MLEs under null hypothesis Hy are p = 0.6786, 771 = 77, = 0.5333. The
result reveals that there exists a correlation between the two ears of a patient. Under Hy, the
values of the three proposed test statistics are T? = 1.0505, T3 = 1.0305 and T3, = 1.0717,
and the corresponding p-value p = 0.3054,0.3100, 0.3006. Since T2, Ts2/ T%, < X%,0.95 and
p > 0.05, we failed to reject the null hypothesis Hy at the significance level « = 0.05. Thus,
there are no significant differences between cefaclor and amoxicillin.

Applying the proposed CI procedures, we then obtained four pairs of confidence
limits:

[LL, LU] = [0.2702,1.5026], [WL1, WU;] = [0.2739,1.4974],
[SL,SU] = [0.2727,1.5087], [WL,, WU,] = [0.2638,1.4939].

The confidence limits contain 1. There are no significant differences between the two
antibiotic treatments based on our proposed tests and CI methods. Through the example,
we note that the same conclusions can explain with test statistics and CI methods. In
addition, the CI methods contain more information than the hypothesis test.

8. Conclusions

In this paper, we proposed three test statistics for testing the odds ratio of two pro-
portions and constructed four pairs of CIs for the ratio. Under an alternative hypothesis,
we obtain the unconstrained MLEs by an iteration procedure through two steps. The con-
strained MLEs under the null hypothesis was given based on the Fisher scoring algorithm.
Given the MLEs, the likelihood ratio test, the score test, and the Wald-type log-linear test
were proposed, which asymptotically followed a chi-square distribution with one degree
of freedom. Four CIs of the odds ratio of two proportions were based on inverting the
three test statistics, including CI based on a likelihood ratio statistic, CI based on a score
test, and two CI methods based on the Wald-type test. The bisection root-finding algorithm
was used to search for the profile likelihood, Wald-type, score CI upper and lower limits of
odds ratios. The asymptotic normality method obtained other CI upper and lower limits of
the Wald-type case. We conducted simulation studies to compare the proposed tests about
the empirical type I error, power, and CI methods in terms of the MCPs and MIEs. The
results revealed that the score test performed better than other statistics, and the CI based
on score statistic is recommended. A real example was provided to illustrate our results.

One of the possible future works is to extend these test statistics and CI methods to
general g(g > 2) cases for bilateral correlated data.
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Appendix A. Derivation and Information Matrix
Appendix A.1. Differential Equations and Information Matrix I
The first-order differential equations of /; with respect to 7r; and p yield
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_myn (27F (0 —1)* = 2mp(p — 1) +0?) N mip (2753 (1 — 62) + 73 (6 4+ 1)2 — 6) —2m1 (6 —2) — 1)
i (1 (1—p) +p)? i (m —1)2(m (0 —1) +1)2
. [2(5(35+2m +p0—25(m +p) + mp(62 —1) —2) 8 (mp(1+6) —p — 27y +2)
(m = 1)(m (0 —1)+1)>(m(dp—1)+1) (m = 1)2(m (6 —1) +1)*(mi(op — 1) +1)
(o —1)(mp(1+6) —p—2m +2) ] . [2(5+p(1 — 1) +26(m —p)(1 - 95))
(m —1)(m((6—1) +1)2(m (6p — 1) +1)2 m(p(1—m) +6my) (1 (6 — 1) +1)2
(p(1 —m) +6m (2 - p))? }
3 (0(1 —7m1) +67m)2 (1 (6 — 1) +1)2
*h Moy _ My n Mo _ M6
d710p (mp—1)+1)? (m+p1-m))? (@mp—m+1)* (p+dm —mp)*’
L & my mo1 7t} _my(m -1 mopd* 1ty _ mp(m — 1)
op? Se-12 (mpe-1)+1)? (m+pe(l-m))? (m@p-1)+1)% (o(1—-m)+dm)?
The elements 11, I1p, Io of Fisher information I are given by
21
= E (ﬁ)
_ m+1{ por (27 +1)(p —1)> =27 (p —1)(p — 2) + 1) L u@mim 1) +1)
(m —1)*(m(p—1) +1)2 3 (rry —1)?
L P27 i (p—1)* —2mp(p — 1) +p? )}_m {Plz( (1 -8%) + (6 +1)* —6) —2m (6 -2) — 1)
3 (m(1-p) +p)? " i (m —12(m(6—1) +1)2
26(36 + 27y +p — 26(my +p) + mp(62 —1) —2) 02 (mp(1+6) —p —2m +2)
—poz[ (m = 1)(m (6 —1) +1)2(m(6p—1)+1) (m = 1)*(m (0 =1) +1)*(m (5p—1) +1)

+

& (p—1)(mp(1+6) —p—2m +2) } [2(5+p(1—ﬂ1)+25(7r1—p)(l—é))

(1 = 1)(m1 (6 = 1) +1)2(7m1(6p — 1) +1)2 21 (o1 — ) + 0my) (1 (0 — 1) + 1)2
(o(1 — 1) +6m1(2 — p))? ]}

2 (p(1 — 111) 4 6711)? (711 (6 — 1) +1)?

o < *h > ___ myipo M. 1p21 _ myapead
9710p (mp-1)+1)*  (m+pA-m))* (Omp—m+1)?
my2p20d
(04 0my — mp)?’
= <3211) i m+zP1z m+1P017T% my1pa (71 — 1)
=( ( m(p—1)+1)2  (m +p(1—m))?
n m+zp025 n? mopon(m — 1)

(m(op—1)+1)2  (o(1—7my) +6m1)%’



Axioms 2022, 11, 502 17 of 19

where pj; are defined in (2) for/ =0,1,2and i =1, 2.

Appendix A.2. Differential Equations and Information Matrix Ig

The second-order differential equations are

ksl Cmi(2mF +1)(p—1)* —2m(p— D) (e —=2) +1)  my(2m(m — 1) +1)

o (i~ D2(lp — 1) + 172 72— 1)2
my (277 (p — 1)* = 2mip(p — 1) + p)

7 1 - 1/2/
(i + p(1— )2 1
2
87'[1871'2 - 8777287'(1 !

Pl mo(mi(p— 1)+ p? +2mp(1 — ;) — myi(7f(p — 1)* +2mi(p — 1) +1)
o7T;0p (mi(p = 1)2(1 = 71;) + p)?

ail - _ X2: [ my; mo; 1} mai (1 — 1)2 }

dp? Sle-12 (me-1)+1)?2  (m+pd-m))2l

Through the above equations, all (i, j)th elements Ig(i, j) of Iy can be obtained by

2

lo(i,i) = —E(%)

myipoi((277 +1) (0 — 1) — 27i(p — 1) (p — 2) + 1)
(i = 1)2(mi(p — 1) +1)2

myip1i(2mi(mr; — 1) + 1) N mipai(272(p — 1)% = 2mip(p — 1) + p?)

+ 7 j = 1/2/
2 (m; — 1) (4 p(1— 7))? ’
el
I(1,2) = Ip(2,1) = _E(iamam) -0,
. . 921
Io(i,3) = Ip(3,i) = _E(an-ap>
1
_myipoi(r (e — 1) + p? + 2mip(1 — 7)) — moipai(mE (0 — 1) 4+ 27i(p — 1) + 1)
(rti(p —1)2(1 — 71;) + p)? ’
0%l 2 myp M4 iPOiTT; myipai(7t — 1)
W63 = ~E(5z) = LG =141 (s pli— )P

where pj; is defined in (2) for ] =0,1,2and i =1, 2.

Appendix A.3. Information Matrix Ig,

Let A = (6p(6 —p) — 6+ p) 73 + (0p> —2p + 6)7; +pand B = 7y (6 — 1) + 1. Similar
to those of Appendices A.1 and A.2, we have
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1

Io,(1L1) = —s[mpm(m —1)(=p(m —1)*(p —2) = 20m(m = 1)(p* —p+1) — &*mip(p —2))],
1
lo,(1,2) = Ip(21) =~ [mia(—p(m — 1)%(p —2) = 207y (11 — 1) (0* — p+ 1) = 8*rfp(p - 2))],
1
Ip,(1,3) = I (31) = m[mﬂﬂlp(”l —1(m((1+6)-1)],
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I S C12(p _ N2 S22
(1 — 1) AB? [6m2(p(mr1 = 1)%(p — 2) + 2071 (11 — 1) (p — 1)" 4+ 6" mip(p — 2))],
my1p(2m — 1) 1
I, (2,3) = Ip,(3,2) = — +1 — —[my25 sm —1)],
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