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Abstract: Soft rgω-closed sets are introduced as a new class of soft sets that strictly contain the classes
of soft rg-closed sets and soft gω-closed sets. Furthermore, the behavior of soft rgω-closed sets with
respect to soft unions, soft intersections, and soft subspaces, as well as induced soft topologies are
investigated. Moreover, soft ω-T1/2 spaces which is a weaker form soft T1/2 spaces is defined and
investigated. In addition to these, the characterizations of soft rg-T1/2 spaces and soft rgω-T1/2 spaces
are discussed. The work also looks at the relationship between our novel notions in soft topological
spaces and their analogs in topological spaces.
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1. Introduction and Preliminaries

Classical mathematical theories fail to tackle complex problems with uncertain data
in a variety of fields, including engineering, the environment, economics, medical science,
social science, and others. Probability theories, fuzzy sets [1], rough sets [2], intuitionistic
fuzzy sets [3], and vague sets [4] are all considered mathematical tools for dealing with
uncertainty. According to Molodtsov [5], each of these structures has its own set of dif-
ficulties. These difficulties are mostly due to shortcomings in the parameterization tool
for theories. Molodtsov [5] defined soft sets to deal with uncertainty away from these
difficulties. Several researchers have presented and investigated the theory of soft sets
(see [6,7]). Soft sets were used in a range of applications by the authors [5,8], including
operation research, game theory, Riemann integration, Perron integration, smoothness of
function, probability, and measurement theory. In addition, the authors [9] used soft sets to
solve decision-making difficulties.

Several researchers have used soft set theory to study various mathematical structures.
Soft topology is one of the structures presented as a novel expansion of classical topology
by Shabir and Naz [10]. Many classical topological notions have been developed and
expanded in soft set contexts (see, [11–25]), but significant additions remain potential. Thus,
the study of soft topology is a current trend among topological researchers.

We expect that by defining a reasonable new class of soft sets in soft topological spaces,
we will pave the way for a lot of future research articles on the subject. Soft ω-open sets,
for example, were presented in [26] as a generalization of soft open sets in soft topological
spaces, and other related research articles, such as [14,24,25], have appeared. In this paper,
we will combine the classes of soft regular open sets and soft ω-closed sets to define soft
regular generalized ω-closed sets as a new class of sets that contains the classes of soft
regular closed sets and soft regular generalized ω-closed sets. We will also introduce
several results for some weaker forms of soft T1/2 spaces.

In Section 2, we introduce the notion of soft regular generalized ω-closed sets and
illustrate its relationships with each of the soft regular closed sets and soft regular general-
ized ω-closed sets as two well-known classes of soft sets. Additionally, we investigate the
main properties of this new class of soft sets.
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In Section 3, we introduce and investigate soft ω-T1/2 spaces, soft regular generalized
T1/2, and soft regular generalized ω-T1/2 as three new classes of STSs. We focus on
their characterizations.

In this paper, STS and TS will be used in this study to signify soft topological space and
topological space, respectively. We shall use the concepts and terminologies from [14,26,27]
throughout this paper.

Now, we shall recollect several notions that will be employed in the sequel.

Definition 1 ([28]). Let (Y, λ) be a TS, D ⊆ Y, and y ∈ Y. Then y is a condensation point of D
if for each U ∈ λ with y ∈ U, the set U ∩D is uncountable. D is called an ω-closed set in (Y, λ) if
it contains all its condensation points. D is called an ω-open set in (Y, λ) if Y− D is an ω-closed
set in (Y, λ). The collection of all ω-open sets in (Y, λ) is denoted by λω.

Definition 2. Let (Y, λ) be a TS and let V ⊆ Y. Then V is called

(a) Ref. [29] a generalized closed (briefly: g-closed) set in (Y, λ) if Clλ(V) ⊆ U whenever U ∈ λ
and V ⊆ U. The collection of all g-closed sets in (Y, λ) is denoted by GC(Y, λ).

(b) Ref. [29] a generalized open (briefly: g-open) set in (Y, λ) if Y − V ∈ GC(Y, λ). The
collection of all g-open sets in (Y, λ) is denoted by GO(Y, λ).

(c) Ref. [30] a generalized ω-closed (briefly: gω-closed) set in (Y, λ) if Clλω
(V) ⊆ U whenever

U ∈ λ and V ⊆ U. The collection of all gω-closed sets in (Y, λ) is denoted by GωC(Y, λ).
(d) Ref. [30] a generalized ω-open (briefly: gω-open) set in (Y, λ) if Y−V ∈ GωC(Y, λ). The

collection of all gω-open sets in (Y, λ) is denoted by GωO(Y, λ).
(e) Ref. [31] a regular open set in (Y, λ) if Intλ(Clλ(V)) = V. The collection of all regular open

sets in (Y, λ) is denoted by RO(Y, λ). Complements of regular open sets are called regular
closed sets. The collection of all regular closed sets in (Y, λ) is denoted by RC(Y, λ).

(f) Ref. [32] a regular generalized closed (briefly: rg-closed) set in (Y, λ) if Clλ(V) ⊆ U
whenever U ∈ RO(Y, λ) and V ⊆ U. The collection of all rg-closed sets in (Y, λ) is denoted
by RGC(Y, λ). Complements of rg-closed sets are called rg-open sets. The collection of all
rg-open sets in (Y, λ) is denoted by RGO(Y, λ).

(g) Ref. [33] a regular generalized ω-closed (briefly: rgω-closed) set in (Y, λ) if Clλω
(V) ⊆ U

whenever U ∈ RO(Y, λ) and V ⊆ U. The collection of all rgω-closed sets in (Y, λ) is
denoted by RGωC(Y, λ). Complements of rgω-closed sets are called rgω-open sets. The
collection of all rg-open sets in (Y, λ) is denoted by RGωO(Y, λ).

Definition 3. Let Y be a universal set and E be a set of parameters. Then G ∈ SS(Y, E) defined by

(a) Ref. [27] G(e) =
{

Z if e = b
∅ if e 6= b

is denoted by bZ.

(b) Ref. [27] G(e) = Z for every e ∈ E is denoted by CZ.

(c) Ref. [34] G(e) =
{
{y} if e = b
∅ if e 6= b

is denoted by by and is called a soft point.

The set of all soft points in SS(Y, B) is denoted SP(Y, B).

Definition 4 ([34]). Let H ∈ SS(Y, E) and by ∈ SP(Y, E). Then by is said to belong to H
(notation: by∈̃H) if by⊆̃H or equivalently: by∈̃H if and only if y ∈ H(b).

Theorem 1 ([5]). Let (Y, γ, A) be a STS. Then for each e ∈ E, the collection {H(e) : H ∈ γ}
defines a topology on Y. This topology is called an induced topology on Y and is denoted by γe.

Theorem 2 ([35]). For any TS (Y, λ) and any set of parameters E. The collection

{K ∈ SS(Y, E) : K(e) ∈ λ for each e ∈ E}

forms a soft topology on Y relative to E. This soft topology is denoted by τ(λ).
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Theorem 3 ([27]). For any collection of TSs {(Y, λe) : e ∈ E}, the family

{K ∈ SS(Y, E) : K(e) ∈ λe for all e ∈ E}

forms a soft topology on Y relative to E. This soft topology is denoted by ⊕
e∈E

λe.

Definition 5 ([27]). Let (Y, γ, E) be a STS and let K ∈ SS(Y, E). Then K is called a soft ω-open
set in (Y, γ, E) if for each ey∈̃K, there exist G ∈ γ and N ∈ CSS(Y, A) such that ey∈̃G− N⊆̃K.
The family of all soft ω-open set in (Y, γ, E) is denoted by γω.

Definition 6. Let (Y, γ, E) be a STS and let K ∈ SS(Y, E). Then K is called

(a) Ref. [36] a soft generalized closed (briefly: soft g-closed) set in (Y, γ, E) if Clγ(K)⊆̃H when-
ever H ∈ γ and K⊆̃H. The collection of all soft g-closed sets in (Y, γ, E) is denoted by
GC(Y, γ, E).

(b) Ref. [36] a soft generalized open (briefly: soft g-open) set in (Y, γ, E) if 1E−K ∈ GC(Y, γ, E).
The collection of all soft g-open sets in (Y, γ, E) is denoted by GO(Y, γ, E).

(c) Ref. [14] a soft generalized ω-closed (briefly: soft gω-closed) set in (Y, γ, E) if Clγω (K)⊆̃H
whenever H ∈ λ and K⊆̃H. The collection of all soft gω-closed sets in (Y, γ, E) is denoted by
GωC(Y, γ, E).

(d) Ref. [37] a soft regular open set in (Y, γ, E) if Intγ(Clγ(K)) = K. The collection of all soft
regular open sets in (Y, γ, E) is denoted by RO(Y, γ, E). Soft complements of soft regular
open sets are called soft regular closed sets. The collection of all soft regular closed sets in
(Y, γ, E) is denoted by RC(Y, γ, E).

(e) Ref. [37] a soft regular generalized closed (briefly: soft rg-closed) set in (Y, γ, E) if Clγ(K)⊆̃H
whenever H ∈ RO(Y, γ, E) and K⊆̃H. The collection of all soft rg-closed sets in (Y, γ, E)
is denoted by RGC(Y, γ, E). Complements of rg-closed sets are called rg-open sets. The
collection of all rg-open sets in (Y, γ, E) is denoted by RGO(Y, γ, E).

2. Soft Regular Generalized ω-Closed Sets

Definition 7. A soft subset H of a STS (Y, γ, A) is called a soft regular generalized ω-closed set
(simply: soft rgω-closed) in (Y, γ, A) if Clγω (H)⊆̃K whenever K ∈ RO(Y, γ, A) and H⊆̃K. The
collection of all soft rgω-closed sets in (Y, γ, A) will be denoted by RGωC(Y, γ, A).

Theorem 4. For any STS (Y, γ, A), RGC(Y, γ, A) ⊆ RGωC(Y, γ, A).

Proof. Let K ∈ RGC(Y, γ, A) and let H ∈ RO(Y, γ, A) such that K⊆̃H. Then Clγ(K)⊆̃H
and thus, Clγω (K)⊆̃Clγ(K)⊆̃H. Hence, K ∈ RGωC(Y, γ, A).

The following example shows that RGC(Y, γ, A) 6= RGωC(Y, γ, A), in general:

Example 1. Let Y = {1, 2, 3, 4}, A = {a}, and

γ = {T ∈ SS(Y, A): T(a) ∈ {∅, Y, {1}, {2}, {1, 2}, {1, 2, 3}}}.

Then RO(Y, γ, A) = {T ∈ SS(Y, A): T(a) ∈ {∅, Y, {1}, {2}}}. Let K ∈ SS(Y, A) with
T(a) = {1}. Then Clγω (K) = K and (Clγ(K))(a) = {1, 2, 3}. Since K ∈ RO(Y, γ, A) and
K⊆̃K while (Clγ(K))(a) = {1, 2, 3} * K(a) = {1}, then K /∈ RGC(Y, γ, A). To show that
K ∈ RGωC(Y, γ, A), let H ∈ RO(Y, γ, A) such that K⊆̃H. Then either H = K or H(a) = Y.
In both cases we must have Clγω (K) = K⊆̃H. Hence, K ∈ RGωC(Y, γ, A)− RGC(Y, γ, A).

Theorem 5. For any soft anti-locally countable STS (Y, γ, A), RGC(Y, γ, A) = RGωC(Y, γ, A).

Proof. Let (Y, γ, A) be soft anti-locally countable. Then according to Theorem 4 we have
RGC(Y, γ, A) ⊆ RGωC(Y, γ, A). To show that RGωC(Y, γ, A) ⊆ RGC(Y, γ, A), let K ∈
RGωC(Y, γ, A) and let H ∈ RO(Y, γ, A) such that K⊆̃H. Then Clγω (K)⊆̃H. On the other
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hand, according to Theorem 14 of [26], Clγ(K) = Clγω (K). Therefore, Clγ(K)⊆̃H. Hence,
K ∈ RGωC(Y, γ, A).

Theorem 6. For any STS (Y, γ, A), GωC(Y, γ, A) ⊆ RGωC(Y, γ, A).

Proof. Let K ∈ GωC(Y, γ, A) and let H ∈ RO(Y, γ, A) ⊆ γ such that K⊆̃H. Since
RO(Y, γ, A) ⊆ γ, then H ∈ γ and so Clγω (K)⊆̃H. Therefore, K ∈ RGωC(Y, γ, A).

The following example shows that GωC(Y, γ, A) 6= RGωC(Y, γ, A), in general:

Example 2. Let Y = R, A = {a}, K ∈ SS(Y, A) such that K(a) = R − Q, and γ =
{0A, 1A, K}. Since Intγ(Clγ(K)) = Intγ(1A) = 1A, then RO(Y, γ, A) = {0A, 1A}. To
show that K ∈ RGωC(Y, γ, A), let H ∈ RO(Y, γ, A) such that K⊆̃H, then H = 1A and
so Clγω (K)⊆̃H. On the other hand, since K ∈ γ and K⊆̃K but Clγω (K) = 1A*̃K, then
K /∈ GωC(Y, γ, A).

Theorem 7. For any STS (Y, γ, A), (γω)
c ⊆ RGωC(Y, γ, A).

Proof. Let K ∈ (γω)
c and let H ∈ RO(Y, γ, A) such that K⊆̃H. Since K ∈ (γω)

c, then
Clγω (K) = K⊆̃H. Hence, K ∈ RGωC(Y, γ, A).

The following example will show that (γω)
c 6= RGωC(Y, γ, A), in general:

Example 3. Let Y = R, A = {a}, µ be the usual topology
on R, and µ = {S ∈ SS(Y, A): S(a) ∈ µ}. Then C[1,∞) ∈ RGωC(Y, γ, A)− (γω)

c.

Theorem 8. Let (Y, γ, A) be soft locally countable. Then RGωC(Y, γ, A) = SS(Y, A).

Proof. Follows from Theorem 6 and Theorem 4 of [14].

The following question is natural:

Question 1. Let (Y, γ, A) be a STS. Is it true that RGC(Y, γω, A) ⊆ RGC(Y, γ, A)?

The following example provides a negative response to Question 1:

Example 4. Let Y = R, A = {a}, µ be the usual topology on R, and
γ = {S ∈ SS(Y, A) : S(a) ∈ µ}. Let K = CQ∩(2,∞). Since K ∈ CSS(Y, A), then by Theorem 2
(d) of [26], K ∈ (γω)

c, and so Clγω (K) = K. Thus, for every H ∈ RO(Y, γω , A) such that K⊆̃H,
we have Clγω (K) = K⊆̃H. Hence, K ∈ RGC(Y, γω, A). Now, since K⊆̃C(2,∞) ∈ RO(Y, γ, A)

but Clγ(K) = C[2,∞) *̃C(2,∞), then K /∈ RGC(Y, γ, A).

Theorem 9. Let (Y, γ, A) be a STS. If K ∈ RGωC(Y, γ, A), then the only soft regular closed set
in (Y, γ, A) which is soft contained in Clγω (K)− K is 0A.

Proof. Let K ∈ RGωC(Y, γ, A) and T be a soft regular closed set in (Y, γ, A) such that
T⊆̃Clγω (K) − K. Then T⊆̃Clγω (K) and K⊆̃1A − T ∈ RO(Y, γ, A).
Since K ∈ RGωC(Y, γ, A) and K⊆̃1A − T ∈ RO(Y, γ, A), then Clγω (K)⊆̃1A − T, and
thus Clγω (K)∩̃T = 0A. On the other hand, since T⊆̃Clγω (K), then Clγω (K)∩̃T = T. It
follows that T = 0A.

Question 2. Let (Y, γ, A) be a STS and let K ∈ SS(Y, A) such that the only soft regular closed set
in (Y, γ, A) which is soft contained in Clγω (K)− K is 0A. Is it true that K ∈ RGωC(Y, γ, A)?

Theorem 10. Let (Y, γ, A) be a STS. If K ∈ RGωC(Y, γ, A) and S ∈ SS(Y, A) such that
K⊆̃S⊆̃Clγω (K), then S ∈ RGωC(Y, γ, A).
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Proof. Let K ∈ RGωC(Y, γ, A) and S ∈ SS(Y, A) such that K⊆̃S⊆̃Clγω (K). Let H ∈
RO(Y, γ, A) such that S⊆̃H. Since K⊆̃S, then K⊆̃H. Since K ∈ RGωC(Y, γ, A), then
Clγω (K)⊆̃H. Since K⊆̃S⊆̃Clγω (K), then Clγω (K)⊆̃Clγω (S)⊆̃Clγω (Clγω (K)) = Clγω (K)
and thus Clγω (K) = Clγω (S). Therefore, Clγω (S)⊆̃H. Hence, S ∈ RGωC(Y, γ, A).

Theorem 11. Let (Y, γ, A) be a STS and let K, S ∈ RGωC(Y, γ, A).
Then K∪̃S ∈ RGωC(Y, γ, A).

Proof. Let K, S ∈ RGωC(Y, γ, A). Let H ∈ RO(Y, γ, A) such that K∪̃S⊆̃H. Then K⊆̃H
and S⊆̃H. So, Clγω (K)⊆̃H and Clγω (S)⊆̃H. Thus, Clγω (K)∪̃Clγω (S) = Clγω (K∪̃S)⊆̃H.
Hence, K∪̃S ∈ RGωC(Y, γ, A).

For a STS (Y, γ, A), RGωC(Y, γ, A) is not closed under arbitrary soft union:

Example 5. Let Y = R, A = {a}, µ be the usual topology on R,
and γ = {S ∈ SS(Y, A) : S(a) ∈ µ}. For each n ∈ N, let Kn = C[ 1

n+1 ,1]. Then {Kn : n ∈ N} ⊆
RGωC(Y, γ, A) and ∪̃{Kn : n ∈ N} = C(0,1]. Since C(0,2) ∈ RO(Y, γ, A) such that C(0,1]⊆̃C(0,2)

while Clγω (C(0,1]) = C[0,1]*̃C(0,1], then C(0,1] /∈ RGωC(Y, γ, A).

Theorem 12. Let (Y, γ, A) be a STS and let {Kt : t ∈ I} be soft locally finite in (Y, γ, A) such
that {Kt : t ∈ I} ⊆ RGωC(Y, γ, A). ∪̃{Kt : t ∈ I}∈RGωC(Y, γ, A).

Proof. Let H ∈ RO(Y, γ, A)with ∪̃{Kt : t ∈ I}⊆̃H. Then for each t ∈ I, Kt⊆̃H ∈ RO(Y, γ, A),
and so Clγω (Kt)⊆̃H. Since {Kt : t ∈ I} is soft locally finite in (Y, γ, A), then by Lemma 3.5 of [24],
Clγω

(
∪̃{Kt : t ∈ I}

)
= ∪̃{Clγω (Kt) : t ∈ I}⊆̃K. Hence, ∪̃{Kt : t ∈ I}∈RGωC(Y, γ, A).

For a given STS (Y, γ, A), the following example shows that RGωC(Y, γ, A) is not
closed under finite soft intersection:

Example 6. Let B = (0, 2), C = (2, 4), D = (4, 6), E = (6, 8), Y = B ∪ C ∪ D ∪ E, A =
{a}, and γ = {S ∈ SS(Y, A) : S(a) ∈ {∅, Y, B, C, B ∪ C, B ∪ C ∪ D}}. Then RO(Y, γ, A) =
{S ∈ SS(Y, A) : S(a) ∈ {∅, Y, C, D }}. Let K, T ∈ SS(Y, A) such that K(a) = B ∪ {3} and
T(a) = B ∪ {5}. If H ∈ RO(Y, γ, A) such that K⊆̃H, then H = 1A and Clγω (K)⊆̃H. Thus,
K ∈ RGωC(Y, γ, A). Similarly, we can see that T ∈ RGωC(Y, γ, A). Since (K ∩ T)(a) = A,
then K ∩ T ∈ RO(Y, γ, A) and (Clγω (K ∩ T))(a) = (Clγ(K ∩ T))(a) = B ∪ D ∪ E. Since
K ∩ T⊆̃K ∩ T ∈ RO(Y, γ, A) but Clγω (K ∩ T)*̃K ∩ T, then K ∩ T /∈ RGωC(Y, γ, A).

Theorem 13. Let (Y, γ, A) be a STS and let Z be a non-empty subset of Y. Let K ∈ SS(Z, A)∩ γ.
If K ∈ RGωC(Y, γ, A), then K ∈ RGωC(Z, γZ, A).

Proof. Let K ∈ RGωC(Y, γ, A) and let H ∈ RO(Z, γZ, A) such that K⊆̃H. Choose S ∈
RO(Y, γ, A) such that H = S∩̃CZ. Since K ∈ RGωC(Y, γ, A) and K⊆̃S ∈ RO(Y, γ, A),
then Clγω (K)⊆̃S, and so Cl(γω)Z

(K) = Clγω (K)∩̃CZ⊆̃S∩̃CZ = H. On the other hand,
by Theorem 15 of [26], Cl(γω)Z

(K) = Cl(γZ)ω
(K) and thus, Cl(γZ)ω

(K)⊆̃H. Hence, K ∈
RGωC(Z, γZ, A).

Theorem 14. Let (Y, γ, A) be a STS and let Z be a non-empty subset of Y such that CZ ∈ (γω)
c.

Let K ∈ SS(Z, A). If K ∈ RGωC(Z, γZ, A), then K ∈ RGωC(Y, γ, A).

Proof. Let K ∈ RGωC(Z, γZ, A) and let H ∈ RO(Y, γ, A) such that K⊆̃H. Then K⊆̃H∩̃CZ ∈
RO(Z, γZ, A). Since K ∈ RGωC(Z, γZ, A), then Cl(γZ)ω

(K)⊆̃H∩̃CZ. Since by Theorem 15
of [26] we have Cl(γω)Z

(K) = Cl(γZ)ω
(K), then Cl(γω)Z

(K) = Clγω (K)∩̃CZ⊆̃H∩̃CZ. Also,

Clγω (K) = Clγω (K∩̃CZ)⊆̃Clγω (K)∩̃Clγω (CZ) = Clγω (K)∩̃CZ⊆̃H∩̃CZ⊆̃H.
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Therefore, K ∈ RGωC(Y, γ, A).
The following are natural questions:

Question 3. Let (Y, γ, A) be a STS and let K ∈ RGC(Y, γ, A). Is it true that K(a) ∈ RGC(Y, γa)
for each a ∈ A?

Question 4. Let (Y, γ, A) be a STS and let K ∈ RGωC(Y, γ, A). Is it true that K(a) ∈
RGωC(Y, γa) for each a ∈ A?

The next four results give partial answers of these two questions:

Theorem 15. Let {(Y, µa) : a ∈ A} be an indexed family of TSs. Let K ∈ SS(Y, A). Then
K ∈ RGC(Y,⊕a∈Aµa, A) if and only if K(e) ∈ RGC(Y, µa) for all a ∈ A.

Proof. Necessity. Let K ∈ RGC(Y,⊕a∈Aµa, A) and let b ∈ A. Let O ∈ RO(Z, µb) such
that K(b) ⊆ O. Let H ∈ SS(Y, A) defined by H(b) = O and H(a) = Z if e 6= b. Since
H(e) ∈ RO(Y, µa) for every a ∈ A, then by Proposition 3.28 of [38], H ∈ RO(Y,⊕a∈Aµa, A).
Since K ∈ RGC(Y,⊕a∈Aµa, A) and K⊆̃H ∈ RO(Y,⊕a∈Aµa, A), then Cl⊕a∈Aµa(K)⊆̃H and
so
(
Cl⊕a∈Aµa(K)

)
(b)⊆̃H(b) = O. On the other hand, by Lemma 4.9 of [25], Clµb(K(b)) =(

Cl⊕a∈Aµa(K)
)
(b). This ends the proof.

Sufficiency. Let K(e) ∈ RGC(Y, µa) for all a ∈ A. Let H ∈ RO(Y,⊕a∈Aµa, A) such
that K⊆̃H. Then for every a ∈ A, K(a) ⊆ H(a). Also, by Proposition 3.28 of [38],
H(a) ∈ RO(Y, µa) for all a ∈ A. So, Clµa(K(a)) ⊆ H(a) for all a ∈ A. Thus, by
Lemma 4.9 of [25],

(
Cl⊕a∈Aµa(K)

)
(e) ⊆ H(a) for all a ∈ A. Hence, Cl⊕a∈Aµa(K)⊆̃H. There-

fore, K ∈ RGC(Y,⊕a∈Aµa, A).

Corollary 1. Let (Y, µ) be a TS and E be any set of parameters. Let K ∈ SS(Y, A). Then
K ∈ RGC(Z, τ(µ), E) if and only if K(e) ∈ RGC(Z, µ) for all a ∈ A.

Proof. For each a ∈ A, put µa = µ. Then τ(µ) = ⊕a∈Aµa. Thus, by Theorem 15, we get the
result.

Theorem 16. Let {(Y, µ) : a ∈ A} be an indexed family of TSs. Let K ∈ SS(Y, A). Then
K ∈ RGωC(Y,⊕a∈Aµa, A) if and only if K(e) ∈ RGωC(Y, µa) for all a ∈ A.

Proof. Necessity. Let K ∈ RGωC(Y,⊕a∈Aµa, A) and let b ∈ A. Let O ∈ RO(Y, µb) such that
K(b) ⊆ O. Let H ∈ SS(Y, A) defined by H(b) = O and H(a) = Y if a 6= b. Since H(a) ∈
RO(Y, µa) for every a ∈ A, then by Proposition 3.28 of [38], H ∈ RO(Y,⊕a∈Aµa, A). Since
K ∈ RGωC(Y,⊕a∈Aµa, A) and K⊆̃H ∈ RO(Y,⊕a∈Aµa, A), then Cl(⊕a∈Aµa)ω

(K)⊆̃H and so(
Cl(⊕a∈Aµa)ω

(K)
)
(b)⊆̃H(b) = O. On the other hand, by Lemma 4.7 of [25], Cl(µb)ω

(K(b)) =(
Cl(⊕a∈Aµa)ω

(K)
)
(b). This shows that K(b) ∈ RGωC(Y, µb).

Sufficiency. Let K(a) ∈ RGC(Y, µa) for all a ∈ A. Let H ∈ RO(Y,⊕a∈Aµa, A) such
that K⊆̃H. Then for every a ∈ A, K(a) ⊆ H(a). Also, by Proposition 3.28 of [38], H(a) ∈
RO(Y, µa) for all a ∈ A. So, Cl(µa)ω

(K(a)) ⊆ H(a) for all a ∈ A. Thus, by Lemma 4.7

of [25],
(

Cl(⊕a∈Aµa)ω
(K)
)
(a) ⊆ H(a) for all a ∈ A. Hence, Cl(⊕a∈Aµa)ω

(K)⊆̃H. Therefore,
K ∈ RGC(Y,⊕a∈Aµa, A).

Corollary 2. Let (Y, µ) be a TS and A be any set of parameters. Let K ∈ SS(Y, A). Then
K ∈ RGωC(Y, τ(µ), A) if and only if K(a) ∈ RGωC(Y, µ) for all a ∈ A.
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Proof. For each a ∈ A, put µa = µ. Then τ(µ) = ⊕a∈Aµa. Thus, by Theorem 16, we get
the result.

Definition 8. Let (Y, γ, A) be a STS and let K ∈ SS(Y, A). Then K is called a soft regular
generalized ω-open (simply: soft rgω-open) set in (Y, γ, A) if 1A − K ∈ RGωC(Y, γ, A). The
family of all soft rgω-open sets in (Y, γ, A) will be denoted by RGωO(Y, γ, A).

Theorem 17. Let (Y, γ, A) be a STS and let K ∈ SS(Y, A). Then K ∈ RGωO(Y, γ, A) if and
only if H⊆̃Intγω (K) whenever H ∈ RC(Y, γ, A) such that H⊆̃K.

Proof. Necessity. Suppose that K ∈ RGωO(Y, γ, A) and let H ∈ RC(Y, γ, A) such that
H⊆̃K. Then 1A − K ∈ RGωC(Y, γ, A), 1A − H ∈ RO(Y, γ, A), and 1A − K⊆̃1A − H. So,
Clγω (1A − K)⊆̃1A−H. But Clγω (1A − K) = 1A− Intγω (K). Thus, 1A− Intγω (K)⊆̃1A−H
and hence H⊆̃Intγω (K).

Sufficiency. Suppose that H⊆̃Intγω (K) whenever H ∈ RC(Y, γ, A) such that H⊆̃K.
We will show that 1A − K ∈ RGωC(Y, γ, A). Let S ∈ RO(Y, γ, A) such that 1A − K⊆̃S.
Then we have 1A − S ∈ RC(Y, γ, A) such that 1A − S⊆̃K. Thus, 1A − S⊆̃Intγω (K) and
hence 1A − Intγω (K)⊆̃S. But 1A − Intγω (K) = Clγω (1A − K). It follows that 1A − K ∈
RGωC(Y, γ, A).

Theorem 18. Let (Y, γ, A) be a STS and let K, S ∈ RGωO(Y, γ, A). Then K∩̃S ∈ RGωO(Y, γ, A).

Proof. Let K, S ∈ RGωO(Y, γ, A). Then 1A − K, 1A − S ∈ RGωC(Y, γ, A). So by
Theorem 11, (1A − K)∪̃(1A − S) = 1A −

(
K∩̃S

)
∈ RGωC(Y, γ, A). Hence,

(
K∩̃S

)
∈

RGωO(Y, γ, A).

For a STS (Y, γ, A), RGωO(Y, γ, A) is not closed under arbitrary soft intersection:

Example 7. Let Y = R, A = {a}, µ be the usual topology onR, and γ = {S ∈ SS(Y, A) : S(a) ∈ µ}.
For each n ∈ N, let Kn = 1A − C[ 1

n+1 ,1]. Then {Kn : n ∈ N} ⊆ RGωO(Y, γ, A) and

∩̃{Kn : n ∈ N} = 1A − C(0,1]. Since by Example 5, C(0,1] /∈ RGωC(Y, γ, A), then 1A − C(0,1] /∈
RGωO(Y, γ, A).

Theorem 19. Let (Y, γ, A) be a STS and let {Kt : t ∈ I} ⊆ RGωO(Y, γ, A) such that
{1A − Kt : t ∈ I} is soft locally finite in (Y, γ, A), then ∩̃{Kt : t ∈ I}∈RGωO(Y, γ, A).

Proof. Since {Kt : t ∈ I} ⊆ RGωO(Y, γ, A), then {1A − Kt : t ∈ I} ⊆ RGωC(Y, γ, A).
Then by Theorem 12, ∪̃{1A − Kt : t ∈ I}∈RGωC(Y, γ, A). But ∪̃{1A − Kt : t ∈ I} = 1A−
∩̃{Kt : t ∈ I}. It follows that ∩̃{Kt : t ∈ I}∈RGωO(Y, γ, A).

For a given STS (Y, γ, A), the following example shows that RGωO(Y, γ, A) is not
closed under finite soft union:

Example 8. Let B = (0, 2), C = (2, 4), D = (4, 6), E = (6, 8), Y = B ∪ C ∪ D ∪ E, A = {a},
and γ = {S ∈ SS(Y, A) : S(a) ∈ {∅, Y, B, C, B ∪ C, B ∪ C ∪ D}}. Let K, T ∈ SS(Y, A) such
that K(a) = B ∪ {3} and T(a) = B ∪ {5}. Since by Example 6, K, T ∈ RGωC(Y, γ, A) but
K∩̃T /∈ RGωC(Y, γ, A), then 1A − K, 1A − T ∈ RGωO(Y, γ, A) but (1A − K)∪̃(1A − T) =
1A −

(
K∩̃T

)
/∈ RGωO(Y, γ, A).

Theorem 20. Let (Y, γ, A) be a STS. If K, T ∈ γ ∩ RGωO(Y, γ, A) such that the pair (K, T) is
soft separation relative to (Y, γ, A), then K∪̃T ∈ RGωO(Y, γ, A).

Proof. Let H ∈ RC(Y, γ, A) such that H⊆̃K∪̃T. Then
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H∩̃Clγ(K) ⊆̃
(
K∪̃T

)
∩̃Clγ(K)

=
(
K∩̃Clγ(K)

)
∪̃
(
T∩̃Clγ(K)

)
= K∪̃0A
= K

and
H∩̃Clγ(T) ⊆̃

(
K∪̃T

)
∩̃Clγ(T)

=
(
T∩̃Clγ(T)

)
∪̃
(
K∩̃Clγ(T)

)
= T∪̃0A
= T.

So, by Theorem 17, we have H∩̃Clγ(K)⊆̃Intγω (K) and H∩̃Clγ(T)⊆̃Intγω (T). Now,
H = H∩̃

(
K∪̃T

)
=

(
H∩̃Clγ(K)

)
∪̃
(

H∩̃Clγ(T)
)

⊆̃ Intγω (K)∪̃Intγω (T)
⊆̃ Intγω (K∪̃T).

Thus, by Theorem 17, K∪̃T ∈ RGωO(Y, γ, A).

Theorem 21. Let (Y, γ, A) be a STS and let K ∈ RGωO(Y, γ, A) and H ∈ RO(Y, γ, A). If
Intγω (K)∪̃(1A − K)⊆̃H, then H = 1A.

Proof. Suppose that K ∈ RGωO(Y, γ, A) and H ∈ RO(Y, γ, A) such that
Intγω (K)∪̃(1A − K)⊆̃H. Then 1A − H⊆̃(1A − Intγω (K))∩̃K = K − Intγω (K). Since 1A −
H ∈ RC(Y, γ, A), then by Theorem 9, 1A − H = 0A. Hence, H = 1A.

3. Separation Axioms

Definition 9. A TS (Y, µ) is called ω-T1/2 if GωC(Y, µ) ⊆ (µω)
c.

Example 9. Let Y = R and µ = {∅,R}. Since R− {0} ∈ GωC(Y, µ)− (µω)
c, then (Y, µ) is

not ω-T1/2.

Theorem 22. A TS (Y, µ) is ω-T1/2 if and only if for each y ∈ Y, {y} ∈ µω ∪µc.

Proof. Necessity. Let (Y, µ) be ω-T1/2 and let y ∈ Y. Suppose that {y} /∈ µc. Then
Y − {y} /∈ µ. We are going to show that Y − {y} ∈ GC(Y, µ). Let U ∈ µ such that
Y − {y} ⊆ U. Then either U = Y − {y} or U = Y. Since Y − {y} /∈ µ, then U = Y and
thus Clµ(Y− {y}) ⊆ U = Y. Therefore, Y− {y} ∈ GC(Y, µ) ⊆ GωC(Y, µ). Since (Y, µ) is
ω-T1/2, then Y− {y} ∈ (µω)

c. Hence, {y} ∈ µω.
Sufficiency. Let {y} ∈ µω ∪µc for every y ∈ Y. Suppose to the contrary that there

exists V ∈ GωC(Y, µ)− (µω)
c. Then V ∈ GωC(Y, µ) and there exists y ∈ Clµω (V)− V.

By assumption, {y} ∈ µω ∪µc. If {y} ∈ µω, then {y} ∩ V 6= ∅ and thus y ∈ V. But y /∈
V. Thus, we must have {y} ∈ µc and hence Y− {y} ∈ µ. Since y /∈ V, then V ⊆ Y− {y}.
Since V ∈ GωC(Y, µ), then Clµω (V) ⊆ Y− {y}. But y ∈ Clµω (V), a contradiction.

Theorem 23. Every locally countable TS is ω-T1/2.

Proof. Let (Y, µ) be locally countable. Then by Corollary 2.4 of [39], (Y, µ) is a discrete
TS and thus {y} ∈ µω ⊆ {y} ∈ µω ∪µc for every y ∈ Y. Thus, by Theorem 22, (Y, µ) is
ω-T1/2.

The following example demonstrates that the contrary of Theorem 23 does not have to
be true in general:

Example 10. Let Y = R and µ be the topology onR having {U ⊆ R−N : (R−N)−U is finite}∪
{N} as a base. It is clear that (Y, µ) is not locally countable. To see that (Y, µ) is ω-T1/2. Let y ∈ Y. If
y ∈ N, then we have N ∈ µ with y ∈ N and N− {y} is a countable set, and hence {y} ∈ µω ⊆ µω
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∪µc. If y ∈ R− N, then R− {y} = ((R−N)− {y}) ∪ N with ((R−N)− {y}) ∈ µ and
N ∈ µ, and so R− {y} ∈ µ, hence, {y} ∈ µc ⊆ µω ∪µc. Thus, by Theorem 22, (Y, µ) is ω-T1/2.

Theorem 24. Every T1/2 TS is ω-T1/2.

Proof. Suppose that (Y, µ) is T1/2 and let y ∈ Y, then by Theorem 2.5 of [39], {y} ∈ µ
∪µc ⊆ µω ∪µc. Therefore, by Theorem 22, (Y, µ) is ω-T1/2.

Example 11. Let (Y, µ) be as in Example 10. We proved that (Y, µ) is ω-T1/2. It is clear that
{1} /∈ µ. If R− {1} ∈ µ, then there exists U ∈ µ such that 2 ∈ U ⊆ R− {1}. Thus,
N ⊆ U ⊆ R− {1} which is impossible. Hence, R− {1} /∈ µ. It follows that {1} /∈ µ ∪µc and so
(Y, µ) is not T1/2.

Theorem 25. For a locally countable TS (Y, µ), the following are equivalent:

(a) (Y, µ) is T1.
(b) (Y, µ) is T1/2.
(c) (Y, µ) is ω-T1/2.

Proof. (a) =⇒ (b): Obvious.
(b) =⇒ (c): Follows from Theorem 24.
(c) =⇒ (a): Follows from Definition 3.1 and Corollary 2.4 of [39].

Theorem 26. Let (Y, µ) be a TS and let Z be a non-empty subset of Y. If (Y, µ) is ω-T1/2, then
(Z, µZ) is ω-T1/2.

Proof. Suppose that (Y, µ) is ω-T1/2. Let z ∈ Z. Since (Y, µ) is ω-T1/2, then {z} ∈ µω ∪µc.
Thus, {z} ∈ (µω)Z ∪(µZ)

c. But by Theorem 15 of [26], (µω)Z = (µZ)ω. It follows that
(Z, µZ) is ω-T1/2.

Definition 10. A STS (Y, γ, A) is called soft ω-T1/2 if GωC(Y, γ, A) ⊆ (γω)
c.

Theorem 27. A STS (Y, γ, A) is soft ω-T1/2 if and only if for each ay ∈ SP(Y, A), ay ∈ γω ∪ γc.

Proof. Necessity. Let (Y, γ, A) be soft ω-T1/2. Let ay ∈ SP(Y, A). Suppose that ay /∈ γc.
Then 1A − ay /∈ γ. Now we will show that 1A − ay ∈ GωC(Y, γ, A). Let T ∈ γ such that
1A − ay⊆̃T. Since 1A − ay /∈ γ, then T = 1A and thus Clγω

(
1A − ay

)
⊆̃T = 1A. Hence,

1A − ay ∈ GωC(Y, γ, A). Since (Y, γ, A) is soft ω-T1/2, then 1A − ay ∈ (γω)
c. Therefore,

ay ∈ γω.
Sufficiency. Let ay ∈ γω ∪ γc for every ay ∈ SP(Y, A). Suppose to the contrary

that there exists K ∈ GωC(Y, γ, A) − (γω)
c. Then K ∈ GωC(Y, γ, A) and there exists

ay∈̃Clµω (K)− K. By assumption, ay ∈ γω ∪ γc. If ay ∈ γω , then ay∩̃K 6= 0A and thus ay∈̃K.
But ay /̃∈K. Thus, we must have ay ∈ γc and hence 1A− ay ∈ γ. Since ay /̃∈K, then K⊆̃1A− ay.
Since K ∈ GωC(Y, γ, A), then Clµω (K)⊆̃1A − ay. But ay∈̃Clµω (K), a contradiction.

Theorem 28. If (Y, γ, A) is a soft ω-T1/2 STS, then (Y, γa) is ω-T1/2 for every a ∈ A.

Proof. Let (Y, γ, A) be soft ω-T1/2 and let a ∈ A. Let y ∈ Y. Since (Y, γ, A) is soft ω-T1/2,
then by Theorem 27, ay ∈ γω ∪ γc, and so {y} ∈ (γω)a ∪ (γa)

c. But by Theorem 7 of [26],
(γω)a = (γa)ω. Hence, by Theorem 22, (Y, γa) is ω-T1/2.

Theorem 29. Let {(Y, µa) : a ∈ A} be an indexed family of TSs. Then (Y,⊕a∈Aµa, A) is soft
ω-T1/2 if and only if (Y, µ) is ω-T1/2 for every a ∈ A.
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Proof. Necessity. Let (Y,⊕a∈Aµa, A) be soft ω-T1/2 and let a ∈ A. Then by Theorem 28,
(Z, (⊕a∈Aµa)a) is ω-T1/2. Also, by Theorem 3.7 of [27], (⊕a∈Aµa)a = µa. Therefore, (Y, µ)
is ω-T1/2.

Sufficiency. Let (Y, µ) be ω-T1/2 for every a ∈ A. Let az ∈ SP(Y, A). Since (Y, µ) is
ω-T1/2, then by Theorem 22, {y} ∈ (µa)ω ∪ µc. Thus, ay ∈ (⊕a∈A(µa)ω) ∪ (⊕a∈Aµa)

c. But
by Theorem 8 of [26], (⊕a∈A(µa)ω) = (⊕a∈Aµa)ω

. Hence, by Theorem 27, (Y,⊕a∈Aµa, A)
is soft ω-T1/2.

Theorem 30. Let (Y, µ) be a TS and A be any set of parameters. Then (Y, τ(µ), A) is soft ω-T1/2
if and only if (Y, µ) is ω-T1/2.

Proof. For every a ∈ A, let µa = µ. Then τ(µ) = ⊕a∈Aµa. This, by Theorem 29 we get the
result.

Theorem 31. Every soft T1/2 STS is soft ω-T1/2.

Proof. Follows from Definition 3.10 and Theorem 28 of [14].

Example 11 of [14] shows that Theorem 31 is not reversible, in general.

Theorem 32. For a soft anti-locally countable STS (Y, γ, A), the following are equivalent:

(a) (Y, γ, A) is soft T1.
(b) (Y, γ, A) is soft T1/2.
(c) (Y, γ, A) is soft ω-T1/2.

Proof. (a) =⇒ (b): Obvious.
(b) =⇒ (c): Follows from Theorem 31.
(c) =⇒ (a): Follows from Definition 10 of this paper and Theorem 29 of [14].

Theorem 33. Let (Y, γ, A) be a STS and let Z be a non-empty subset of Y. If (Y, γ, A) is soft
ω-T1/2, then (Z, γZ, A) is soft ω-T1/2.

Proof. Suppose that (Y, γ, A) is soft ω-T1/2. Let az ∈ SP(Z, A). Then az ∈ SP(Y, A). Since
(Y, γ, A) is soft ω-T1/2, then by Theorem 3.11, az ∈ γω ∪ γc. Thus, az ∈ (γω)Z ∪ (γZ)

c.
But by Theorem 15 of [26], (γω)Z = (γZ)ω. Hence, by Theorem 27, (Z, γZ, A) is soft
ω-T1/2.

Theorem 34. Every soft locally countable STS is soft ω-T1/2.

Proof. Let (Y, γ, A) be soft locally countable. Then by Corollary 5 of [26], (Y, γω, A) is a
discrete STS and so ay ∈ γω ⊆ γω ∪ γc for every ay ∈ SP(Y, A). Thus, by Theorem 27,
(Y, γ, A) is soft ω-T1/2.

The converse of Theorem 34 need not be true, in general:

Example 12. Let (Y, µ) be as in Example 10. Consider the STS (Y, τ(µ), A). Then clearly that
(Y, τ(µ), A) is not soft locally countable. On the other hand, since (Y, µ) is ω-T1/2, then by
Theorem 30, (Y, τ(µ), A) is soft ω-T1/2.

Definition 11. A STS (Y, γ, A) is called soft regular generalized T1/2 (simply rg-T1/2) if RGC
(Y, γ, A) ⊆ γc.

Theorem 35. A STS (Y, γ, A) is soft rg-T1/2 if and only if for each ay ∈ SP(Y, A), ay ∈
γ ∪ RC(Y, γ, A).
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Proof. Necessity. Let (Y, γ, A) be soft rg-T1/2. Let ay ∈ SP(Y, A). Suppose that ay /∈
RC(Y, γ, A). Then 1A− ay /∈ RO(Y, γ, A). Now we will show that 1A− ay ∈ RGC(Y, γ, A).
Let T ∈ RO(Y, γ, A) such that 1A − ay⊆̃T. Since 1A − ay /∈ RO(Y, γ, A), then T = 1A and
thus Clγ

(
1A − ay

)
⊆̃T = 1A. Hence, 1A − ay ∈ RGC(Y, γ, A). Since (Y, γ, A) is soft rg-T1/2,

then 1A − ay ∈ γc. Therefore, ay ∈ γ.
Sufficiency. Let ay ∈ γ ∪ RC(Y, γ, A) for every ay ∈ SP(Y, A). Suppose to the contrary

that there exists K ∈ R(Y, γ, A)− γc. Then K ∈ RGC(Y, γ, A) and there exists ay∈̃Clµ(K)−
K. By assumption, ay ∈ γ ∪ RC(Y, γ, A). If ay ∈ γ, then ay∩̃K 6= 0A and thus ay∈̃K. But
ay /̃∈K. Thus, we must have ay ∈ RC(Y, γ, A) and hence 1A − ay ∈ RO(Y, γ, A). Since
ay /̃∈K, then K⊆̃1A − ay. Since K ∈ RGC(Y, γ, A), then Clµ(K)⊆̃1A − ay. But ay∈̃Clµ(K),
a contradiction.

Theorem 36. For a STS (Y, γ, A), the following are equivalent:

(a) (Y, γ, A) is soft rg-T1/2.
(b) (Y, γ, A) is a soft discrete STS.

Proof. (a) =⇒ (b): We will show that SP(Y, A) ⊆ γ. Suppose to the contrary that there
exists ay ∈ SP(Y, A)−γ. Then by Theorem 36, ay ∈ RC(Y, γ, A) and so Clγ(Intγ(ay)) = ay.
Thus, Intγ(ay) = ay and hence ay ∈ γ, a contradiction.

(b) =⇒ (a): Obvious.

Definition 12. A STS (Y, γ, A) is called soft regular generalized ω-T1/2 (simply rgω-T1/2) if
RGωC(Y, γ, A) ⊆ (γω)

c.

Theorem 37. A STS (Y, γ, A) is soft rgω-T1/2 if and only if for each ay ∈ SP(Y, A), ay ∈
γω ∪ RC(Y, γ, A).

Proof. Necessity. Let (Y, γ, A) be soft rgω-T1/2. Let ay ∈ SP(Y, A). Suppose that ay /∈
RC(Y, γ, A). Then 1A− ay /∈ RO(Y, γ, A). Now we will show that 1A− ey ∈ RGωC(Y, γ, A).
Let T ∈ RO(Y, γ, A) such that 1A − ay⊆̃T. Since 1A − ay /∈ RO(Y, γ, A), then T = 1A and
thus Clγω

(
1A − ay

)
⊆̃T = 1A. Hence, 1A − ay ∈ RGωC(Y, γ, A). Since (Y, γ, A) is soft

rgω-T1/2, then 1A − ay ∈ (γω)
c. Therefore, ay ∈ γω.

Sufficiency. Let ay ∈ γω ∪ RC(Y, γ, A) for every ay ∈ SP(Y, A). Suppose to the
contrary that there exists K ∈ R(Y, γ, A) − (γω)

c. Then K ∈ RGωC(Y, γ, A) and there
exists ay∈̃Clµω (K)−K. By assumption, ay ∈ γω ∪ RC(Y, γ, A). If ay ∈ γω , then ay∩̃K 6= 0A

and thus ay∈̃K. But ay /̃∈K. Thus, we must have ay ∈ RC(Y, γ, A) and hence 1A − ay ∈
RO(Y, γ, A). Since ay /̃∈K, then K⊆̃1A − ay. Since K ∈ RGωC(Y, γ, A), then Clµω (K)⊆̃1A −
ay. But ay∈̃Clµω (K), a contradiction.

Lemma 1. A STS (Y, γ, A) is soft locally countable if and only if (Y, γω, A) is a soft discrete STS.

Proof. Straightforward.

Theorem 38. For a STS (Y, γ, A), the following are equivalent:

(a) (Y, γ, A) is soft rgω-T1/2.
(b) (Y, γω, A) is a soft discrete STS.
(c) (Y, γ, A) is soft locally countable.

Proof. (a) =⇒ (b): We will show that SP(Y, A) ⊆ γω. Suppose to the contrary that there
exists ay ∈ SP(Y, A)− γω . Then by Theorem 37, ay ∈ RC(Y, γ, A) and so Clγ(Intγ(ay)) =
ay. Thus, Intγ(ay) = ay and hence ay ∈ γ ⊆ γω, a contradiction.

(b) =⇒ (c) and (c) =⇒ (b) follow from Lemma 1.
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(b) =⇒ (a): Obvious.

4. Conclusions

After the work of Shabir and Naz [10], several types of classes of soft sets have been
analyzed. For example, soft semi-open sets, soft pre-open sets, soft regular open sets,
soft generalized closed sets, soft regular generalized closed sets, soft ω-open sets, soft
generalized ω-closed sets, and so on. In this paper’s first part, we continued working in
the same direction by studying the class of soft regular generalized ω-closed sets. With the
help of examples, we have studied the behavior of soft regular generalized 3c9-closed sets
with respect to soft unions, soft intersections, and soft subspaces.

In the second part of this paper, we have introduced soft ω-T1/2 spaces, soft regular
generalized T1/2, and soft regular generalized ω-T1/2 as three new types of STSs. We have
focused on their characterizations and correspondence with the analog concepts in TSs.

Future research could focus on the following topics: (1) investigating the concepts
related to rgω-closed sets such as soft continuity, (2) investigating the behavior of soft
rgω-closed sets under product STSs, or (3) solving three open questions raised in this paper.
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