
Citation: Alb Lupaş, A. Applications
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Abstract: In this article we explore several applications of q-calculus in geometric function the-
ory. Using the method of differential subordination, we obtain interesting univalence properties for
the q-Sălăgean differential operator. Sharp subordination results are obtained by using functions
with remarkable geometric properties as subordinating functions and considering the conditions of
expressions involving the q-Sălăgean differential operator and a convex combination using it.
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1. Introduction

Since q-calculus has numerous applications in physics, mathematics and engineering
sciences, it became attractive for many researchers. Jackson ([1,2]) gave the first application
of q-calculus by defining the q-derivative and q-integral. In 1989 [3], Srivastava set the
basic context for using q-calculus in geometric function theory, and in 1990, Ismail et al. [4]
introduced and studied an extension of the class of starlike functions using the notions of
q-calculus in this domain. The class of q-starlike functions was further extended. Agrawal
and Sahoo [5] studied starlike functions of the α order using q-calculus aspects, and later, the
Hankel and Toeplitz determinants were obtained for a subclass of starlike functions of the
α order [6]. Coefficient inequalities for a subclass of q-starlike functions associated with a
conic domain were obtained in [7]. A certain subclass of q-starlike functions associated with
the Janowski functions was introduced and studied in [8]. Multivalent q-starlike functions
were studied in connection with the circular domain in [9], and by using certain higher-
order q-derivatives, the subclasses of multivalent q-starlike functions were introduced and
investigated in [10]. Special functions have also been associated with q-calculus, such as
the famous Mittag–Leffler function [11–13].

Interpreting geometrically the q-analysis is accomplished by introducing and studying
numerous q-analogue differential operators. Srivastava showed in a comprehensive review
paper in 2020 [14] the applications of q-calculus, mentioning various q-operators introduced
up to that date by researchers using fractional calculus and convolution. In 2014 [15], the
q-analogue of the Ruscheweyh differential operator was introduced. Certain q-integral op-
erators of p-valent functions can be seen in [16], and a q-analogue of the Ruscheweyh-type
operator for multivalent functions was introduced in [17]. In 2017 [18], the q-analogue of the
Sălăgean differential operator was defined, and it was extended to the class of multivalent
functions in 2019 [19]. Using these operators, interesting results were obtained by introduc-
ing new classes of analytic functions ([20–22]) and multivalent functions ([19,23,24]).

The results presented in this paper involve the q-analogue of the Sălăgean differential
operator applied to multivalent functions. This study was inspired by the investigation
presented in [25] for the q-analogue of the Ruscheweyh operator.
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The theory of differential subordination initiated by Miller and Mocanu ([26,27]) is
used for obtaining the main results of this paper. In the next section, the results obtained by
different researchers and used to obtain the original results from this article are presented.
Then, in Section 3 of the paper, the new subordination properties regarding the q- Sălăgean
differential operator are explored. A sharp subordination is investigated in Theorem 1, and
an interesting corollary emerges by using a particular function in Theorem 1. An example
is given to show an application of the result. In Theorem 2, a subordination is studied
considering the real part of an expression involving the q- Sălăgean differential operator.
The best dominant is obtained for this subordination, and an example is also given to illus-
trate the use of the results. Convolution is involved in the subordination result presented in
Theorem 3. Conclusions on the study presented in this paper are given in Section 4, where
future directions of study are also suggested.

2. Preliminaries

We now explore the definitions and notations used in this research.
Let A(p) be the class of analytic and p-valent functions in the open unit disk U =

{z ∈ C : |z| < 1} of the form

f (z) = zp +
∞

∑
j=p+1

ajzj, p ∈ N.

The analytic function f is subordinate to the analytic function g, written as f ≺ g,
if there is an analytic Schwartz function ω in U , with ω(0) = 0 and |ω(z)| < 1 such that
f (z) = g(ω(z)) for z ∈ U .

For the univalent function g in U , the equivalence relation holds, where f ≺ g ⇔
f (0) = g(0) and f (U ) ⊂ g(U ).

We also explore the notations and concepts of q-calculus.
For x ∈ N, 0 < q < 1, it is noted that

[x]q =
1− qx

1− q
,

and

[x]q! =


x

∏
y=1

[y]q, x ∈ N∗,

1, x = 0.

For a function f ∈ A(1), the q-derivative operator Dq is defined as in ([2]):

Dq( f (z)) =

{
f (z)− f (zq)

z(1−q) , z 6= 0,
f ′(0), z = 0.

We can see that

lim
q→1
Dq( f (z)) = lim

q→1

f (z)− f (zq)
z(1− q)

= f ′(z),

when f is a differentiable function.
When f (z) = zn, we obtain Dq( f (z)) = Dq(zn) =

1−qn

1−q zn−1 = [n]qzn−1.

The Sălăgean differential operator ([28]) has the form Sm f (z) = zp + ∑∞
j=p+1 jmajzj for

f (z) = zp + ∑∞
j=p+1 ajzj ∈ A(p), where z ∈ U :
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Definition 1 ([19]). We denote by Sn
q,p the extended q-Sălăgean differential operator

Sn
q,p f (z) = zp +

∞

∑
j=p+1

[j− p + 1]nq ajzj,

for f (z) = zp + ∑∞
j=p+1 ajzj ∈ A(p), where z ∈ U .

We observe that for p = 1, the extended q-Sălăgean differential operator Sn
q,p f reduces

to the q-analogue of the Sălăgean differential operator Sn
q ([29]). For p = 1 and q→ 1, the

extended q-Sălăgean differential operator Sn
q,p f reduces to the familiar Sălăgean differential

operator Sn f .
After a short computation, we deduce that

zDq

(
Sn

q,p f (z)
)
= [p− 1]qS

n
q,p f (z) + qp−1Sn+1

q,p f (z). (1)

There are many papers which adapt different lemmas from the classical theory of
subordination considering q-calculus aspects. Some lemmas used for the proof of the new
results are presented next. They are cited over 70 times and are also used in [25,29]:

Lemma 1 ([27]). Let g(z) = 1+ a1z+ a2z2 + ... be the analytic in U and h be a univalent analytic
and convex function in U with h(0) = 1. If

zDq(g(z))
b

+ g(z) ≺ h(z), z ∈ U , b 6= 0,

then

g(z) ≺ b
zb

∫ z

0

h(t)tb

t
dt,

with Re(b) ≥ 0.

Lemma 2 ([30]). Consider θ and φ analytic functions in a domain D ⊃ q(U ) such that and
φ(ω) 6= 0, ω ∈ q(U ) and u is a univalent function in U . Let Q(z) = zφ(u(z))Dq(u(z))
and h(z) = θ(u(z) + Q(z)), assuming that Q(z) is a univalent starlike function in U and
Re
(

zDq(h(z))
Q(z)

)
=

zDq(Q(z))
Q(z) +Re

(Dq(θ(u(z)))
φ(u(z))

)
> 0, where z ∈ U .

When g(z) is an analytic function in U with the properties g(0) = u(0), p(U ) ⊂ D and

θ(g(z)) + zφ(g(z))Dq(g(z)) ≺ θ(u(z)) + zφ(u(z))Dq(u(z)) = h(z),

then g ≺ u, and u is the best dominant.

Lemma 3 ([31]). The necessary and sufficient condition for the function f (z) = (1− z)α, α 6= 0
to be univalent in U is |α + 1| ≤ 1 or |α− 1| ≤ 1.

Lemma 4 ([32]). Considering fi, the analytic functions of the form 1 + a1z + a2z2 + ... in U
that verify the inequality Re( fi) > αi, 0 ≤ αi < 1 and i = 1, 2, we obtain that f1 ∗ f2 is an
analytic function of the form 1 + a1z + a2z2 + ... in U which verifies the inequality Re( f1 ∗ f2) >
1− 2(1− α1)(1− α2).

Lemma 5 ([33]). By considering the analytic function f (z) = 1 + a1z + a2z2 + ... that verifies
the inequality Re( f (z)) > α, 0 ≤ α < 1, then

Re( f (z)) > 2α− 1 +
2(1− α)

|z|+ 1
, z ∈ U .
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3. Main Results

Theorem 1. If f ∈ A(p) satisfies

α
Sn+1

q,p f (z)
zp + (1− α)

Sn
q,p f (z)

zp ≺ Nz + 1
Mz + 1

, (2)

for −1 ≤ M < N ≤ 1, α > 0, then

Re

(Sn
q,p f (z)

zp

) 1
k
 >

 1
qα

∫ 1

0

u
1

qα (Nu− 1)
u(Mu− 1)

du

 1
k

, k ≥ 1, (3)

where the result is sharp.

Proof. By denoting g(z) =
Sn

q,p f (z)
zp = 1 + a1z + ... for f ∈ A(p) is analytic in U and

applying the logaritmic q-differentiation, we obtain

Dq(g(z)) = Dq

(
Sn

q,p f (z)
zp

)
=

zDq

(
Sn

q,p f (z)
)
− [p]qSn

q f (z)

qpzp+1

In addition, by taking account the relation in Equation (1), we obtain

zDq(g(z)) = −1
q

g(z) +
1
q
Sn+1

q,p f (z)
zp .

We find that
Sn+1

q,p f (z)
zp = g(z) + qzDq(g(z))

and

α
Sn+1

q,p f (z)
zp + (1− α)

Sn
q,p f (z)

zp = α
(
qzDq(g(z)) + g(z)

)
+ (1− α)g(z)

= αqzDq(g(z)) + g(z).

We can write the differential subordination in Equation (2) as follows:

αqzDq(g(z)) + g(z) ≺ Nz + 1
Mz + 1

,

Then, by applying Lemma 1, we obtain

g(z) ≺ 1
qα

z−
1

qα

∫ z

0

t
1

qα (Nt + 1)
t(Mt + 1)

dt,

Alternatively, by using the subordination properties, we obtain

Sn
q,p f (z)

zp =
1

qα

∫ 1

0

u
1

qα (Nuω(z) + 1)
u(Muω(z) + 1)

du.

Since −1 ≤ M < N ≤ 1, we obtain

Re

(
Sn

q,p f (z)
zp

)
>

1
qα

∫ 1

0

u
1

qα (Nu− 1)
u(Mu− 1)

du,

where the inequality Re
(

x
1
n

)
≥ (Rex)

1
n is considered for n ≥ 1 and Rex > 0.
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To show the sharpness of Equation (3), we consider f ∈ A(p), defined by

Sn
q,p f (z)

zp =
1

qα

∫ 1

0

u
1

qα (Nuz + 1)
u(Muz + 1)

du.

For the defined function, we can write

α
Sn+1

q,p f (z)
zp + (1− α)

Sn
q,p f (z)

zp =
Nz + 1
Mz + 1

and
Sn

q,p f (z)
zp → 1

qα

∫ 1

0

u
1

qα (Nu− 1)
u(Mu− 1)

du as z→ −1,

Thus, the proof is complete.

Remark 1. For p = 1, we are led to similar results to those given in [29].

Corollary 1. If f ∈ A(p) satisfies

α
Sn+1

q,p f (z)
zp + (1− α)

Sn
q,p f (z)

zp ≺ (2b− 1)z + 1
z + 1

, (4)

for α > 0, 0 ≤ b < 1, then

Re

(Sn
q,p f (z)

zp

) 1
k
 >

(2b− 1) +
2(1− b)

qα

∫ 1

0

u
1

qα

u(u + 1)
du

 1
k

, k ≥ 1.

Proof. Following the same steps as in the proof of Theorem 1 for g(z) =
Sn

q,p f (z)
zp , the differ-

ential subordination in Equation (4) becomes

αqzDq(g(z)) + g(z) ≺ (2b− 1)z + 1
z + 1

.

Therefore, we obtain

Re

(Sn
q,p f (z)

zp

) 1
k
 >

 1
qα

∫ 1

0

u
1

qα ((2b− 1)u + 1)
u(u + 1)

du

 1
k

=

 1
qα

∫ 1

0

(
(2b− 1) +

2(1− b)
u + 1

)
u

1
qα

u
du

 1
k

=

(2b− 1) +
2(1− b)

qα

∫ 1

0

u
1

qα

u(u + 1)
du

 1
k

.

Example 1. Let f (z) = zp + zp+1, n = 1, α = 2, b = 1
2 and k = 2. Then, S1

q,p f (z) =

zp + [2]qzp+1 = (1 + q)zp+1 + zp and S2
q,p f (z) = zp + [2]2qzp+1 = (1 + q)2zp+1 + zp.

We have α
Sn+1

q f (z)
z + (1− α)

Sn
q f (z)

z = 2
S2

q f (z)
z − S

1
q f (z)

z =
(
2q2 + 3q + 1

)
zp + zp−1.
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By applying Corollary 1, we obtain(
2q2 + 3q + 1

)
zp + zp−1 ≺ 1

z + 1
, z ∈ U ,

which induces

Re
√
(1 + q)zp+1 + zp >

1√
2q

√√√√∫ 1

0

u
1
2q

u(u + 1)
du, z ∈ U .

Theorem 2. Consider 0 ≤ σ < 1, and µ 6= 0 and is a complex number such that
∣∣∣ 2µ(1−σ)

q − 1
∣∣∣ ≤

1 or
∣∣∣ 2µ(1−σ)

q + 1
∣∣∣ ≤ 1. If f ∈ A(p) verifies the inequality

Re

(
Sn+1

q,p f (z)
Sn

q,p f (z)

)
> σ, z ∈ U ,

then (
Sn

q,p f (z)
zp

)µ

≺ 1

(1− z)
2µ(1−σ)

q

, z ∈ U ,

where 1

(1−z)
2µ(1−ρ)

q
is the best dominant.

Proof. By considering g(z) =
(
Sn

q,p f (z)
zp

)µ

and applying logarithmic q-differentiation, we

obtain

Dq(g(z)) =
µ

qz

(
Sn

q,p f (z)
zp

)µ Sn+1
q,p f (z)− Sn

q,p f (z)
Sn

q,p f (z)

and
zDq(g(z))

g(z)
=

µ

q

(
Sn+1

q,p f (z)
Sn

q,p f (z)
− 1

)
.

From the above, we obtain that

Sn+1
q,p f (z)
Sn

q,p f (z)
=

q
µ

zDq(g(z))
g(z)

+ 1.

We can write the inequality Re
(
Sn+1

q,p f (z)
Sn

q,p f (z)

)
> σ as follows:

Sn+1
q,p f (z)
Sn

q,p f (z)
≺ (1− 2σ)z + 1

1− z
,

This is equivalent with

q
µ

zDq(g(z))
g(z)

+ 1 ≺ (1− 2σ)z + 1
1− z

, z ∈ U .

Let us suppose that

u(z) =
1

(1− z)
2µ(1−σ)

q

, θ(ω) = 1, φ(ω) =
q

µω
,
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Then, we find that u(z) is univalent by Lemma 3. It is easy to prove that u, θ and φ

satisfy the conditions of Lemma 2. The function Q(z) = zφ(u(z))Dq(u(z)) = 2(1−σ)z
1−z is

univalent and starlike in U , and h(z) = θ(u(z) + Q(z)) = (1−2σ)z+1
1−z .

Following Lemma 2, we obtain the proof.

Remark 2. For p = 1, we are led to similar results to those given in [29].

Example 2. Let f (z) = zp + zp+1, n = 1, ρ = 1
2 , and µ = q

2 . Then, S1
q,p f (z) = zp +

[2]qzp+1 = (1 + q)zp+1 + zp and S2
q,p f (z) = zp + [2]2qzp+1 = (1 + q)2zp+1 + zp.

By applying Theorem 2, we obtain

Re

(
S2

q,p f (z)
S1

q,p f (z)

)
= Re

(
(1 + q)2z + 1
(1 + q)z + 1

)
>

1
2

, z ∈ U ,

which induces √
((1 + q)z + 1)q ≺ 1√

1− z
, z ∈ U .

Theorem 3. Consider −1 ≤ Mi < Ni ≤ 1, i = 1, 2 and α < 1. If the function fi ∈ A(p)
satisfies the differential subordination

α
Sn+1

q,p fi(z)
zp + (1− α)

Sn
q,p fi(z)

zp ≺ Niz + 1
Miz + 1

, i = 1, 2, (5)

then

α
Sn+1

q,p ( f1 ∗ f2)(z)
zp + (1− α)

Sn
q,p( f1 ∗ f2)(z)

zp ≺ (1− 2µ)z + 1
z + 1

,

where ∗ represents the convolution product between f1 and f2and

µ = 1− 4(N1 −M1)(N2 −M2)

(1−M1)(1−M2)

1− 1
qα

∫ 1

0

u
1

qα

u(u + 1)
du

.

Proof. Considering hi(z) = α
Sn+1

q,p fi(z)
zp + (1− α)

Sn
q,p fi(z)

zp , we can write the differential sub-
ordination in Equation (5) as follows: Re(hi(z)) >

1−Ni
1−Mi

, where i = 1, 2.
By the proof of Theorem 1, we obtain

Sn
q,p fi(z) =

1
qα

∫ 1

0

hi(t)t
1

qα

t
dt, i = 1, 2,

and

Sn
q,p( f1 ∗ f2)(z) =

1
qα

z1− 1
qα

∫ 1

0

h0(t)t
1

αq

t
dt,

with

h0(z) = α
Sn+1

q,p ( f1 ∗ f2)(z)
zp + (1− α)

Sn
q,p( f1 ∗ f2)(z)

zp =

1
qα

z1− 1
qα

∫ 1

0

(h1 ∗ h2)(t)t
1

αq

t
dt.

Using Lemma 4, we find that h1 ∗ h2 is an analytic function in U of the form 1 + a1z +
a2z2 + ... that verifies the relation Re(h1 ∗ h2) > 1− 2

(
1− 1−N1

1−M1

)
(1− 1−N2

1−M2
) = ψ.
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By applying Lemma 5, we obtain

Re(h0(z)) =
1

qα

∫ 1

0

Re(h1 ∗ h2)(uz)u
1

qα

u
du ≥

1
qα

∫ 1

0

(
2ψ− 1 +

2(1− ψ)

u|z|+ 1

)
u

1
qα

u
du >

1
qα

∫ 1

0

(
2ψ− 1 +

2(1− ψ)

u + 1

)
u

1
qα

u
du =

1− 4(N1 −M1)(N2 −M2)

(1−M1)(1−M2)

1− 1
qα

∫ 1

0

u
1

qα

u(u + 1)
du

 = µ,

Thus, the proof is completed.

4. Conclusions

The study presented in this paper followed the line of research set by introducing q-
calculus in geometric function theory. The extended q-Sălăgean differential operator given
in Definition 1 was previously introduced by Hussain, Khan, Zaighum and Darus [25] and
was used mainly for defining and studying new classes of univalent functions. In this paper,
we obtained some interesting subordination results involving this operator. In Theorem 1, a
sharp subordination result is presented with a corollary obtained using a particular function.
An example follows those results. By taking special conditions for the real part of a relation
using the q-Sălăgean differential operator, in Theorem 2, the best dominant of a certain
differential subordination is obtained, and an associated example is presented. The last
theorem gives a property for the q-Sălăgean differential operator applied to a convolution
product of functions.

By following the same steps using the differential superordination theory, the dual
results could be obtained, and sandwich-type relations could emerge for the q-Sălăgean
differential operator as in [34] or [35]. In addition, the condition in Equation (2) from
Theorem 1 suggests that a new subclass of p-valent functions could be introduced using the
subordination theory. Future studies could be conducted in this regard, as seen in recent
papers [36,37].
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