
Citation: Wang, X.; Lyu, Y.; Li, X.

Application of Orthogonal

Polynomial in Orthogonal Projection

of Algebraic Surface. Axioms 2022, 11,

544. https://doi.org/10.3390/

axioms11100544

Academic Editor: Serkan Araci

Received: 16 August 2022

Accepted: 29 August 2022

Published: 11 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Application of Orthogonal Polynomial in Orthogonal
Projection of Algebraic Surface
Xudong Wang 1,†, Xiaowu Li 2,† and Yuxia Lyu 3,*,†

1 School of Economics, Capital University of Economics and Business, Beijing 100070, China
2 College of Data Science and Information Engineering, Guizhou Minzu University, Guiyang 550025, China
3 School of Economics and Management, Shandong Youth University of Political Science, Jinan 250100, China
* Correspondence: yuxialv@126.com; Tel.: +86-135-0640-1186
† These authors contributed equally to this work.

Abstract: Point orthogonal projection onto an algebraic surface is a very important topic in computer-
aided geometric design and other fields. However, implementing this method is currently extremely
challenging and difficult because it is difficult to achieve to desired degree of robustness. Therefore,
we construct an orthogonal polynomial, which is the ninth formula, after the inner product of the
eighth formula itself. Additionally, we use the Newton iterative method for the iteration. In order to
ensure maximum convergence, two techniques are used before the Newton iteration: (1) Newton’s
gradient descent method, which is used to make the initial iteration point fall on the algebraic surface,
and (2) computation of the foot-point and moving the iterative point to the close position of the
orthogonal projection point of the algebraic surface. Theoretical analysis and experimental results
show that the proposed algorithm can accurately, efficiently, and robustly converge to the orthogonal
projection point for test points in different spatial positions.

Keywords: point orthogonal projection; algebraic surface; orthogonal polynomial; Newton’s gradient
descent method; hybrid geometric accelerating orthogonal method

MSC: 39-XX; 65-XX; 68U05

1. Introduction

Orthogonal projection is an important topic in geometric modeling and computer-
aided geometric design, etc. The concept of orthogonal projection and how to orthogonally
project a spatial parametric curve onto a parametric surface and algebraic surface was
first proposed by Pegna et al. [1]. The orthogonal projection involves finding a point
on the curve or surface such that the line segment connected by this objective point and
the given point is perpendicular to the tangent line or the tangent plane of the curve or
the surface at this objective point. Since the distance projection is the extended form of
the orthogonal projection, the study of this problem will greatly promote the study of
orthogonal projections [1]. The study in [1] also presented many applications of orthogonal
projections. In design, for the cutting, patching, and welding of free-form shell structures,
such as in naval and aeronautical architecture, or in car body design, surfaces have to be
cut along pre-defined trimming lines before their assembly. Such a trimming line is usually
defined in parametric space for parametric surfaces and in three-dimensional space for
implicit surfaces.

The orthogonal projection problem has been widely studied by many experts. A
first-order tangent line perpendicular method for a point orthogonal projection onto a
parametric curve and surface was proposed by Hartmann [2]. For the supplementation and
the improvement of the first-order tangent line perpendicular method [2], Liang et al. [3]
and Li et al. [4] proposed two hybrid second-order methods for the two same topics,
respectively. Hu et al. [5] proposed a second-order geometric curvature information mode

Axioms 2022, 11, 544. https://doi.org/10.3390/axioms11100544 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11100544
https://doi.org/10.3390/axioms11100544
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-9923-0011
https://doi.org/10.3390/axioms11100544
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11100544?type=check_update&version=2

Axioms 2022, 11, 544 2 of 22

for approximating the orthogonal projection problem of parametric curves and surfaces.
Based on their work [5], Li et al. [6] proposed an improved method for orthogonal projection
onto a general parametric surface, such that the efficiency in [6] was improved, compared
with the existing methods. Ma et al. [7] proposed the topic for point orthogonal projection
onto NURBS curves and surfaces, including a four-step technique: subdividing the curve
or surface into curve segments or surface patches, finding out the corresponding control
polygon of the curve segments or surface patches, identifying the candidate curve segment
or surface patch, and confirming some candidate projection points by comparison, with the
final projective point being obtained by comparing the distance between the test point and
these candidate projection points. Due to the minimum distance between two geometry
objects being generated between a pair of special points, researchers [8–10] have studied
the minimum distance problem between some specific geometric objects using the specific
geometric property, and reached some satisfactory results.

Since the algebraic curve and algebraic surface do not have any parameter control
form, finding out the orthogonal projection point on the algebraic curve and surface is very
difficult. However, there are many fields such as geometric modeling, computer graphics,
computer-aided geometric design, etc., that need to be addressed with point orthogonal
projection onto algebraic curves and surfaces problems, which makes this a particularly
important topic.

Presently, the research into point orthogonal projections onto algebraic curves and sur-
faces mainly involves point orthogonal projections onto planar algebraic curves. However,
there is little research on point orthogonal projection onto an algebraic surface. There are
more than 10 papers on point orthogonal projections onto planar algebraic curves, and
they are divided into three types: local method, global method, and compromise method
between the two methods. It can be seen from the basic geometric characteristic that the
problem of point orthogonal projections onto planar algebraic curves can be transformed
into solving the equation where the cross product of gradient∇ f0(X) of the planar algebraic
curve f0(X) and the vector

−→
PX is zero at point X. The specific equation can be expressed in

the following form:
∇ f0(X)× (P− X) = 0 (1)

The corresponding Newton’s gradient descent iterative formula of Equation (1) can be
expressed as the formula (2),

Xn+1 = Xn − (f0(Xn)/〈∇ f0(Xn),∇ f0(Xn)〉)∇ f0(Xn). (2)

The second local iteration method is combined with the Lagrange multiplier and
Newton’s gradient descent method for computing the orthogonal projection point on the
planar algebraic curve, as in William et al. [11]. Of course, the combined method [11] is fast
but local, and dependent on the initial point.

As for the Newton’s gradient descent method (2) for solving Equation (1) with an
orthogonal projection problem of the planar algebraic curve, the first global approach for
solving the system of nonlinear equations is the homotopy continuous method [12,13].
The most classical homotopy transformation technique adopted for solving the orthogonal
projection problems of planar algebraic curves is the following:

H(X, t) = (1− t)P(X) + tQ(X), t ∈ [0, 1], (3)

where t is a continuous parameter from 0 to 1, and P(X) = 0 and Q(X) = 0 are the original
function to be solved and the objective solution function, respectively. All isolated solutions
of the original function system P(X) = 0 can be obtained using the global homotopy
method [12,13], where all the isolated solutions of P(X) = 0 are exactly the same as the
objective solution function Q(X) = 0. The robustness of the global continuous homotopy
methods [12,13] with convergence is confirmed by [14], and their low efficiency is shown

Axioms 2022, 11, 544 3 of 22

in [15]. The greatest difficulty of the homotopy method is in seeking out a very satisfactory
and correct objective function Q(X) = 0.

The second global method for point orthogonal projection onto a planar algebraic
curve problem is the global resultants method [16–19], which transformed the projection
problem into a results system. By using the elimination theory, a nonlinear system of
equations with two variables can be turned into a resultant polynomial with one variable,
where the characteristic of the solutions is equivalent to the original function system with
two equations. The most important and classical resultant methods [16–19] are Sylvester’s
resultant and Cayley’s resultant formed by Bézout’s method. The advantage of the global
resultant methods [16–19] is that the degree of the planar algebraic curve must be less than
5. Therefore, all the roots of the univariate nonlinear polynomial equation yielded using
the resultant methods can be completely solved. However, the resultant methods [16–19]
fail to solve all roots of the nonlinear polynomial equation with a degree of 5 or more.

The third global technique is the Bézier clipping method [20–22]. Turning Equation
(1) into the Bézier form with a convex hull property is the first step of the Bézier clipping
technique. The remaining processing steps are completely equivalent to those of Ma
et al. [7], the detailed description of which is omitted here. The advantage of the global
Bézier clipping method is that all roots can be obtained, or all orthogonal projection points
can be yielded using this technique. There are two disadvantages of the global clipping
method: the first is that it takes a lot of time to subdivide, to seek, to judge, and to compare;
the second is that transforming Equation (1) into the Bernstein–Bézier form for a small part
of the planar algebraic curves is very difficult or even impossible.

The fourth global technique is to solve all the roots of the equations and systems
of equations [23–26]. That is to say, the point orthogonal projection algebraic surface
problem can be transformed into solving all the roots of the equations and systems of
equations [23–26]. Bartoň M. [23] proposed two blending scheme solvers for the problem
of finding all the roots. As a system of nonlinear equations, a simple linear combination
of functions is realized for eliminating the no-root domain, and then all control points
for its Bernstein–Bézier basis can be determined, having the same sign, which must be
in accord with the seeking function. Then, through the continuous subdivision process,
these types of functions are obtained to eliminate the no-root domains. Therefore, two
blending schemes in [23] can efficiently reduce the number of subdivisions. van Sosin B.
and Elber G. [24] constructed a variety of complex piecewise polynomial systems with
zero or inequality constraints in zero-dimensional or one-dimensional solution spaces. To
overcome the time cost of subdivision, Park, C.H. et al. [25] presented a hybrid parallel
algorithm for solving systems of multivariate constraints by exploiting both the CPU and
the GPU multicore architectures. This was achieved by decomposing the constraint solving
technique into two different components, hierarchy traversal and polynomial subdivision,
each of which is more suitable to CPUs and GPUs, respectively, whose solver can fully
exploit the availability of the hybrid, multicore architectures of CPUs and GPUs. The
proposed parallel method improved the performance compared to the state-of-the-art
subdivision-based CPU solver. To further facilitate solving for all of the roots, Bartoň M.
et al. [26] proposed a subdivision model of topological guarantee, whose core technique
is to project the unknown multivariable region of the high-dimensional space to the two-
dimensional plane according to the known region of all bounds of the univariate. The
advantage of these four classical methods [23–26] is that the robustness of solving all the
roots is very good, but the time consumption is relatively large.

In addition to the local and global methods, the third type of approach is the com-
promise method. The first compromise method was proposed by Hartmann [2,27] and it
includes the geometric tangent perpendicular property for solving the orthogonal projec-
tion problem. The iterative formula (2) is repeatedly run until the iterative point iterates to
the planar algebra curve. The iterative point on the planar algebraic curve is used as the
initial point, and the foot-point is once again calculated using Equation (4),

Q = P− (〈P− Yn,∇ f0(Yn)〉/〈∇ f0(Yn),∇ f0(Yn)〉)∇ f0(Yn). (4)

Axioms 2022, 11, 544 4 of 22

The foot-point Q is used again as the initial iteration point of Equation (2), and the
above two iterative formulas are repeatedly run until the foot-point Q completely collides
with the orthogonal projection point. Unfortunately, if the test point is far away from a
plane algebraic curve or algebraic surface, the foot-point Q being the next iterative point
will cause more errors, and finally lead to non-convergence for a small part of the planar
algebraic curves.

Redding [28] presented the second compromise method, which adopted the osculating
circle technique for computing the orthogonal projection point of the planar algebraic curve.
The osculating circle technique mainly consists of three important steps: (1) Computing
the curvature and the corresponding radius and center of the curvature circle of the planar
algebraic curve at the point. (2) Computing the line segment determined by the test point
and the center of the curvature circle, and identifying the foot-point Q intersected with the
line segment and the curvature circle. (3) Approximately taking the foot-point Q as the
point being on the planar algebraic curve. The above three steps are run repeatedly until
the foot-point Q is the same as the orthogonal projection point PΓ. Since the perpendicular
foot-point regarded as the point on the planar algebraic curve will result in more errors and
deviations in the third step of the osculating circle technique, and it is not representative
of the original parameter, the convergence robustness of the osculating circle technique is
sometimes not guaranteed.

The third compromise method is the circle shrinking technique [29]. Equation (2) is
run repeatedly such that the iterative point PI can iterate to the planar algebraic curve
maximally. Construct a circle whose the center and radius are the test point P and ‖P− PI‖,
respectively. Mark a point P+ on the circle by using the mean value theorem, and find
out the intersection point between the line segment PP+ and the circle. We name this
intersection point the current iterative point PI. Repeatedly iterate the above behavior until
the current point PI and the previous point PI are completely overlapping. It takes more
time to find point P+ each time for the circle shrinking technique [29]. At the same time,
and if the degree of the planar algebraic curve is more than 5, it is not easy to directly solve
the intersection PI of line segment PP+ and the planar algebraic curve using the circle
shrinking technique [29].

The fourth compromise method is associated with the circle double-and-bisect algo-
rithm presented by Hu et al. [30]. Draw an initial small circle with the test point P as the
center, and an arbitrarily small length as the radius r1. A new circle with the same center
P and radius r2 = 2r1(after that, the center of all circles is the test point P) is drawn once
again. If the second new circle and the planar algebraic curve do not intersect, redraw
a new circle, such that the radius of the new circle is twice that of r2. Repeat the above
behavior until the latest circle and the planar algebraic curve are intersected. The previous
circle and the latest circle are named as the interior circle and the exterior circle, respectively.
Once the latest circle intersects with the planar algebraic curve, the remaining processing
technique adopts the bisecting technology. A new circle with new radius r = (r1 + r2)/2
is continuously drawn. If the current circle with radius r and the planar algebraic curve
intersect, substitute r for r2, or else, for r1. Repeatedly run the above action until the
interior circle and the exterior circle are completely coincident. However, it is difficult to
determine using this method whether the exterior circle intersects with the curve or not
[30], if the degree of the planar algebraic curve is more than 5. Additionally, it takes more
time to find the intersection between the exterior circle and the planar algebraic curve in
the double-and-bisect algorithm [30]. In addition, in the third compromise method [29] and
the fourth compromise method [30], they have a common processing technology that needs
to judge the sign of the function f0(Q). If the topological structure of the planar algebraic
curve is complex, or if there are many branches in the planar algebraic curve, it is not easy
for the two compromise methods [29,30] to implement this technical link.

The fifth compromise method was proposed by Cheng T. et al. [31], and it is a point
orthogonal projection onto a spatial algebraic curve. Its shortcoming is that the effect of

Axioms 2022, 11, 544 5 of 22

the correction method of the third algorithm is not ideal, which leads to a reduction in
efficiency.

Orthogonal polynomials not only play an important role in point orthogonal projection
onto an algebraic surface, but they also have many important theoretical and application
values in other aspects. Cesarano C. [32] proved the existence and uniqueness of the
extremal node in the polynomial system for any fixed system of multiplicities. From the
standard definitions of the incomplete two-variable Hermite polynomials, Cesarano C.
et al. [33] proposed a non-trivial generalization polynomial with the Bessel-type functions
as the Humbert functions and a non-trivial generalization Lagrange polynomial. Dattoli G.
et al. [34] discussed the theory of Lagrange polynomials associated with generalized forms.
They adopted two different approaches based on the integral transform method and the
Umbral Calculus.

In a word, from the above literature description and analysis, the robustness of the
point orthogonal projection onto an algebraic surface is still a very difficult issue to over-
come. In order to improve the robustness and efficiency, we construct an orthogonal
polynomial (Equation (9)) and use the Newton iterative method for iteration.

The proposed algorithm mainly contains three sub-algorithms: Algorithms 1–3.
Equation (11) causes the initial point to be on the algebraic surface as much as possi-
ble, according to Newton’s gradient descent property. Then, the iteration point falls on the
algebraic surface completely. After Step 2 and Step 3 of Algorithm 2 are jointly implemented
five times, the first iteration point falling on the algebraic surface is gradually moved very
close to the position of the orthogonal projection point. Additionally, the final iteration
point conforms to Newton’s local iterative convergence condition of the two sub-equations
of Equation (15). In this way, after repeatedly running Equation (15) of Algorithm 3, the
iterative point converges to the objective point (the orthogonal projection point) quickly
and robustly. The proposed algorithm mainly captures three important geometric fea-
tures. First, it maximizes the effect of Newton’s gradient descent method; that is, when
each sub-algorithm is implemented, the iteration point can always fall on the algebraic
surface, which is a particularly important action for improving the robustness. Second,
Algorithm 2 ensures that on the basis of the iteration point on the algebraic surface, the
iteration point moves very close to the position of the orthogonal projection point. Third,
the final iteration point of Algorithm 2 satisfies Newton’s local convergence condition of
Algorithm 3. Algorithm 3 can quickly iterate the iteration point to the algebraic surface, and
also speed up the orthogonalization (the final iteration point coincides with the orthogonal
projection point).

Algorithm 1: Newton’s gradient descent method.
Input: The test point P and the algebraic surface f (X)
Output: The iterative point PI on the algebraic surface f (X)
Description:
Step 1:

Xn+1 = P− (0.1, 0.1, 0.1);
Do {

Xn = Xn+1 ;
Update Xn+1 according to Equation (11);

}while (| f (Xn+1)| > ε&&‖Xn+1 − Xn‖ > ε);
Step 2:

PI = Xn+1 ;
Return PI;

Axioms 2022, 11, 544 6 of 22

Algorithm 2: Computing the foot-point Q and moving the iterative point PI to
the close position of the orthogonal projection point PΓ.

Input: The test point P, the algebraic surface S, and the iterative point PI.
Output:The current iterative point PI to the close position of the orthogonal
projection point PΓ.

Description:
Step 1: With the neighbor point of the test point P as the initial point, obtain the
iterative point PI on the algebraic surface S via Algorithm 1.

for(i = 0; i<5; i++) {
Step 2: Obtain the foot-point Q via Equation (14).
Step 3: With the foot-point Q as the initial point of Equation (11), compute

the iterative point PI on the algebraic surface S via Algorithm 1.
}

Step 4: Return PI;

Algorithm 3: Hybrid geometric accelerated orthogonal method.
Input:The current iterative point PI on the algebraic surface f (X) and the

algebraic surface f (X).
Output: The corresponding orthogonal projection point PΓ of the test point P.
Description:
Step 1:

Xn+1 = PI;
Do {

Xn = Xn+1;
Compute Xn+1 by using the iterative formula (15);

}while (‖Xn+1 − Xn‖2 > ε&&| f (Xn+1)| > ε)
Step 2:

PΓ = Xn+1;
Return PΓ;

2. Implementation of the Hybrid Geometry Strategy Algorithm

Let us elaborate on the general idea. There is an algebraic surface S, where the equation
of the algebraic surface is,

f (X) = 0, (5)

where X = (x, y, z). Our aim is to find a point PΓ on the algebraic surface S via a spatial
test point P, such that the relationship could be satisfied (see Figure 1),

P

s

P
!

Figure 1. Point orthogonal projection onto an algebraic surface.

Axioms 2022, 11, 544 7 of 22

‖P− PΓ‖ = min
X∈Γ
‖P− X‖. (6)

The above problem can be written as{
f (PΓ) = 0,
‖P− PΓ‖ = min

X∈Γ
‖P− X‖, (7)

where the symbol ‖ · ‖ is norm. Formula (7), related to the orthogonal projection point PΓ,
provides two important criteria where the orthogonal projection point PΓ should fall on
the algebraic surface S, and the distance ‖P− PΓ‖ is the shortest between the test point
P and point X on the algebraic surface S. From the second formula of Formula (7), the
third important implied and potential geometric meaning that can also be indicated is that
the vector

−→
PPΓ is perpendicular to the tangent plane vector of the algebraic surface S at

the orthogonal projection point PΓ, or that the cross product of the vector
−→
PPΓ and the

gradient vector ∇ f (PΓ) is zero. Namely, we seek that the orthogonal projection point PΓ
(the objective point) should be satisfied with the relationship where the cross product of
the vector

−→
PX and the gradient vector ∇ f (X) is zero,

F0(X) = ∇ f (X)× (P− X) = 0, (8)

where ∇ f =

[
∂ f
∂x

,
∂ f
∂y

,
∂ f
∂z

]
and symbol × are the Hamiltonian operator and the cross

product, respectively. Since Equation (8) is a vector equation, not a scalar equation, it is not
easy to solve Equation (8). Taking the inner product of the vector itself ∇ f (X)× (P− X) of
Equation (8), it is transformed into the following corresponding equation, which is easy
to solve,

F(X) = 〈∇ f (X)× (P− X),∇ f (X)× (P− X)〉 = 0, (9)

where the symbol 〈· , · 〉 is the inner product. The orthogonal projection PΓ of the test point P
orthogonally projecting onto the algebraic surface S should have three important geometric
properties: (1) The orthogonal projection point PΓ should fall onto the algebraic surface
S; (2) the distance ‖P− PΓ‖ is the shortest between the test point P and point X on the
algebraic surface S; (3) the inner product of the vector

−→
PPΓ and the tangent plane vector of

the algebraic surface S at the orthogonal projection point PΓ is zero, or the cross product of
the vector

−→
PPΓ and the gradient vector ∇ f (PΓ) is zero. These three important geometric

properties can be expressed specifically as,
f (PΓ) = 0,
F(PΓ) = 〈∇ f (PΓ)× (P− PΓ),∇ f (PΓ)× (P− PΓ)〉 = 0,
‖P− PΓ‖ = min

X∈Γ
‖P− X‖,

(10)

where F(X) = 〈∇ f (X)× (P− X),∇ f (X)× (P− X)〉.

2.1. Newton’s Gradient Descent Method

The corresponding Newton’s gradient descent iterative formula related to Equation (5)
is as follows,

Xn+1 = Xn − (f (Xn)/〈∇ f (Xn),∇ f (Xn)〉)∇ f (Xn). (11)

The purpose of this iterative Formula (11) is to prompt the iterative point to iterate
to the algebraic surface according to the Newton’s gradient descent property. A detailed
description of the idea can be concretely expressed as Algorithm 1 (see Figure 2).

Axioms 2022, 11, 544 8 of 22

x
n+1

x
0

x
1

x
2

(a)

P

s

P
!

(b)

Figure 2. The complete schematic of Algorithm 1. (a) Newton’s gradient descent method; (b) Point
orthogonal projection onto algebraic surface. All the curves of figures (a) denote contour surfaces
and not contour curves.

Remark 1. We present a geometric interpretation for Algorithm 1. In Figure 2, each closed loop is
actually represented as a contour surface. The outermost layer of the contour surface is called the
first contour surface, the second layer of the contour surface is called the second contour surface,
followed by the third contour surface, the fourth contour surface, and so on. The initial iteration
point of Equation (11) X0 upon the first contour surface has Newton’s gradient descent property.
Using the first iteration of Equation (11), the first iteration point X1 falls on the second contour
surface, and the vector

−−→
X0X1 is determined by the gradient vector ∇ f (X0), which is tangential

to the second contour surface. Immediately, after the second iteration of Equation (11), X1 is an
initial iterative point, and the gradient vector ∇ f (X1) is perpendicular to the gradient vector
∇ f (X0). The second iteration point X2 is fallen onto the third contour surface, and the vector
−−→
X1X2 is determined using the gradient vector ∇ f (X1), which is tangential to the third contour
surface. Equation (11) is iterated repeatedly in this way; the iteration point Xn+1 finally falls on the
innermost contour surface. Of course, the innermost contour surface almost becomes a point that
has fallen on the algebraic surface S. The first property of Newton’s gradient descent indicates that
the absolute value | f (X)| of the algebraic surface f (X) decreases fastest along the opposite direction
to the gradient vector ∇ f (X). That is, for every iteration, the absolute value of the algebraic surface
is rapidly smaller than the absolute value before the iteration (| f (Xk+1)| < | f (Xk)|), until the
absolute value of the algebraic surface is almost zero (| f (X)| ≈ 0), and the iteration is terminated.
The second property of Newton’s gradient descent method is to select a direction with the largest
slope from the current position to perform the next step. In the current position, the third property
of Newton’s gradient descent method is to fit the algebraic surface S using the quadric as the local
surface. Then, the path chosen by the Newton’s gradient descent method will be more consistent
with the real optimal descent path. Therefore, Equation (11) causes the initial point X0 to be on the
algebraic surface as much as possible according to the Newton’s gradient descent property. Finally,
the iteration point falls on the algebraic surface completely.

2.2. Moving the Iterative Point PI to the Close Position of the Orthogonal Projection Point PΓ

From Algorithm 1, Equation (11) of Algorithm 1, characterized by the Newton’s
gradient descent property, is to prompt the initialization point X0 to fall on the algebraic
surface S maximally. The iterative point on the algebraic surface is named as the point
PI. After many tests, we find that the point PI is not far from the orthogonal projection
point PΓ, but there is still a certain distance. Our idea is to make the iterative point PI as
close to the orthogonal projection point PΓ as much as possible. That is, to let the point PI
gradually move to the position near the orthogonal projection point PΓ. This serves to lay a
good foundation for the subsequent orthogonalization. In order to bring the iteration point
PI closer to the orthogonal projection point PΓ, we adopt the tangent plane vertical foot

Axioms 2022, 11, 544 9 of 22

technique to achieve this goal. The basic goal of this technique can be brought about by the
following mode. We draw a vertical foot-point Q0 of the tangent plane derived from the
iterative point PI via the test point P. Its expression is the following,

Q0 = P− (〈P− PI,∇ f (PI)〉/〈∇ f (PI),∇ f (PI)〉)∇ f (PI). (12)

At this moment, taking the foot-point Q0 as the initial point of Algorithm 1, we obtain
the new iterative point PI on the algebraic surface S, where the new iterative point PI is
named as the current iterative point PI. Based on our understanding and basic geometry
properties, let us take the point closer to the algebraic surface as the foot-point. In order to
make the foot-point Q close to the algebraic surface and the orthogonal projection point PΓ
at the same time, combining with geometric intuition, we select a foot-point Q on the line
segment PQ0 to satisfy the relationship

−−→
Q0Q
−−→
Q0P

= d, (13)

where d =
d1

d2
, d1 = 0.5 ·

∥∥∥−−→PIQ0

∥∥∥, d2 =
∥∥∥−−→Q0P

∥∥∥. According to Equation (13), it is easy to

obtain the following foot-point form Q (see Figure 3a),

Q = d · (P−Q0) + Q0. (14)

Q0

Q

s

P

!P

P!

(a)

move

s

!P

!P

P

P
!

(b)

Figure 3. The complete graphic demonstration of Algorithm 2. (a) Computing the foot-point Q of
Equation (14); (b) Moving the iterative point PI to the close position of the orthogonal projection
point PΓ.

Now, running Equation (14) and Algorithm 1 repeatedly, the iterative point PI can
converge and move to the close position of the orthogonal projection point PΓ. The detailed
description can be expressed as Algorithm 2 (see Figure 3b).

Remark 2. We present a geometric interpretation for Algorithm 2. From Remark 1, the purpose
of Algorithm 1 is to let the initial iteration point be on the algebraic surface maximally. Starting
from the iterative point PI, the foot-point Q is derived by Formula (14). According to our geometric
intuition, the vertical point Q0 is located between the iterative point PI and the orthogonal projection
point PΓ. There are four advantages to choosing point Q instead of point Q0 as the foot-point. Not
only is the foot-point Q located between the iterative point PI and the orthogonal projection point
PΓ, but the distance between the foot-point Q and the algebraic surface S is also shorter that the
distance between the vertical point Q0 and the algebraic surface S. Consequently, the iteration
time with Algorithm 1 from the foot-point Q being used as the initialization point to iterate to the
algebraic surface is less than that from the perpendicular point Q0 being used as the initialization
point to iterate to the algebraic surface. The fourth advantage is that the closer the foot-point Q is to

Axioms 2022, 11, 544 10 of 22

the algebraic surface, the higher the stability of the iterative point PI obtained through Algorithm 1.
This means that the distance between the iterative point PI fallen on the algebraic surface S caused
by Algorithm 1 with the foot-point Q as the initial iterative point and the orthogonal projection
point PΓ is not much longer than the distance between the iterative point PI fallen on the algebraic
surface S caused by Algorithm 1 with the perpendicular point Q0 as the initial iterative point and
the orthogonal projection point PΓ. After Step 2 and Step 3 are jointly implemented five times, the
first iteration point PI fallen on the algebraic surface S is gradually moved very close to the position
of the orthogonal projection point PΓ.

2.3. Hybrid Geometric Accelerating Orthogonal Method

From Section 2.2, it is not difficult to know that the current iterative point PI is not
only fallen on the algebraic surface, but is also very close to the orthogonal projection point
PΓ. If we convert the for loop body in Algorithm 2 into the do . . . while loop body and the
termination criteria are that the distance between the previous iterative point PI and the
current iterative point PI is zero and the absolute value of the function f (PI) is almost zero,
the slightly improved version of Algorithm 2 is intrinsically and completely equivalent to
the foot-point algorithm for an implicit surface in [27]. The slightly improved version of
Algorithm 2 is robust and efficient for less partial algebraic surfaces; however, it cannot
ensure convergence for total algebraic surfaces. Even if the slightly improved version
of Algorithm 2 converges, the moving speed of the iteration point PI to the orthogonal
projection point PΓ is occurring very slowly, and the speed of the cross product being zero
is determined by the vector

−→
PPI, and the vector ∇ f (PI) is also very slow.

In order to improve the convergence rate, and to accelerate the satisfaction of the first
two formulas in Equation (10),{

Yn = Xn − (〈 f (Xn)〉/〈∇ f (Xn),∇ f (Xn)〉)∇ f (Xn),
Xn+1 = Yn − (〈F(Yn)〉/〈∇F(Yn),∇F(Yn)〉)∇F(Yn),

(15)

where ∇ f = [∂ f
∂x , ∂ f

∂y , ∂ f
∂z]|Xn , ∇F = [∂F

∂x , ∂F
∂y , ∂F

∂z]|Yn . The algorithm formed by this iteration
(15) for accelerating orthogonality and falling on the algebraic surface can be described by
Algorithm 3 (see Figure 4).

X
n

Y
n

(a)

Y
n

X
n+1

(b)

Figure 4. The whole graphic demonstration of Algorithm 3. (a) Newton’s gradient descent method
unrelated to the test point of the first formula in Equation (15); (b) Newton’s gradient descent method
associated with the test point of the second formula in Equation (15); All the curves of figures (a,b)
denote contour surfaces and not contour curves.

Remark 3. We present a geometric description for Algorithm 3. After performing Algorithm 2, the
current iterative point PI is not only fallen on the algebraic surface, but the distance between the
current iteration point PI and the orthogonal projection point PΓ is also significantly smaller than

Axioms 2022, 11, 544 11 of 22

the distance between the previous iteration point PI and the orthogonal projection point PΓ. That
is, the current iteration point PI is closer to the orthogonal projection point PΓ, and after several
iterations, the distance between the current iteration point PI and the orthogonal projection point
PΓ is very small. In this case, the current iteration point PI accords with the local convergence
condition of the Newtonian type of Equation (15), which ensures the successful iterative convergence
of Equation (15).

The purpose of the first formula of Equation (15) is to ensure that the iterative point
can iterate to the algebraic surface maximally, according to the geometrical property of
Newton’s gradient descent method. The prototype formula of the second formula of
Equation (15) is Formula (9), the geometric essence of which is to seek out a point X on
the algebraic surface. Therefore, we make the vector

−→
PX be perpendicular to the tangent

plane of the algebraic surface at the point X. That is to say, we use Formula (9), where
we seek the point X on the algebraic surface, as it plays an important role in accelerating
orthogonalization. Namely, every iteration of the second formula of the iterative Formula
(15) corresponding to Formula (9) is to ensure that the absolute value of Equation (9) with
the expression F(Yn) becomes smaller or even zero under the condition that the initial
iterative point falls on the algebraic surface. Although the second iterative formula of
Equation (15) is a locally convergent Newton-type iterative formula, it can be seen from
the final iteration point PI of Algorithm 2 that the final iteration point PI conforms to the
Newton’s local iterative convergence condition of the two sub-equations of Equation (15),
so that the iteration of Equation (15) can converge successfully. In this way, we repeatedly
run Equation (15), and the iterative point converges to the objective point (the orthogonal
projection point PΓ) quickly and robustly.

Through the above comprehensive analysis, we obtain Algorithm 4, which is the
complete algorithm on the point orthogonal projection onto the algebraic surface (see
Figure 5).

Algorithm 4: The complete hybrid geometry strategy algorithm for point or-
thogonal projection onto an algebraic surface.

Input: Test point P and the algebraic surface f (X) = 0.
Output: Final orthogonal projection point PΓ of the test point P.
Description:
Step 1: Starting from the adjacent point of test point P, calculate the iterative point
PI of the algebraic surface via Algorithm 1.

Step 2: Starting from the iteration point PI, the new iteration point PI fallen on the
algebraic surface f (X) = 0 close to the orthogonal projection PΓ is
calculated using Algorithm 2.

Step 3: Compute the orthogonal projection point PΓ via Algorithm 3.
Return PΓ;

x
n+1

x
0

x
1

x
2

(a)

Q0

Q

s

P

!P

P!

(b)

Figure 5. Cont.

Axioms 2022, 11, 544 12 of 22

move

s

!P

!P

P

P
!

(c)

X
n

Y
n

(d)

Y
n

X
n+1

(e)

P

s

P
!

(f)

Figure 5. The complete graphic demonstration of Algorithm 4. (a) Newton’s gradient descent method
unrelated to test point; (b) Computing foot-point Q of Equation (14); (c) Moving the iteration point PI

to a position near the orthogonal projection point PΓ in for loop body of Algorithm 2; (d) Newton’s
gradient descent method, unrelated to test point of the first formula in Equation (15); (e) Newton’s
gradient descent method, associated with test point of the second formula in Equation (15); (f) Point
orthogonal projection onto algebraic surface. All the curves of figures (a,d,e) are contour surfaces and
not contour curves.

Remark 4. In the actual programming implementation of Algorithm 4, we adopt three optimized
techniques. Firstly, if the test point P is a long distance from its orthogonal projection on the
algebraic surface, the initialization point X0 of Algorithm 1 is changed to a very small percentage of
the test point. However, the initial iterative point X0 of Algorithm 1 in Step 3 of Algorithm 2 is still
the foot-point Q computed using Step 2 of Algorithm 2. Secondly, in order to avoid degenerative
situations (the denominators of the iterative Formulas (8), (9), (11), (12), and (15) are 0), we add
up a very small perturbation positive number ε to the denominator of each iterative formula, such
that Algorithm 4 and other algorithms can run and iterate normally. Thirdly, we have a wonderful
discovery. In Algorithm 5, if the test point P is relatively close to the algebraic surface, or if the
iteration point fallen on the algebraic surface of the test point P and the orthogonal projection point
are close to each other, this indicates that the iterative point results of Algorithm 1 with Newton’s
local convergence condition of Algorithm 3 have been satisfied. Algorithm 2 with for loop body can
be omitted; Algorithm 4 only includes Algorithms 1 and 3. Therefore, the simplified Algorithm 4
can run more efficiently. However, if the test point P is far away from the algebraic surface, all steps
of Algorithm 4 must be fully run, such that Algorithm 4 is very robust.

The simplified and efficient version of Algorithm 4 is represented as Algorithm 5 (see
Figure 6).

Axioms 2022, 11, 544 13 of 22

Algorithm 5: The simplified version hybrid geometry strategy algorithm for
point orthogonal projection onto an algebraic surface.

Input: Test point P and the algebraic surface f (X).
Output: Final orthogonal projection point PΓ of the test point P.
Description:
Step 1: Calculate the iterative point PI fallen on the f (X) via Algorithm 1.
Step 2: Compute the orthogonal projection point PΓ via Algorithm 3.

Return PΓ;

x
n+1

x
0

x
1

x
2

(a)

X
n

Y
n

(b)

Y
n

X
n+1

(c)

P

s

P
!

(d)

Figure 6. The complete graphic demonstration of Algorithm 5. (a) Algorithm 1 related to Newton’s
gradient descent method; (b) Newton’s gradient descent method unrelated to test point of the first
formula in Equation (15); (c) Newton’s gradient descent method associated with test point of the
second formula in Equation (15); (d) Point orthogonal projection onto algebraic surface. All the curves
of figures (a–c) are contour surfaces and not contour curves.

2.4. Treatment of Multiple Solutions

In practical computer graphics and computer-aided geometric design and other appli-
cations, we are going to calculate not just the single orthogonal projector, but sometimes
even all the orthogonal projectors. If the topological structure of the algebraic surface is
simple, where its genus is zero, and if the algebraic surface is smooth, we present a simple
solving method. For a given test point P = (p1, p2, p3), we assign seven other coordinate
symbols to the test point P, respectively. In this way, the changed coordinate symbols of
the test point are (p1, p2,−p3), (p1,−p2, p3), (p1,−p2,−p3), (−p1, p2, p3), (−p1, p2,−p3),
(−p1,−p2, p3), and (−p1,−p2,−p3), respectively. For each of the eight points, we present
a certain percentage reduction, such as one-hundredth of every point, etc. Of course, if the
distance between the test point and the corresponding orthogonal projection point of the
algebraic surface is very large, one-hundredth of the proportion can be reduced to less. The

Axioms 2022, 11, 544 14 of 22

eight points after scaling down are the initialization point of Algorithm 1, correspondingly.
In this way, we want to move the initialization point of each quadrant of the 3D coordinates
closer to the algebraic surface. Thus, in each quadrant of 3D coordinates, the corresponding
orthogonal projection point can be obtained by using Algorithm 4 as much as possible.

If the topological structure of the algebraic surface is not simple, with its genus not
being less than 1, or if the algebraic surface contains multiple branches, the simple method
of solving is not fit for dealing with a complicated algebraic surface. Our preliminary idea
is to outline the algebraic surface. For this reason, we try to identify a second method
for computing several 3D bounding boxes within the prescribed region of the algebraic
surface, where every algebraic surface patch is enclosed within one 3D bounding box. We
randomly choose a point in each 3D bounding box as the initial point of Algorithm 4, and a
corresponding orthogonal projection point is generated. Then, by calculating the distance
between the test point P and each orthogonal projection point, and by finding out the
minimum distance for all distances, the orthogonal projection point of the corresponding
shortest distance can be found. According to the elementary knowledge of differential
geometry, seeking out an orthogonal projection point is to seek out a point X on the
algebraic surface where the cross product between the vector

−→
PX and the normal vector

N(N = ∇ f (X)) is zero. Namely, the vector
−→
PX is orthogonal to the tangent plane of

the algebraic surface at the point X, where the corresponding expression determined by
the geometric property is Equation (8). Since Equation (8) is a vector equation and not
a scalar equation, it is not easy to solve. Taking the inner product of the vector itself
∇ f (X)× (P− X) of Equation (8), it naturally becomes the scalar equation with Equation
(9). Of course, in essence, the geometry of Equation (9) is an algebraic surface, since the
algebraic surface with Equation (9) can better embody the essential geometric property of
an orthogonal projection than the algebraic surface with Equation (5). Therefore, in the
actual selection of algebraic surface patches, we use an algebraic surface with Equation (9)
to concretely realize the search for all orthogonal projection points.

Let us assume that the region Ω of the algebraic surface with Equation (9) is
Ω = [a1, a2]× [b1, b2]× [c1, c2]. We employ the adaptive affine arithmetic method [35–37]
to mark a series of 3D bounding boxes where every algebraic surface patch is enclosed in
every 3D bounding box. The algebraic surface F(X) = 0 is orthogonally projected onto the
y− z plane, the x− z plane, and the x− y plane at the point (x0, y0, z0), respectively. Thus,
we obtain three planar algebraic curves F(x0, y, z) = 0, F(x, y0, z) = 0, and F(x, y, z0) = 0
on three planes that are perpendicular to each other. To simplify the following expression,
the planar algebraic curves F(x0, y, z) = 0, F(x, y0, z) = 0, and F(x, y, z0) = 0 can be
expressed as F1(y, z) = 0, F2(x, z) = 0, and F3(x, y) = 0, respectively. We construct an
important judging function with the planar algebraic curve F1(y, z) = 0,

Ψyz =
2
∣∣F1yz

∣∣√
(

F1y
y2
)2 + (F1z

z3
)2

. (16)

Analogously, we also construct an important judging function with the planar alge-
braic curve F2(x, z) = 0 and the planar algebraic curve F3(x, y) = 0,

Ψxz =
2|F2xz|√

(F2x
x1
)2 + (F2z

z3
)2

, (17)

and

Ψxy =
2
∣∣F3xy

∣∣√
(F3x

x1
)2 + (

F3y
y2
)2

, (18)

Axioms 2022, 11, 544 15 of 22

where F1y = ∂F1(y,z)
∂y , F1z = ∂F1(y,z)

∂z , F2x = ∂F2(x,z)
∂x , F2z = ∂F2(x,z)

∂z , F3x = ∂F3(x,y)
∂x , F3y =

∂F3(x,y)
∂y , F1yz =

∂2F1(y,z)
∂y∂z , F2xz =

∂2F2(x,z)
∂x∂z , F3xy = ∂2F3(x,y)

∂x∂y , x0 = a1+a2
2 , x1 = a2−a1

2 , y0 = b1+b2
2 ,

y2 = b2−b1
2 , z0 = c1+c2

2 , and z3 = c2−c1
2 . The unknown variable X in each of the nine

partial derivative functions F1y, F1z, F2x, F2z, F3x, F3y, F1yz, F2xz, F3xy is replaced by a point
value (x0, y0, z0), and afterwards, this point is named (x0, y0, z0) as the center point of the
3D bounding box. By combining three Formulas (16)–(18), we obtain the crucial judging
function Ψ with Equation (19),

Ψ = Max{Ψxy, Ψyz, Ψxz}. (19)

We assign a critical value for the crucial judging function Ψ with Equation (19). The adaptive
approach method [38,39] of solving a series of 2D bounding boxes of the planar algebraic
curve is adopted to solve a series of 3D bounding boxes of the algebraic surface. The exact
interpretation of Equation (19) is completely the same as the interpretation in [38]. On an
affine arithmetic, we mainly assimilate the idea of the work in [38]. However, we have to
assimilate the idea of the paper [39] to investigate a series of 3D bounding boxes with the
more complicated topological structure of the algebraic surface. The detailed description
for solving a series of 3D bounding boxes of the algebraic surface can be described as
Algorithm 6.

Algorithm 6: To seek out a series of 3D bounding boxes of the algebraic surface
F(X) = 0.

Input: The algebraic surface F(X) = 0 and the initial 3D bounding box including
or intersecting with the algebraic surface F(X) = 0.

Output: A number of 3D bounding boxes satisfied with certain conditions.
Description:
Step 1: Subdivide this 3D bounding box into 8 3D sub-bounding boxes by
dividing by 2 on each axis.

Step 2: Compute the critical value Ψ of each 3D sub-bounding box through
Equation (19).

Step 3: if (Ψ <= the critical value and recursion times< 10){
Execute Algorithm 6 with the 3D sub-bounding box.

}
if (Ψ <= critical value and recursion times == 10){

Store all 3D bounding sub-boxes in one set.
}

End Algorithm.

In short, three important techniques and schemes are adopted in the process of realiz-
ing a point orthogonal projection onto an algebraic surface. In the first step, the Newton
gradient descent method of Algorithm 1 is used to ensure that the initial iteration can
iterate and fall on the algebraic surface. In the second step, Algorithm 2 is used to gradually
move the iterative point fallen on the algebraic surface to the orthogonal projection point at
a very close position, such that the local convergence condition of the last step is satisfied.
In the third step, Algorithm 3 is adopted to accelerate the iteration of the iteration point to
the algebraic surface and orthogonalization by using the Newton gradient descent method
and the second-order Newton iteration method under the condition of local convergence
condition. Thus, Algorithm 4 is guaranteed to be robust and efficient. In the latter part of
Section 2, a simplified state and a multi-solution state are also discussed and analyzed.

3. Convergence Analysis

Lemma 1. Suppose that F ∈ C2(D), where this function F is Equation (9). Assume that the
function F : D ⊆ R → R has a simple root X∗ ∈ D, where D is an open interval. If the initial

Axioms 2022, 11, 544 16 of 22

iterative point X0 is sufficiently close to X∗, then the method defined by the second step of Equation
(15) has second-order convergence.

Proof. This lemma is completely similar to the fundamental local convergence theorem of
Newton’s iterative method. We are not going to prove it.

Theorem 1. Algorithm 4 is able to converge successfully, and the order of convergence of Algo-
rithm 4 is no more than 2.

Proof. Part One: Algorithm 4 is able to converge successfully.
Algorithm 4 mainly contains three important components: Algorithm 1 (Newton’s

gradient descent method), Algorithm 2 (computing the foot-point Q and moving the itera-
tive point PI to the close position of the orthogonal projection point PΓ), and Algorithm 3
(the hybrid geometric accelerated orthogonal method).

From Remark 1, the function of Equation (11) is to cause the initial point X0 to be on the
algebraic surface as much as possible, according to the Newton’s gradient descent property.
Consequently, the initial point X0 can be realized to be fallen on the algebraic surface.

From Remark 2, the essential geometric feature of Algorithm 2 is to make the iteration
point PI of the first fallen on the algebraic surface realized by Algorithm 1 move five times,
and to let the iteration point PI be gradually moved to the position that is particularly close
to the orthogonal projection point PΓ. Thus, the final iteration point PI of Algorithm 2
satisfies the Newtonian’s local convergence condition of Algorithm 3.

From Remark 3, the geometric essence of Algorithm 3 is a Newton-type iteration. The
final iteration point of Algorithm 2 as the initial iteration point of Algorithm 3 can satisfy
the local convergence condition of Algorithm 3, or the initial iteration point of Algorithm 3
satisfies the convergence condition of iteration Formula (15); Algorithm 3 can converge
quickly and successfully.

In short, from the above analysis, we can show that Algorithm 4 can be convergent.

Part two: The order of convergence of Algorithm 4 is no more than 2.

In this part, a numerical analysis method is used to prove the order of convergence
of Algorithm 4. Algorithm 4 mainly includes three sub-algorithms: Algorithm 1 that
adopts Formula (11), Algorithm 2 that adopts Formula (14), and Algorithm 3 that adopts
Formula (15).

Firstly, the order of convergence of the iterative formula (11) is proven to be 2. Without
a loss of generality, it is assumed that the algebraic surface f (X) = 0 can be expressed in
parameterized form, where the parameter α = (α1, α2)

T is the corresponding parameter
of the orthogonal projection point PΓ of the test point P on the algebraic surface after
parameterization. It is not difficult to tell that the corresponding parameterized Newton’s
iteration of iteration (11) can be expressed as

Un+1 = Un − G1(Un)F1(Un), (20)

where G1(U) = F′−1
1 (U) is inverse matrix of the Jacobian matrix of the equation F1(U) = 0.

Taylor’s expansion is performed near the parameter root α = (α1, α2)
T of the equation

F1(U) = 0, then we have

F1(Un) = C0 + C1en + C2e2
n + o

(
e3

n

)
, (21)

where en = Un − α, Ci = (1/i!)
(

F(j)
1 (α)

)
, i = 0, 1, 2. From Equation (21), we can easily

obtain the following two formulas,

F′1(Un) = C1 + 2C2en + o
(

e2
n

)
(22)

Axioms 2022, 11, 544 17 of 22

and
F′′1 (Un) = 2C2 + o(en) (23)

Thus, according to Equations (21)–(23), it can be concluded that the iterative error of
Equation (20) is

en+1 = C−1
1 C2e2

n + o
(

e3
n

)
(24)

Equation (24) shows that iterative Equation (11) converges to order 2.
Secondly, it is deduced that the order of foot-point Q in Equation (14) is no more than

2. Since Q0 is the vertical foot derived from the tangent plane, it is clear that the order of
foot-point Q in Equation (14) is 1. Therefore, the order of convergence of the foot-point Q
is 1.

Thirdly, from Lemma 1, the order of convergence of the second equation of Equation
(15) is 2, and the order of convergence of the first equation of Equation (15) is also 2. Then,
the order of convergence of Equation (15) is 2.

Based on the above three parts, it can be seen that the order of convergence of Algo-
rithm 4 is no more than 2.

4. Experimental Results

Example 1. Suppose that an algebraic surface f (x, y, z) = x2

4 + xy + y2

13 + z − 1 = 0 (see
Figure 7), in the region [−200, 200] × [−200, 200] × [−200, 200]. All the computations were
performed using the mathematics and engineering computing software Maple 18, with ε = 10−20

via Algorithm 4. In Table 1, the four symbols P, PΓ, | f (PΓ)|, and F(PΓ) are the test point, the
orthogonal projection point of the test point, the deviation degree of the orthogonal projection
point on the algebraic surface, and the expression 〈∇ f (PΓ)× (P− PΓ),∇ f (PΓ)× (P− PΓ)〉
for the second formula of Equation (10), respectively. In the specified region, we randomly select
a mass of 3D points as test points. The probability of non-convergence using Algorithm 4 with
these test points is extremely low, which is detected to have very high robustness and efficiency.
Furthermore, in each quadrant of eight quadrants, we arbitrarily choose two different test points.
The corresponding orthogonal projection point for each test point is computed using Algorithm 4.
The concrete computed values are displayed in Table 1, where the digital values of the orthogonal
projective point we present are abbreviated. For example, if test point P is (320,490,730), the
actual values PΓ, | f (PΓ)| and F(PΓ) are (0.65483015050952098661, 0.11053569270327875241,
0.819477407332403977390), 1.0 × 10−20, and 3.0900825879965× 10−21, respectively. In Table 1,
the corresponding values of the other test points are completely the same. Limited by Table 1, we
only present four digits after the decimal point.

Figure 7. Graphic demonstration for Example 1.

Axioms 2022, 11, 544 18 of 22

Table 1. The obtained running results of Algorithm 4 through Example 1.

P (320, 490, 730) (376, 949, 738) (276, 806, −528)
PΓ (0.6548, 0.1105, 0.8194) (1.3100, −0.1467, 0.7615) (−1.5632, 0.2567, 0.7853)
| f (PΓ)| 1.0× 10−20 5.0× 10−20 2.0× 10−20

F(PΓ) 3.1× 10−21 1.3× 10−21 3.3× 10−22

P (476, −606, 238) (882, −206, 215) (582, −406, −715)
PΓ (−3.2380, 3.7149, 9.3464) (−1.8122, 5.1651, 7.4873) (0.74713, −1.1846, 1.6375)
| f (PΓ)| 2.0× 10−19 2.0× 10−20 0.0
F(PΓ) 6.5× 10−12 9.0× 10−21 4.9× 10−22

P (−622, 316, 213) (−307, 416, 213) (−207, 273, −376)
PΓ (2.1944, −4.1355, 7.5558) (2.4351, −2.7091, 5.5502) (−0.8714, 0.9816, 1.5914)
| f (PΓ)| 1.0× 10−19 5.9× 10−18 4.0× 10−20

F(PΓ) 2.5× 10−14 1.5× 10−13 5.6× 10−22

P (−359, −233, 246) (−259, −333, 246) (−249, −233, −556)
PΓ (−0.7784, −1.0665, −0.0692) (−1.2903, −0.4026, 0.0517) (0.3791, 0.2582, 0.8610)
| f (PΓ)| 1.0× 10−20 3.0× 10−20 1.0× 10−20

F(PΓ) 4.3× 10−17 3.1× 10−22 1.0× 10−18

P (476, 616, −5238) (522, −606, −215) (−237, 393, −256)
PΓ (−0.1122, −0.0347, 0.9928) (3.2821, −3.9458, 10.060) (−1.7864, 1.8008, 3.1697)
| f (PΓ)| 2.1× 10−18 3.8× 10−19 2.0× 10−19

F(PΓ) 8.9× 10−22 9.8× 10−14 1.9× 10−14

P (−249, −633, −256)
PΓ (2.5127, −0.2743, 0.1050)
| f (PΓ)| 0.0
F(PΓ) 6.7× 10−17

Example 2. Suppose an algebraic surface f (x, y, z) = x3 + y3 + z3 + 1− (x + y + z + 1)4 = 0
(see Figure 8), in the region [−200, 200] × [−200, 200] × [−200, 200]. All computations were
performed using the Maple 18 environment with ε = 10−20 via Algorithm 4. In Table 2, the
four symbols P, PΓ, | f (PΓ)|, and F(PΓ) are the test point, the orthogonal projection point of the
test point, the deviation degree of the orthogonal projection point on the algebraic surface, and the
expression 〈∇ f (PΓ)× (P− PΓ),∇ f (PΓ)× (P− PΓ)〉 for the second formula of Equation (10),
respectively. In the specified region, we randomly select a mass of 3D points as test points; the
probability of non-convergence using Algorithm 4 with these test points is extremely low, and
it is detected with very high robustness and efficiency. Furthermore, in each quadrant of eight
quadrants, we arbitrarily choose two different test points. The corresponding orthogonal projec-
tion point for each test point is computed using Algorithm 4. The concrete computed values are
displayed in Table 2, where the digital values of the orthogonal projective point we present are
abbreviated. For example, if test point P is (320,490,530), the actual values PΓ, | f (PΓ)| and
F(PΓ) are (0.89782830182962418807, −0.47457258895408409955, −0.30037859976898496332),
9.418433921× 10−10, and 1.6452196947017076704× 10−12, respectively. In Table 2, the corre-
sponding values of the other test points are completely the same. Limited by Table 2, we only present
10 digits after the decimal point.

Example 3. Now, we consider a self-intersecting quasi-algebraic surface f (x, y, z) = x2 − y2 +
z3 = 2, where y = exp(−xz) (see Figure 9). Since the surface is not a complete algebraic surface
in the true sense, some parts of the surface are singular regions, which may not converge for
Algorithm 4, but for non-singular regions, Algorithm 4 can still converge. In the specified region, we
arbitrarily choose two different 3D test points. The implementation requirements and environment
are exactly the same as those of Examples 1 and 2. The corresponding orthogonal projection point
for each test point was computed using Algorithm 4. The concrete computed values are displayed in
Table 3, and the digital values of the orthogonal projective point we present are abbreviated. From
Table 3, the probability of convergence using Algorithm 4 with these test points is high, which is
detected to be a sign of robustness and efficiency.

Axioms 2022, 11, 544 19 of 22

Table 2. The obtained running results of Algorithm 4 through Example 2.

P (320,490,530) (326,449,278)
PΓ (0.8978283018, −0.4745725889, −0.3003785997) (0.5805473488, 0.0686066996, −0.6802898709)
| f (PΓ)| 9.4× 10−10 6.1× 10−10

F(PΓ) 1.6× 10−12 5.4× 10−13

P (276, 306, −328) (376, 316, −238)
PΓ (0.3499239738, 0.2912835991, −0.9361716812) (0.2734464553, 0.3875179615, −0.9183591981)
| f (PΓ)| 2.6× 10−10 3.7× 10−10

F(PΓ) 1.8× 10−11 4.0× 10−11

P (276, −309, 238) (382, −206,215)
PΓ (0.2785766037, −0.9391397370, 0.3606532988) (0.1720828409, −0.9348105519, 0.5199384062)
| f (PΓ)| 5.2× 10−10 6.7× 10−10

F(PΓ) 2.6× 10−11 2.0× 10−11

P (382, −287, −409) (422, −306, −217)
PΓ (0.2468466777, −0.3925225425, −0.4136091918) (0.23453300365, −0.4031775077, −0.3865167494)
| f (PΓ)| 8.4× 10−10 8.5× 10−10

F(PΓ) 1.3× 10−11 1.1× 10−11

P (−422, 316, 213) (−307, 216, 293)
PΓ (−0.2590172850, −0.1971877899, −0.2069292587) (−0.2565723559, −0.2062237616, −0.1977314391)
| f (PΓ)| 9.5× 10−10 7.8× 10−10

F(PΓ) 5.8× 10−11 8.8× 10−11

P (−207, 273, −376) (−237, 393, −256)
PΓ (−0.3472321429, 0.1281172458, −0.3965695863) (−0.3615862188, 0.1322536132, −0.36628133060)
| f (PΓ)| 8.7× 10−10 7.7× 10−10

F(PΓ) 4.0× 10−12 2.3× 10−12

P (−359, −233, 246) (−259,−333,246)
PΓ (−0.3904801634, −0.3514720192, 0.1165325261) (−0.3594935775, −0.3823713615, 0.1161247111)
| f (PΓ)| 8.3× 10−10 7.2× 10−10

F(PΓ) 2.4× 10−12 4.7× 10−11

P (−249, −233, −556) (−249, −633, −256)
PΓ (0.6777775475, −0.6538305244, −1.0105058748) (0.62667855421, −0.9971463160, −0.6338419899)
| f (PΓ)| 2.8× 10−10 2.0× 10−10

F(PΓ) 3.1× 10−11 2.2× 10−11

Figure 8. Graphic demonstration for Example 2.

Remark 5. In this remark, outside the regions [−200, 200]× [−200, 200]× [−200, 200] specified
in Examples 1 and 2, we randomly selected two different test points in each quadrant that were
far from the algebraic surface. Through Algorithm 4, each test point can be orthogonally projected
onto the corresponding orthogonal projection point. The existing algorithms cannot converge to
the corresponding orthogonal projection points because the test points are far from the algebraic
surface, or the initialization points are not properly selected, etc. Table 4 shows whether the various

Axioms 2022, 11, 544 20 of 22

algorithms converge and the reasons for their convergence. Once again, it shows that Algorithm 4
can converge to the corresponding orthogonal projection point quickly, accurately, and efficiently.

Table 3. The obtained running results of Algorithm 4 through Example 3.

P (6, 7, 8) (8, 6, 5)
PΓ (0.9064333791, 6.9928001253, 1.1419222319) (1.2015703426, 5.9813549954, 0.8314404941)
| f (PΓ)| 5.5× 10−7 5.3× 10−6

F(PΓ) 4.6× 10−5 6.0× 10−4

P (6, −6, 6) (7, −6, 8)
PΓ (1.0295698711, −6.0000061990, 1.0295698711) (0.9723667468, −6.0029643353, 1.0843126066)
| f (PΓ)| 3.0× 10−10 1.6× 10−5

F(PΓ) 1.0× 10−9 9.1× 10−6

P (−4, 4, −5) (−4, 5, −6)
PΓ (−0.9304838087, 3.9918808576, −1.1213468254) (−0.8542470910, 4.9870922392, −1.1851067449)
| f (PΓ)| 8.6× 10−5 2.1× 10−5

F(PΓ) 9.4× 10−5 5.9× 10−5

P (−7, −6, −8) (−6, −8, −9)
PΓ (−0.9724553347, −6.0060342760, −1.0842198022023942600) (−0.8575669009, −8.0072947909, −1.1814724407)
| f (PΓ)| 1.9× 10−5 5.1× 10−5

F(PΓ) 2.9× 10−5 4.5× 10−5

Figure 9. Graphic demonstration of Example 3.

Table 4. Comparison of convergence results of various algorithms and their reason analysis with
Examples 1 and 2.

Algorithms Convergence or Not Reasons

Our Algorithm 4 Being convergent Being independent of the initial point.

Newton’s method Being divergent Being dependent on the initial point.

Algorithm [1] Being divergent Being dependent on the initial point.

Homotopy method [12,13] Being divergent Difficulty in finding an objective solving system of nonlinear equations
of homotopy method.

Resultant method [16–19] Being divergent
Difficulty in directly solving all solutions of nonlinear polynomial

system with the resultant method, due to the degree of the algebraic
surface being more than 4.

Bézier clipping
technique [20–22] Being divergent Equation (9) being difficult or even impossible to transform into

Bernstein–Bézier form for a fraction of the algebraic surfaces.

Algorithm [27] Being divergent The vertical foot-point being regarded as the next iteration point
resulting from the test point being far from the algebraic surface.

Axioms 2022, 11, 544 21 of 22

5. Conclusions and Future Work

In this paper, we discuss and analyze a topic associated with point orthogonal pro-
jection onto the algebraic surface. The presented key and core algorithm is involved in
constructing an orthogonal polynomial and using the Newton iterative method for itera-
tion. In order to ensure maximum robustness, two techniques were adopted before the
Newton iteration: (1) Newton’s gradient descent method, which is used to make the initial
iteration point fall onto the algebraic surface; and (2) computing the foot-point and moving
the iterative point to the close position of the orthogonal projection point. Theoretical
analysis and experiences show that the proposed algorithm could accurately and efficiently
converge to the orthogonal projection point for test points in different spatial positions.

In the future, we will try to study and explore some more efficient and robust algo-
rithms for calculating the minimum distance between a point and an algebraic surface, or
the shortest distance between two algebraic surfaces. For any unrestricted initial iteration
point and test point for any position in three-dimensional space, or for an irregular algebraic
surface, future work will involve constructing a brand new algorithm to satisfy the follow-
ing conditions: the convergence of a new algorithm should be robust and efficient, and the
convergent orthogonal projection point should simultaneously fit for three relationships of
Equation (9). It will undoubtedly be a huge future challenge to develop and explore such
satisfactory algorithms.

Author Contributions: The contributions of all the authors are the same. All of the authors teamed
up to develop the current draft. X.W. is responsible for investigating, providing resources and
methodology, the original draft, writing, reviewing, validation, and editing and supervision of this
work. Y.L. is responsible for software, algorithm, program implementation, and visualization. X.W. is
responsible for writing, reviewing, and editing and supervision of this work. X.L. is responsible for
algorithm, program implementation, and formal analysis of this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, Grant
No. 61263034, the Feature Key Laboratory for Regular Institutions of Higher Education of Guizhou
Province, Grant No. KY[2016]003, Shandong Youth University of Political Science Doctor Start-
ing Project No. XXPY20050(700212), and the Natural Science Research Project of Guizhou Minzu
University No. GZMUZK[2021]YB20.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We take the opportunity to thank the anonymous reviewers for their thoughtful
and meaningful comments. Many thanks to the editors for their great help.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Pegna, J.; Wolter, F.E. Surface curve design by orthogonal projection of space curves onto free-form surfaces. J. Mech. Des. 1996,

118, 45–52. [CrossRef]
2. Hartmann, E. The normal form of a planar curve and its application to curve design. In Mathematical Methods for Curves and

Surfaces II; Vanderbilt University Press: Nashville, TN, USA, 1997; pp. 237–244.
3. Liang, J.; Hou, L.K.; Li, X.W.; Pan, F.; Cheng, T.X.; Wang, L. Hybrid second order method for orthogonal projection onto parametric

curve in n-Dimensional Euclidean space. Mathematics 2018, 6, 306. [CrossRef]
4. Li, X.; Wang, L.; Wu, Z.; Hou, L.K.; Liang, J.; Li, Q. Hybrid second-order iterative algorithm for orthogonal projection onto a

parametric surface. Symmetry 2017, 9, 146. [CrossRef]
5. Hu, S.-M.; Wallner, J. A second order algorithm for orthogonal projection onto curves and surfaces. Comput. Aided Geom. Des. 2005,

22, 251–260. [CrossRef]
6. Li, X.W.; Wu, Z.N.; Pan, F.; Liang, J.; Zhang, J.F.; Hou, L.K. A gometric strategy algorithm for orthogonal projection onto a

parametric surface. J. Comput. Sci. Technol. 2019, 34, 1279–1293. [CrossRef]
7. Ma, Y.L.; Hewitt, W.T. Point inversion and projection for NURBS curve and surface: Control polygon approach. Comput. Aided

Geom. Des. 2003, 20, 79–99. [CrossRef]

http://doi.org/10.1115/1.2826855
http://dx.doi.org/10.3390/math6120306
http://dx.doi.org/10.3390/sym9080146
http://dx.doi.org/10.1016/j.cagd.2004.12.001
http://dx.doi.org/10.1007/s11390-019-1967-z
http://dx.doi.org/10.1016/S0167-8396(03)00021-9

Axioms 2022, 11, 544 22 of 22

8. Chen, X.-D.; Yong, J.-H.; Zheng, G.-Q. Computing Minimum Distance between Two Implicit Algebraic Surfaces. Comput.-Aided
Des. 2006, 38, 1053–1061. [CrossRef]

9. Kim, K.-J. Minimum Distance between A Canal Surface and A Simple Surface. Comput.-Aided Des. 2003, 35, 871–879. [CrossRef]
10. Lee, K.; Seong, J.K.; Kim, K.J.; Hong, S.J. Minimum distance between two sphere-swept surfaces. Comput.-Aided Des. 2007, 39,

452–459. [CrossRef]
11. William, H.P.; Brian, P.F.; Teukolsky, S.A.; William, T.V. Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.; Cambridge

University Press: Cambridge, UK, 1992.
12. Morgan, A.P. Polynomial continuation and its relationship to the symbolic reduction of polynomial systems. In Symbolic and

Numerical Computation for Artificial Intelligence; Academic Press: Cambridge, MA, USA, 1992; pp. 23–45.
13. Layne, T.W.; Billups, S.C.; Morgan, A.P. Algorithm 652: HOMPACK: A suite of codes for globally convergent homotopy algorithms.

ACM Trans. Math. Softw. 1987, 13, 281–310.
14. Berthold, K.P.H. Relative orientation revisited. J. Opt. Soc. Am. A 1991, 8, 1630–1638.
15. Dinesh, M.; Krishnan, S. Solving algebraic systems using matrix computations. ACM Sigsam Bull. 1996, 30, 4–21.
16. Chionh, E.-W. Base Points, Resultants, and the Implicit Representation of Rational Surfaces. Ph.D. Thesis, University of Waterloo,

Waterloo, ON, Canada, 1990.
17. De Montaudouin, Y.; Tiller, W. The Cayley method in computer aided geometric design. Comput. Aided Geom. Des. 1984, 1, 309–326.

[CrossRef]
18. Albert, A.A. Modern Higher Algebra; D.C. Heath and Company: New York, NY, USA, 1933.
19. Thomas, W.; David, S.; Anderson, C.; Goldman, R.N. Implicit representation of parametric curves and surfaces. Comput. Vis. Graph.

Image Proc. 1984, 28, 72–84.
20. Nishita, T.; Sederberg, T.W.; Kakimoto, M. Ray tracing trimmed rational surface patches. ACM Siggraph Comput. Graph. 1990, 24,

337–345. [CrossRef]
21. Elber, G.; Kim, M.-S. Geometric Constraint Solver Using Multivariate Rational Spline Functions. In Proceedings of the 6th ACM

Symposium on Solid Modeling and Applications, Ann Arbor, MI, USA, 4–8 June 2001; pp. 1–10.
22. Sherbrooke, E.C.; Patrikalakis, N.M. Computation of the solutions of nonlinear polynomial systems. Comput. Aided Geom. Des.

1993, 10, 379–405. [CrossRef]
23. Bartoň, M. Solving polynomial systems using no-root elimination blending schemes. Comput.-Aided Des. 2011, 43, 1870–1878.

[CrossRef]
24. van Sosin, B.; Elber, G. Solving piecewise polynomial constraint systems with decomposition and a subdivision-based solver.

Comput.-Aided Des. 2017, 90, 37–47. [CrossRef]
25. Park, C.H.; Elber, G.; Kim, K.J.; Kim, G.Y.; Seong, J.K. A hybrid parallel solver for systems of multivariate polynomials using CPUs

and GPUs. Comput.-Aided Des. 2011, 43, 1360–1369. [CrossRef]
26. Bartoň, M.; Elber, G.; Hanniel, I. Topologically guaranteed univariate solutions of underconstrained polynomial systems via

no-loop and single-component tests. Comput.-Aided Des. 2011, 43, 1035–1044. [CrossRef]
27. Hartmann, E. On the curvature of curves and surfaces defined by normal forms. Comput. Aided Geom. Des. 1999, 16, 355–376.

[CrossRef]
28. Nicholas, J.R. Implicit polynomials, orthogonal distance regression, and the closest point on a curve. IEEE Trans. Pattern Anal.

Mach. Intell. 2000, 22, 191–199.
29. Martin, A.; Jüttler, B. Robust computation of foot points on implicitly defined curves. In Mathematical Methods for Curves and

Surfaces: Troms? Nashboro Press: Brentwood, TN, USA, 2004; pp. 1–10.
30. Hu, M.; Zhou, Y.; Li, X. Robust and accurate computation of geometric distance for Lipschitz continuous implicit curves. Vis.

Comput. 2017, 33, 937–947. [CrossRef]
31. Cheng, T.; Wu, Z.; Li, X.; Wang, C. Point Orthogonal Projection onto a Spatial Algebraic Curve. Mathematics 2020, 8, 317. [CrossRef]
32. Cesarano, C. Generalized Chebyshev polynomials. Hacet. J. Math. Stat. 2014, 43, 731–740. [CrossRef]
33. Cesarano, C.; Cennamo, G.; Placidi, L. Humbert Polynomials and Functions in Terms of Hermite Polynomials towards Applications

to Wave Propagation. Wseas Trans. Math. 2014, 13, 595–602. [CrossRef]
34. Dattoli, G.; Ricci, P.E.; Cesaranoc, C. The Lagrange Polynomials, the Associated Generalizations and the Umbral Calculus. Integral

Transform. Spec. Funct. 2003, 14, 181–186.
35. Lopes, H.; Oliveira, J.B.; de Figueiredo, L.H. Robust adaptive polygonal approximation of implicit curves. Comput. Graph. 2002, 26,

841–852.
36. Paiva, A.; de Carvalho, Nascimento, F.; de Figueiredo, L.H.; Stolfi, J. Approximating implicit curves on triangulations with affine

arithmetic. In Proceedings of the SIBGRAPI 2012: 25th SIBGRAPI Conference on Graphics, Patterns and Images, Ouro Preto,
Brazil, 22–25 August 2011; IEEE Press: Piscataway, NJ, USA, 2012; pp. 94–101. [CrossRef]

37. de Carvalho Nascimento, F.; Paiva, A.; de Figueiredo, L.H.; Stolfi, J. Approximating implicit curves on plane and surface
triangulations with affine arithmetic. Comput. Graph. 2014, 40, 36–48. [CrossRef]

38. de Figueiredo, L.H.; Stolfi, J. Affine arithmetic: Concepts and applications. Numer. Algorithms 2004, 37, 147–158.
39. Paiva, A.; Lopes, H.; Lewiner, T.; de Figueiredo, L.H. Robust adaptive meshes for implicit surfaces. In Proceedings of the SIBGRAPI

2006: XIX Brazilian Symposium on Computer Graphics and Image Processing, Manaus, AM, Brazil, 8–11 October 2006; IEEE Press:
Piscataway, NJ, USA, 2006; pp. 205–212. [CrossRef]

http://dx.doi.org/10.1016/j.cad.2006.04.012
http://dx.doi.org/10.1016/S0010-4485(02)00123-9
http://dx.doi.org/10.1016/j.cad.2007.01.002
http://dx.doi.org/10.1016/0167-8396(84)90019-0
http://dx.doi.org/10.1145/97880.97916
http://dx.doi.org/10.1016/0167-8396(93)90019-Y
http://dx.doi.org/10.1016/j.cad.2011.09.011
http://dx.doi.org/10.1016/j.cad.2017.05.023
http://dx.doi.org/10.1016/j.cad.2011.08.030
http://dx.doi.org/10.1016/j.cad.2011.03.009
http://dx.doi.org/10.1016/S0167-8396(99)00003-5
http://dx.doi.org/10.1007/s00371-017-1370-0
http://dx.doi.org/10.1007/s00371-017-1370-0
http://dx.doi.org/10.1007/s00371-017-1370-0
http://dx.doi.org/10.3390/math8030317
http://dx.doi.org/10.1080/1065246031000098186
http://dx.doi.org/10.1016/S0097-8493(02)00173-5
http://dx.doi.org/10.1016/j.cag.2014.01.005

	Introduction
	Implementation of the Hybrid Geometry Strategy Algorithm
	Newton's Gradient Descent Method
	Moving the Iterative Point PI to the Close Position of the Orthogonal Projection Point P
	Hybrid Geometric Accelerating Orthogonal Method
	Treatment of Multiple Solutions

	Convergence Analysis
	Experimental Results
	Conclusions and Future Work
	References

