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Abstract: As communication continues to develop, the high freedom and low cost of the communica-
tion network environment also make rumors spread more rapidly. If rumors are not clarified and
controlled in time, it is very easy to trigger mass panic and undermine social stability. Therefore, it is
important to establish an efficient model for rumor propagation. In this paper, the impact of rumor
clarifiers on the spread of rumors is considered and fractional order differentiation is introduced
to solve the problem that traditional models do not take into account the “anomalous propagation”
characteristics of information. A fractional-order Susceptible-Infected-Removal-Clarify (SIR-C) rumor
propagation prediction model featuring the clarification mechanism is proposed. The existence
and asymptotic stability conditions of the rumor-free equilibrium point (RFEP) E0; the boundary
equilibrium points (BEPs) E1 and E2 are also given. Finally, the stability conditions and practical
cases are verified by numerical simulations. The experimental results confirm the analysis of the
theoretical study and the model fits well with the real-world case data with just minor deviations. As
a result, the model can play a positive and effective role in rumor propagation prediction.

Keywords: fractional-order; SIR model; rumor propagation; stability

MSC: 94-10

1. Introduction

Cyber rumors [1] are rumors propagated through the Internet medium that are not
based on facts and are offensive and purposeful. As communication technology has steadily
developed, large social networking sites, represented by Twitter and Weibo, have become
an important source of information reception for people. The China Internet Network
Information Center’s 50th Statistical Report [2] on the Development Status of the Internet in
China states that as of June 2022, there were 1.051 billion Internet users in China, with 99.6%
of those users accessing the Internet using mobile devices. This high degree of freedom, low
cost of dissemination and the huge scale of users have also led to the “explosive” spread
of cyber rumors. If cyber rumors are not clarified and controlled in a timely manner, but
are instead spread excessively, they can easily trigger irrational behaviour such as panic
and excessive anxiety among the public, disrupting public order, destabilising society and
even affecting the credibility of the state. Hence, it is of significant theoretical and practical
importance to analyse the mechanisms and laws of rumor propagation and to establish an
effective model of cyber rumor propagation.

Research into rumor propagation models began in the 1960s with the DK model [3],
which divided the audience into three categories according to rumor propagation: igno-
rants, spreaders and removers, and used stochastic process analysis to analyse rumor
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propagation. Subsequently, Maki and Thomson [4] proposed the MT model found on
the DK model and analysed the model mathematically. These two models produce rep-
resentative results and serve as the theoretical foundation for rumor propagation models.
However, there are still differences in the transmission mechanisms and pathways between
rumor propagation and disease propagation, and they are not fully applicable to the prop-
agation of cyber rumors. Since then, in order to obtain a more precise description of the
dynamic process and individual characteristics of rumor spread, a number of researchers
have started to consider the use of network topology to improve the traditional epidemic
model Susceptible-Infected-Removal (SIR), and have contributed significantly by using it
to analyze the spread of cyber rumors. Among them, the influence of human behaviour on
the rumor spreading process has received extensive attention and research from scholars.
Examples include the forgetting mechanism [5–7], hesitation mechanism [8,9], and leader’s
opinion [10,11], etc. Some studies [12] have also found that the pattern of human activities
can have an impact on the spread of information, making it slower.

In recent years, influenced by COVID-19, there has been a renewed interest in infec-
tious disease models and rumor propagation models, both domestically and internationally,
and many scholars have extended the models for more in-depth study. The authors of [13]
developed a model of information propagation with simultaneous censorship, sharing,
collection, and suppression mechanisms. The authors of [14] provide an evolutionary
game model that considers how individual choices affect the spread and management of
rumors. The authors of [15] contend that the spread of rumors is influenced by the state of
scientific knowledge. The authors of [16] provide a model with an influence mechanism,
taking into account the likelihood of propagation in rumor transmission is not fixed, but is
influenced by the number of current propagations. The authors of [17] address the current
gap in research on the propagation power of rumors based on a function of two types of
characteristics of content: false rumors and true rumors.

Although the above articles make an important contribution to rumor propagation,
there are still problems with these models. Firstly, most of the models are built using the
traditional integer-order. However, the integer-order model does not show the “anomalous
propagation” of the actual information spread, that is, the rumor spreads explosively fast
in the early stages and slows down in the later stages. The fractional-order model is a
good solution to this problem. Fractional-order calculus provides a tool to describe the
genetic and memory impacts of different materials. The memorability and heritability of
fractional-order differentiation is theoretically proven and widely used [18–21]. For the
rumor propagation model, memorability is an important feature of immunity. When a
rumor spreads, people “remember” the clarifying information once they have received it
in response to a successful immune response to the rumor, and this memorability plays
an important role in stopping the spread of the rumor. Furthermore, the determination
of future states throughout the spread of rumors depends on the historical process of
propagation. The way in which a person reacts to external influences also depends on the
experience he has accumulated in the past, and fractional-order differentiation is a very
natural tool for modelling heritability, and is also considered to be the best method for
modelling transmission [22]. Secondly, there are fewer existing rumor models that provide
a mathematical analysis of their global asymptotic stable(GAS). Therefore, this study and
gives local asymptotic stable(LAS) and GAS conditions for the rumor-free equilibrium point
(RFEP) E0 and the boundary equilibrium points (BEPs) E1, E2 of the fractional-order model.
Furthermore, most research make the assumption that rumors spread within a closed
system and do not account for the inflow and outflow of the population. In fact, social
networks are open platforms that need to take into account the impact of individual flows
during the propagation process. Using the analysis just mentioned, this paper investigates
a fractional-order Susceptible-Infected-Removal-Clarify (SIR-C) cyber rumor propagation
prediction model with a clarification mechanism.

To sum up, the main contributions of this research are fourfold:
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1. We propose fractional-order differentiation to solve the problem of ‘’anomalous prop-
agation” of cyber rumors;

2. We propose a mechanism containing clarification considering the influence of clarifiers
in the spread of cyber rumors;

3. We propose LAS and GAS conditions for the RFEP (E0) and the BEPs (E1, E2) of
the model;

4. We consider the population inflow and outflow of rumor propagation in social networks.

The remainder of the paper is structured as follows. In Section 2, we describe a
fractional-order SIR-C cyber rumor propagation prediction model featuring the clarification
mechanism, and introduce the mathematical properties of the corresponding fractional-
order differential equations. In Section 3, the RFEP (E0) and the BEPs (E1, E2) are obtained
and their stability is discussed. In Section 4, numerical simulations are used to verify the
theoretical study and the usefulness of the model is verified by the actual event of ‘’Record
low average maths score in 2022 National College Entrance Examnation(NEMT)”. A brief
conclusion of the paper is given in Section 5.

2. Formulation of Fractional-Order SIR-C Model with Basic Mathematical Properties

In this section, the model’s fractional-order differential equations, the structure, and
the basic mathematical properties are systematically introduced.

2.1. Conformable Fractional Derivative (CFD)

In the last few decades, fractional-order differential models have been popular in
several domains such as engineering and science due to their unique memory effects and
genetic properties [23], no longer applied only in pure mathematics. Typical definitions of
fractional-order derivatives are the Riemann-Liouville (RL) [24], the Caputo [25] and the
CFD [26]. The deficiency of RL and Caputo is that they lose the basic properties such as
multiplication and chaining that general derivatives have [27]. In this paper, CFD is used,
which satisfies the product, quotient and chain rules for non-linear derivatives and will
make the model calculation easier. And it can be converted directly to an equation of integer-
order, which facilitates subsequent model comparisons, which facilitates subsequent model
comparisons [28]. The authors of [29,30] demonstrate the computational simplicity of
CFD compared to other fractional order differentiations. CFD is a new well-behaved and
simple definition that has the ability to successfully overcome some of the drawbacks of
the traditional definition. So this paper takes advantage of CFD in applied problems.CFD
fractional-order derivatives are defined as follows.

Definition 1. For all t > 0, α ∈ (0, 1]. Given a function f : [0, ∞) → R. Then the CFD of f of
order α is defined by

Dα f (t) = lim
ε→0

f (t + εt1−α)− f (t)
ε

, (1)

if f is α-differentiable in some (0, α), and limt→0+ f α(t) exist, then define

f α(0) = lim
t→0+

f α(t). (2)

Sometimes, we will write f α(t) for Dα f (t), to denote the CFD of f of order α.
We should be aware that Dα(tp) = ptp−α, Further, the definition of CFD is consistent

with the classical definition of RL and Caputo on polynomials and has the multiplication
and chain laws.

Theorem 1. [26] Let α ∈ (0, 1], and f be α-differentiable at a point t > 0. If, in addition, f is
differentiable. Then,

Dα f (t) = t1−α d f
dt

(t), (3)
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2.2. Formulation of the Model

It is well known that persuasive rumor-clearing messages have a significant effect
in curbing the spread of rumors [14,31]. Moreover, social networking is an open-ended
interactive platform, with users registering or logging out at any time, and a large number
of users are attracted by rumors and flock to social networks to discuss and spread the topic.
The rumor propagation model takes into account the inflow and outflow of people on the
rumor topic, and combines the memory effect and genetic properties of fractional-order
calculus to illustrate the ‘’anomalous propagation” of rumors. Finally, a fractional-order
cyber rumor propagation prediction model with a clarification mechanism is formulated.

The model is based on the following assumptions:

• In social networking sites, we assume that there is a fixed rate of population inflow
and outflow, and the quantity of individuals entering each time unit remains constant,
i.e., the inflow rate is Λ and the outflow rate is d;

• The total number of transmission subjects N changes over time and is divided into
three divisions: S (susceptible), which refers to nodes that not received information
about the rumor; I (infected), which refers to nodes that receive the rumor and
propagate it; C ( clarify), which refers to people who learn the truth and clear up the
rumor; and R ( removal), which refers to nodes that immune to the cyber rumor and
not propagate it;

• Suppose that susceptible persons are converted to infected persons (transmitters,
clarifiers) by a proportionality factor ( spread rate) β as a result of being affected by
the spread of the rumor. The setting for the rumor transmission rate is β1 and the
rumor clarification rate is β2. The conversion rate of spreaders to clarifiers is set to µ;

• Infected persons ( spreaders, clarifiers) are converted to immune persons by a scaling
factor (removal rate) γ. The removal rate for spreaders is set to γ1 and the removal
rate for clarifiers is set to γ2;

• All parameters are constants with non-negative values between 0 and 1.

Based on the above assumptions, we can obtain the basic scheme of the fractional
order SIR-C model, as seen in Figure 1.

Figure 1. The basic scheme of the fractional-order SIR-C model.

The specific details of the S, I, C and R nodes and the transformation relationships of
the four nodes are described below:

• S-nodes refer to those that have not received the cyber rumor and are not yet affected
by it. Some S-nodes may receive rumor information and be influenced by it, listen to
the rumor and transform into I-nodes with spread rate β1 to spread cyber rumor. Some
S-nodes may receive rumor clarification information, learn the truth, and transform
into C-nodes at spread rate β2 to spread the truth about the facts;

• I-nodes refer to those that receive cyber rumors, listen to them and spread them. Some
I-nodes are likely to learn the truth and transform to C-nodes with conversion rate
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µ, clarify the rumor and spread it. Some I-nodes may lose interest in the rumor topic
as time passes and are transformed to an immune and indifferent state at a removal
rate γ1;

• C-nodes refer to those that know the truth and clarify the rumor. When the C-nodes
have finished clarifying the rumor, they will be immune to the rumor at a removal
rate γ2 and will no longer pay attention to it;

• R-nodes refer to those that have received the information, lost interest in the rumor
topic and will not have any further influence on the rumor topic.

Based on the above analysis of the model node transition rules, the differential equation
for the fractional-order SIR-C model can be derived as Equation (4).

DαS(t) = Λ− β1S(t)I(t)− β2S(t)C(t)− dS(t),

Dα I(t) = β1S(t)I(t)− µI(t)C(t)− (γ1 + d)I(t),

DαC(t) = β2S(t)C(t) + µI(t)C(t)− (γ2 + d)C(t),

DαR(t) = γ1 I(t) + γ2C(t)− dR(t),

(4)

where, S(t), I(t), C(t) and R(t) are denoted as the quantities of S, I, R and C at moment t
respectively. S(0), I(0), C(0), R(0) ≥ 0. Λ, d, β1, β2, µ, γ1, γ2 ∈ (0, 1).

The number of individuals across all social networks is a in social networks is N(t), i.e.,

N(t) = S(t) + I(t) + C(t) + R(t), (5)

when, Equation (4) is substituted into Equation (5), we get

DαN(t) = Λ− dN(t), (6)

Thus N(t) = Λ
d +

(
N(0)− Λ

d

)
e−dt. Hence, we have limt→0+ N(t) = Λ

d . The positive

variable set of the system (4) is Φ =
{
(S, I, C, R) ∈ R+

4 : S + I + C + R 6 Λ
d

}
.

Obviously, R(t) does not affect the first three equations in system (4), and the R
state node appears only in the fourth equation, which is determined by S, I and C. The
dimensionality of system (4) can be reduced to eliminate the R state node in the differential
equation. The simplified model is as follows.

DαS(t) = Λ− β1S(t)I(t)− β2S(t)C(t)− dS(t),

Dα I(t) = β1S(t)I(t)− µI(t)C(t)− (γ1 + d)I(t),

DαC(t) = β2S(t)C(t) + µI(t)C(t)− (γ2 + d)C(t),

(7)

Thus, the feasible region of the system (7) can be described as a closed positively
invariant set, denoted by Ω =

{
(S, I, C) ∈ R+

3 : S + I + C 6 Λ
d

}
. A subsequent stability

analysis of the fractional order SIR-C model will use system (7).

3. System Equilibrium Points and Stability Analysis

In this part, equilibrium points and basic reproduction number(BRN) of fractional-
order cyber rumor propagation models are computed, as well as the stability of cyber
rumor propagation equilibrium states is discussed using Lyapunov’s stability theorem and
the Routh-Hurwitz criterion. This section focuses on the local and global stability of three
equilibrium points, the RFEP (E0) and the BEPs (E1, E2).
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3.1. RFEP(E0)

System (7) has a RFEP E0 = (S0, I0, C0), where there are neither rumor spreaders
nor rumor clarifiers. Let System (7)’s rightmost component be zero. The new equation is
expressed as follows:

Λ− β1S(t)I(t)− β2S(t)C(t)− dS(t) = 0,

β1S(t)I(t)− µI(t)C(t)− (γ1 + d)I(t) = 0,

β2S(t)C(t) + µI(t)C(t)− (γ2 + d)C(t) = 0,

(8)

According to the definition of the RFEP, under the condition I0 = 0, C0 = 0. We obtain
the unique RFEP.

E0 = (S0, I0, C0) = (
Λ
d

, 0, 0).

Next, using the concept of the BRN R0 [32] from the classical infectious disease model
as an important parameter for determining whether a rumor can be quelled. R0 is defined
as the quantity of people a cyber rumor spreader can convert susceptible people into cyber
rumor spreaders in the process of spreading. Subsequent analyses of stability were carried
out based on R0.

The next generation matrix method [33] is applied to solve for R0, which is referred to
as the next-generation matrix’s spectral radius.

Let X(t) = (S(t), I(t), C(t))T, system (7) is rewriteable as

DαX(t) = F (x) +Ψ(x), (9)

where,

F (x) =

 0
β1S(t)I(t)

β2S(t)C(t) + µI(t)C(t)

,Ψ(x) =

β1S(t)I(t) + β2S(t)C(t) + dS(t)
µI(t)C(t) + (γ1 + d)I(t)

(γ2 + d)C(t)

.

Further, calculate the Jacobi matrix ofF (x),Ψ(x) at E0 = (Λ
d , 0, 0), repectively, we have

J(F|E0) =

0 0 0
0 β1Λ

d 0
0 0 β2Λ

d

 =

[
0 0
0 F

]
, J(Ψ|E0) =

d β1Λ
d

β2Λ
d

0 γ1 + d 0
0 0 γ2 + d

 =

[
A A1
0 V

]
.

where,

F0 =

[
β1Λ

d 0
0 β2Λ

d

]
, V0 =

[
γ1 + d 0

0 γ2 + d

]
.

Therefore, the next generation FV−1 can be calculated as follows:

(F0V0)
−1 =

[ β1Λ
d(γ1+d) 0

0 β2Λ
d(γ2+d)

]
.

The R0 of system (7), which is the spectral radius of the matrix FV−1, we obtain

R0 = ρ
(
(F0V0)

−1
)
= max

{
β1Λ

d(γ1 + d)
,

β2Λ
d(γ2 + d)

}
. (10)

where,
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R01 =
β1Λ

d(γ1 + d)
, R02 =

β2Λ
d(γ2 + d)

.

Theorem 2. For system (7), if R01 < 1 and R02 < 1. Then, the RFEP E0 is LAS.

Proof. The Jacobi matrix of system (7) at E0 = (Λ
d , 0, 0) as follows.

J(E0) =

−d − β1Λ
d − β2Λ

d
0 β1Λ

d − (γ1 + d) 0
0 0 β2Λ

d − (γ2 + d)

.

Considering the upper triangular matrix’s characteristics, the eigenvalues of the matrix
J(E0) can be obtained.

λ1 = −d,

λ2 =
β1Λ

d
− (γ1 + d) = (γ1 + d)(R01 − 1),

λ3 =
β2Λ

d
+ (γ2 + d) = (γ2 + d)(R02 − 1).

If R01 < 1 and R02 < 1 (i.e., R0 < 1), then λ1, λ2, λ3 < 0, and they all have negative real
parts. According to the Lyapunov stability theorem [34], the RFEP E0 is LAS. Conversely, if
R0 > 1, then only at least one of λ2 and λ3 is positive, then E0 is unstable.

Theorem 3. For system (7), if R01 < 1 and R02 < 1. Then, the RFEP E0 is GAS.

Proof. Let X(t) = (S(t), I(t), C(t))T, According to the Lyapunov stability theorem, the
Lyapunov function V(t) is constructed.

V(t) =
(

S(t)− S0 ln
S(t)
S0

)
+ I(t) + C(t).

Next, by taking CFD in time of the function V(t) ,using the basic arithmetic properties
of CFD and the define of BRN, we immediately obtain.

DαV(t) =
(

1− S0

S(t)

)
DαS(t) + Dα I(t) + DαC(t),

= 2Λ−
(

dS(t) +
Λ2

dS(t)

)
+

(
Λβ1

d
− (γ1 + d)

)
I(t) +

(
Λβ2

d
− (γ2 + d)

)
C(t),

= Λ
(

2− dS(t)
Λ
− Λ

dS(t)

)
+ (γ1 + d)(R01 − 1) + (γ2 + d)(R02 − 1).

where,

dS(t) > 0, Λ > 0.

from the basic inequality we know that.(
2− dS(t)

Λ
− Λ

dS(t)

)
≤ 0.

The formula takes the equal sign when and only when dS(t) = Λ, i.e., S(t) = S0 = Λ
d .

Therefore, we directly get that

DαV(t) ≤ (γ1 + d)(R01 − 1) + (γ2 + d)(R02 − 1).

If R01 < 1 and R02 < 1, then, for all X(t) ∈ Ω, when X(t) 6= E0, we have DαV(t) < 0.
According to the LaSalle invariant principle [35], E0 is GAS.
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3.2. BEP E1

System (7) has a BEP E1 = (S1, I1, C1), where there are no rumor spreaders, but exist
rumor clarifiers.

According to the defintion of E1, under the condition I0 = 0, brought into Equation (8).
We obtain E1.

E1 = (S1, I1, C1) =

(
γ2 + d

β2
, 0,

β2 − d(γ2 + d)
β2(γ2 + d)

)
=

(
S0

R02
, 0,

d(R02 − 1)
β2

)
. (11)

Futher, calculate the Jacobi matrix of F (x),Ψ(x) at E1, repectively, we have

J(F|E1) =

 0 0 0
0 β1S1 0

β2C1 µC1 β2S1

, J(Ψ|E1) =

β2C1 + d β1S1 β2S1
0 µC1 + (γ1 + d) 0
0 0 γ2 + d

.

where,

F1 =
[
β1S1

]
, V1 =

[
µC1 + (γ1 + d)

]
.

The BRN R1 of system (7), which is the spectral radius of the matrix (F1V1)
−1, we

obtain
R1 = ρ

(
(F1V1)

−1
)
=

β1S1

µC1 + (γ1 + d)
. (12)

Theorem 4. For system (7), if R1 < 1. Then, the BEP E1 is LAS.

Proof. The Jacobi matrix of system (7) at E1 = (S1, I1, C1) =
(

S0
R02

, 0, d(R02−1)
β2

)
as follows.

J(E1) =

−β2C1 − d −β1S1 −β2S1
0 β1S1 − µC1 − (γ1 + d) 0

β2C1 µC1 β2S1 − (γ2 + d)

.

The characteristic equation of the matrix J(E1) can be written as

(λ− β1S1 + µC1 + (γ1 + d))(λ + β2C1 + d)(λ− β2S1 − (γ2 + d)) + β2S1β2C1 = 0,

through simplification, we obtain

(λ− β1S1 + µC1 + (γ1 + d))
(

λ2 + (ma + mb)λ + mcmd

)
= 0, (13)

where,

ma = β2C1 + d,

mb = −β2S1 + (γ2 + d),

mc = β2S1,

md = β2C1.

from the Equation (13), we can easily obtain the eigenvalues λ1.

λ1 = β1S1 − µC1 − (γ1 + d).

If R1 < 1, i.e.,
(

β1S1
µC1+(γ1+d) < 1

)
, the eigenvalues λ1 < 0.

The remaining two eigenvalues λ2 ans λ3 satisfy the following equation.(
λ2 + (ma + mb)λ + mcmd

)
= 0, (14)
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Taking E1 = (S1, 0, C1) into the third line of the formula in Equation (8) we get

β2S1 − (γ2 + d) = 0.

thus,

ma + mb = β2C1 + d− β2S1 + (γ2 + d) = β2C1 + d > 0,

mcmd = (β2)
2S1C1 > 0,

According to the Routh-Hurwiz criterion [36], two eigenvalues of Equation (14) with
λ2, λ3 < 0 can be easily obtained. If R1 < 1, then λ1, λ2, λ3 < 0, according to the Lyapunov
stability theorem, the BEP E1 is LAS. Conversely, if R1 > 1. Then, λ1 > 0 and the E1
is unstable.

Theorem 5. For system (7), if R02 > 1 and R1 < 1. Then, the BEP E1 exists and is GAS.

Proof. Let X(t) = (S(t), I(t), C(t))T, According to the Lyapunov stability theorem, the
Lyapunov function V1(t) is constructed.

V1(t) =
(

S(t)− S1 ln
S(t)
S1

)
+ I(t) +

(
C(t)− C1 ln

C(t)
C1

)
.

Next, by taking CFD in time of the function V1(t) ,using the basic arithmetic properties
of CFD and the define of BRN, we immediately obtain.

DαV1(t) =
(

1− S1

S(t)

)
DαS(t) + Dα I(t) +

(
1− C1

C(t)

)
DαC(t),

= Λ
(

1− S1

S(t)

)
+ I(t)(β1S1 − (γ1 + d)− µC1) + dS1 − dS(t)− β2C1S(t) + C1(γ2 + d),

= β2S1C1

(
2− S1

S(t)
− S(t)

S1

)
+ dS1

(
2− S1

S(t)
− S(t)

S1

)
+ I(t)(β1S1 − (γ1 + d)− µC1),

= (β2S1C1 + dS1)

(
2− S1

S(t)
− S(t)

S1

)
+ I(t)(β1S1 − (γ1 + d)− µC1),

where,

S(t) > 0, S1 > 0, (β2S1C1 + dS1) > 0.

from the basic inequality we know that.(
2− S1

dS(t)
− dS(t)

S1

)
≤ 0.

The formula takes the equal sign when and only when S1 = S(t).
Therefore, we directly get that

DαV1(t) ≤ I(t)(β1S1 − (γ1 + d)− µC1),

≤ I(t)(µC1 + (γ1 + d))(R1 − 1).

where,

I(t) > 0, (µC1 + (γ1 + d)) > 0.

If R1 < 1, for all X(t) ∈ Ω, when X(t) 6= E1, we have DαV1(t) < 0. According to the
LaSalle invariant principle, E1 is GAS. From Equation (11), the E1 exists if d(R02−1)

β2
> 0, i.e.,

R02 > 1.
Overall, if R02 > 1 and R1 < 1. Then, the BEP E1 exists and is GAS.
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3.3. BEP E2

System (7) has a BEP E2 = (S2, I2, C2), where there are no rumor clarifiers, but exist
rumor spreaders.

According to the defintion of E2, under the condition C0 = 0, brought into Equation (8).
We obtain the E2.

E2 = (S2, I2, C2) =

(
γ1 + d

β1
,

Λ− d(γ1 + d)
β1(γ1 + d)

, 0
)
=

(
S0

R01
,

d(R01 − 1)
β1

, 0
)

. (15)

Futher, calculate the Jacobi matrix of F (x),Ψ(x) at E2, repectively, we have

J(F|E2) =

 0 0 0
β1 I2 β1S2 0

0 0 β2S2 + µI2

, J(Ψ|E2) =

β1 I2 + d β1S2 β2 I2
0 γ1 + d µI2
0 0 γ2 + d

.

where,

F2 =
[
β2S2 + µI2

]
, V2 =

[
γ2 + d

]
.

The BRN R2 of system (7), which is the spectral radius of the matrix (F2V2)
−1, we ob-

tain
R2 = ρ

(
(F2V2)

−1
)
=

β2S2 + µI2

(γ2 + d)
. (16)

Theorem 6. For system (7), if R2 < 1. Then, the BEP E2 is LAS.

Proof. The Jacobi matrix of system (7) at E2 = (S2, I2, C2) =
(

S0
R01

, d(R01−1)
β1

, 0
)

as follows.

J(E2) =

−β1 I2 − β2C2 − d −β1S2 −β2S2
β1 I2 β1S2 − µC2 − (γ1 + d) −µI2
β2C2 µC2 β2S2 + µI2 − (γ2 + d)

.

=

−β1 I2 − d −β1S2 −β2S2
β1 I2 β1S2 − (γ1 + d) −µI2

0 0 β2S2 + µI2 − (γ2 + d)


The characteristic equation of the matrix J(E2) can be obtained as

(λ− β2S2 + µI2 + (γ2 + d))(λ + β1 I2 + d)(λ− β1S2 − (γ1 + d)) + β1S2β1 I2 = 0,

Through simplification, we obtain

(λ− β2S2 − µI2 + (γ2 + d))
(

λ2 + (na + nb)λ + ncnd

)
= 0, (17)

where,

na = β1 I2 + d,

nb = −β1S2 + (γ1 + d),

nc = β1S2,

nd = β1 I2.

from the Equation (17), we can easily obtain the eigenvalues λ1.

λ1 = β2S2 + µI2 − (γ2 + d).

If R2 < 1, i.e.,
(

β2S2+µI2
(γ2+d) < 1

)
, the eigenvalues λ1 < 0.
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The remaining two eigenvalues λ2 ans λ3 satisfy the following equation.(
λ2 + (na + nb)λ + ncnd

)
= 0, (18)

Taking E2 = (S2, I2, 0) into the second line of the formula in Equation (8) we get

β1S2 − (γ1 + d) = 0.

Thus,

na + nb = β1 I2 + d− β1S2 + (γ1 + d) = β1 I2 + d > 0,

ncnd = (β1)
2S2 I2 > 0,

According to the Routh-Hurwiz criterion, two eigenvalues of Equation (18) with
λ2, λ3 < 0 can be easily obtained. If R2 < 1, then λ1, λ2, λ3 < 0, according to the Lya-
punov stability theorem, the BEP E2 is LAS. Conversely, if R2 > 1. Then, λ1 > 0 the E2
is unstable.

Theorem 7. For system (7), if R01 > 1 and R2 < 1. Then, the BEP E2 exists and is GAS.

Proof. Let X(t) = (S(t), I(t), C(t))T, According to the Lyapunov stability theorem, the
Lyapunov function V2(t) is constructed.

V2(t) =
(

S(t)− S2 ln
S(t)
S2

)
+

(
I(t)− I2 ln

I(t)
I2

)
+ C(t).

Next, by taking CFD in time of the function V2(t) ,using the basic arithmetic properties
of CFD and the define of BRN, we immediately obtain.

DαV2(t) =
(

1− S2

S(t)

)
DαS(t) +

(
1− I2

I(t)

)
Dα I(t) + DαC(t),

= Λ
(

1− S2

S(t)

)
+ C(t)(β2S2 − (γ2 + d) + µI2) + dS2 − dS(t)− β1 I2S(t) + I2(γ1 + d),

= β1S2 I2

(
2− S2

S(t)
− S(t)

S2

)
+ dS2

(
2− S2

S(t)
− S(t)

S2

)
+ C(t)(β2S2 − (γ2 + d) + µI2),

= (β1S2 I2 + dS2)

(
2− S2

S(t)
− S(t)

S2

)
+ C(t)(β2S2 − (γ2 + d) + µI2),

where,

S(t) > 0, S2 > 0, (β1S2 I2 + dS2) > 0.

from the basic inequality we know that.(
2− S2

dS(t)
− dS(t)

S2

)
≤ 0.

The formula takes the equal sign when and only when S2 = S(t).
Therefore, we directly get that

DαV2(t) ≤ C(t)(β2S2 − (γ2 + d) + µI2),

≤ C(t)(γ2 + d)(R2 − 1).

where,

C(t) > 0, (γ2 + d) > 0.
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If R2 < 1, for all X(t) ∈ Ω, when X(t) 6= E2, we have DαV2(t) < 0. According to
the LaSalle invariant principle, the BEP E2 is GAS. From Equation (15), the E2 exists if
d(R01−1)

β1
> 0, i.e., R01 > 1.

Overall, if R01 > 1 and R2 < 1. Then, the BEP E2 exists and is GAS.

4. Numerical Simulations and Discussions

In this part, Matlab is used as the simulation platform to numerically simulate the
System (7) to verify the results of the RFEP (E0) and the BEPs (E1, E2) are in agreement with
Theorems 3, 5 and 7. The prediction results of the fractional-order SIR-C model and the
traditional SIR model are compared to validate the feasibility of the model using the actual
cyber rumor ‘’Record low average maths score in 2022 NEMT”. The descriptions of the key
parameters mentioned in this section are specified in Table 1.

Table 1. Description of the parameters used in numerical siumlations.

Parameter Description

Λ Unit time inflow rate of users
β1 Unit time rumor spread rate
β2 Unit time rumor clarification rate
d Unit time outflow rate of users
µ Unit time conversion rate of spreaders to clarifiers
γ1 Unit time removal rate for spreaders
γ2 Unit time removal rate for clarifiers
α Differential order

4.1. Stability Simulation and Analysis of RFEP E0

Using the data in Table 2, the global asymptotic stability of E0 was simulated. where the
initial value of the propagation density for each node in the system is set as:
S(0) = 0.7, I(0) = 0.2, C(0) = 0.1, R(0) = 0. The different differential orders α ∈ {0.7, 1, 1.2}
were set to verify the effect of different α on the fractional-order SIR-C rumor propagation
model. The simulation results are shown in Figure 2.

Table 2. Parameter for the global asymptotic stability of E0.
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Figure 2. (a) Global stability of the rumor-free equilibrium point (RFEP) E0 = (1, 0, 0), for system
(7). (b) Consider the effect of different differential orders of α ∈ {0.7, 1, 1.2} on the spread of cyber
rumors, for system (7).
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According to the data in Table 2, it can be obtained that , R01 = 0.833 < 1, and
R02 = 0.667 < 1. From Figure 2a, the system (7) will gradually converge to the E0 = (1, 0, 0)
as time goes on, i.e., E0 is GAS. This is in agreement with Theorem 3.

Meanwhile, we observe that over time, S tends to 1 and I and C tend to 0. This
means that the density of nodes spreading rumors will eventually shift to zero and cease
to fluctuate, and the rumors will eventually be eliminated. That is, system (7) reaches a
steady state where there are no rumor spreaders and clarifiers, only susceptible people. At
the same time, it can be found that the fewer rumor spreaders there are, the fewer rumor
clarifiers there will be, which is consistent with the actual rumor propagation process in
social networking sites. The authors of [37] have analyzed the actual rumor spreading
process of ‘’Does KFC sell rat?” in social networking sites. The analysis of the rumor
messages and counter-rumor messages volumes obtained according to the conclusions
of [37] is in agreement with the results of the theoretical variation of rumor spreaders and
rumor clarifiers in this paper. The veracity of the results of this numerical simulation is
further verified.

With Figure 2b, we observe that the fractional-order model is equivalent to that of
the traditional integer-order system when the value of α is taken as 1. As the value of α
decreases, the curve of rumor propagation converges more slowly. From the perspective
of pubic opinion propagation, its interpretation suggests that such rumors take longer
to eradicate.

4.2. Stability Simulation and Analysis of BEP E1

Using the data in Table 3, the global asymptotic stability of E1 was simulated. where the ini-
tial value of the propagation density for each node in the system is set as:
S(0) = 0.8, I(0) = 0.1, C(0) = 0.1, R(0) = 0. The different differential orders α ∈ {0.6, 0.8, 1.1}
were set to verify the effect of different α on the fractional-order SIR-C rumor propagation
model. The simulation results are shown in Figure 3.

Table 3. Parameter for the global asymptotic stability of E1.
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Figure 3. (a) Global stability of the boundary equilibrium point (BEP) E1 = (0.525, 0, 0.45), for system
(7). (b) Consider the effect of different differential orders of α ∈ {0.6, 0.8, 1.1} on the spread of cyber
rumors, for system (7).

According to the data in Table 3, it can be obtained that , R02 = 1.90 > 1, and R1 = 0.152 < 1.
From Figure 3a, the system (7) will gradually converge to the E1 = (0.525, 0, 0.45) as time goes
on, i.e., E1 is GAS. This is in agreement with Theorem 5.

Meanwhile, we observe that over time, S and C converge to a constant and I converges
to 0. This means that the density of nodes spreading rumors will eventually shift to 0
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and cease to fluctuate, and the rumors will eventually be eliminated. This means that
system (7) reaches a steady state where there are no rumor spreaders, only susceptibles and
clarifiers. It can also be found that the more rumor clarifiers there will be, the fewer rumor
spreaders there will be, which is consistent with the actual rumor propagation process in
social networking sites.

Through Figure 3b, we observe that the curve of rumor propagation converges more
slowly as the value of α decreases, a situation that may affect the longer duration of
rumor propagation.

4.3. Stability Simulation and Analysis of BEP E2

Using the data in Table 4, the global asymptotic stability of E2 was simulated. where the
initial value of the propagation density for each node in the system is set as:
S(0) = 0.8, I(0) = 0.1, C(0) = 0.1, R(0) = 0. The different differential orders α ∈ {0.9, 1, 1.3}
were set to verify the effect of different α on the fractional-order SIR-C rumor propagation
model. The simulation results are shown in Figure 4.

Table 4. Parameter for the global asymptotic stability of E2.
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Figure 4. (a) Global stability of the BEP E2 = (0.6, 0.38, 0), for system (7). (b) Consider the effect of
different differential orders of α ∈ {0.9, 1, 1.3} on the spread of cyber rumors, for system (7).

According to the data in Table 4, it can be obtained that , R01 = 1.667 > 1, and
R2 = 0.687 < 1. From Figure 4a, the system (7) will gradually converge to E2 = (0.6, 0.38, 0)
as time goes on, i.e., E2 is GAS. This is in agreement with Theorem 7.

Meanwhile, we observe that over time, S and I converge to a constant and C converges
to 0. This means that the density of nodes clarifying rumors will eventually shift to 0 and
cease to fluctuate and rumors are continuously spread. That is, the system (7) reaches a
steady state where there are no rumor clarifiers, only susceptibles and spreaders. Under
this parameter condition, the rumor-clarifying mechanism cannot suppress rumors in a
timely and effective manner.

Through Figure 4b, we observe that the curve of rumor propagation converges more
slowly as the value of α decreases, a situation that may affect the longer duration of rumor
propagation.

4.4. Experimental Simulation of Actual Cyber Rumor Propagation

Based on the fractional-order SIR-C model, the experimental simulation of the propaga-
tion process of “Record low average maths score in 2022 NEMT”, an actual Internet rumor,
was carried out, and the experiments were compared with the traditional integer-order SIR
model to verify the effectiveness of the model.
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The data for this experiment are the cyber rumors about ‘’Record low average maths
score in 2022 NEMT” forwarded on social network platforms from 08:00 on 22 June to 20:00
on 24 June 2022. Since this event involves keywords that are easily noticed by the society,
such as education and examination, it has caused more controversies and concerns, so it
was chosen as the validation experiment for this model.

Considering the obtained data, the initial value of the propagation density for each
node in the system is assumed to be: S(0) = 0.98, I(0) = 0.01, C(0) = 0.01, R(0) = 0. Also,
in order to obtain the best fit, the least squares method is used for data fitting in this paper.
Fitting curve based on the actual data, the parameter values of each node can be calculated
as shown in Table 5.

Table 5. Parameter for the SIR-C model.

Λ β1 β2 d µ γ1 γ2

0.01 0.55 0.4 0.01 0.3 0.1 0.13

The actual propagation process of rumors in social network platforms is usually
‘’anomalous propagation”, but the integer-order model cannot predict ‘’anomalous prop-
agation”. Therefore, the fractional-order SIR-C model is proposed to split the prediction
time, i.e., different differential orders are used to represent the propagation speed of rumors
in the early, middle and late stages of propagation, so that the prediction curve is closer to
the real data curve and the experimental results are more realistic.

According to the characteristics of each stage of the cyber rumor spreading process,
the dichotomous search method is used to set different a values in different time stages.
When t ∈ [0, 10], α = 1.2 is set to satisfy the accelerated spread of rumors in the early stage
of rumor spread; when t ∈ (10, 20), α = 1 is set to satisfy the middle stage of rumor spread,
where the speed of rumor propagation is reduced due to the presence of rumor clarifiers.
When t ∈ (20, 60), α = 0.9 is set to satisfy the slowdown of rumor spread in the late stage of
rumor spread as time passes and people lose interest in the rumor. The simulation diagram
of the fractional-order SIR-C model results is shown in Figure 5a.
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Figure 5. (a) The simulation diagram of the fractional-order SIR-C model. (b) Consider the effect of
different differential orders of α ∈ {0.9, 1, 1.3} on the spread of cyber rumors, for system (7).

In Figure 5b, for the traditional SIR model, rumor clarifiers do not exist in the whole
rumor propagation process because there is no rumor clarification mechanism. However,
in the model established in this paper, although there is a peak in the node density of cyber
rumor propagation over time, it is significantly smaller than the peak in the traditional SIR
model. Finally, with the action of rumor clarification mechanism and the passage of time,
the rumor will be cleared eventually. We can find that the fractional-order SIR-C model
proposed in this paper outperforms the existing SIR models. The model offers a more
accurate approximation to actual data, and experimental results fit better with less error.
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5. Conclusions

In this paper, based on the traditional SIR model, the rumor clarification mechanism is
added and a fractional-order differential equation is introduced to establish a fractional-
order SIR-C rumor spread model that takes into account “anomalous propagation” of
information. Next, the LAS and GAS of the RFEP (E0) and the BEPs (E1, E2) are analyzed by
using the Routh-Hurwitz criterion and Lyapunov’s stability theorem. Next, the validity of
the above theoretical analysis is verified by numerical simulations, and a comparison with
the existing SIR rumor propagation model is completed with actual rumor propagation
examples to demonstrate that the model can play a positive and effective role in rumor
propagation prediction. The model is optimized by constantly adjusting the parameters
through the acquisition of the initial node densities of S, I, C and R in social networking
sites at the time of rumor spread, as well as the real-time number of rumors spreading
in the early stages. The model can eventually predict the trend of rumor propagation in
the future.
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