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Abstract: This paper discusses the robust stability and stabilization of polynomial fractional differen-
tial (PFD) systems with a Caputo derivative using the sum of squares. In addition, it presents a novel
method of stability and stabilization for PFD systems. It demonstrates the feasibility of designing
problems that cannot be represented in LMIs (linear matrix inequalities). First, sufficient conditions
of stability are expressed for the PFD equation system. Based on the results, the fractional differ-
ential system is Mittag–Leffler stable when there is a polynomial function to satisfy the inequality
conditions. These functions are obtained from the sum of the square (SOS) approach. The result
presents a valuable method to select the Lyapunov function for the stability of PFD systems. Then,
robust Mittag–Leffler stability conditions were able to demonstrate better convergence performance
compared to asymptotic stabilization and a robust controller design for a PFD equation system
with unknown system parameters, and design performance based on a polynomial state feedback
controller for PFD-controlled systems. Finally, simulation results indicate the effectiveness of the
proposed theorems.

Keywords: polynomial fractional-order system; robust controller; stability; stabilization;
Mittag–Leffler stable
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1. Introduction

Fractional calculus concerns mathematical relations about the generalizations of dif-
ferentiation and integration to a noninteger order with a history of more than 300 years.
Integer-order derivatives and integrals as specific cases paved the way for this mathe-
matical branch to become very popular in fractional calculus, which resulted in many
applications in engineering, physics, economics, etc. [1]. In addition, new possibilities
have caused fractional calculus to model various physical systems in engineering, which
have more accuracy than the classical integer system such as a robot, chaos, information
science, and so on [2,3]. Moreover, new methods were proposed to solve the complexity
of modeling by the fractional-order method [4]. Recently, the study of the stability and
stabilization of fractional differential equations (FDEs) has attracted a lot of attention in
control theory [5,6]. To this aim, many studies have focused on linear fractional differential
and nonlinear fractional differential equations [7], which could conform to linear FDE
systems and analyze stability based on LMI conditions.

Zhang, Tian, et al. [8] considered the stability of nonlinear FDEs, and similar stability
conditions of Caputo FDEs were obtained for Riemann–Liouville FDEs. Based on the result,
the stability condition of nonlinear FDEs is the same as linear FDEs if the nonlinear section
follows the same conditions. Wang et al. [9] investigated the asymptotical stability of
nonlinear FDEs and sufficient conditions obtained by using the state feedback stabilization
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controller. Furthermore, the pole replacement method was used in linear systems to design
the controller gains for nonlinear FDEs [10].

Nowadays, stability analysis of nonlinear FDE systems has been considered by re-
searchers. Thus, most of the studies are related to stability and stabilization for the fractional
differential equation [11]. FDE is analyzed by Lyapunov’s first and second methods. In
the first method, nonlinear FDEs are converted to linear FDEs at the equilibrium point.
Therefore, the nonlinear FDE is asymptotically stable if the linearization system is asymp-
totically stable [12,13]. In the second method, energy is decreased and allows us to evaluate
the stability of the system without integrating the differential equation explicitly. The
Lyapunov technique provides a sufficient condition for the asymptotic stabilization of
systems. In this regard, the LMI approach can be used as a method for selecting a Lyapunov
candidate. The LMI method is based on numerical solutions and optimization due to its
popularity. Various studies have been conducted in the field of stability evaluation by the
LMI method. In the study of Lu and Chen [14], less conservative conditions have been
evaluated in terms of LMIs for robust stability and stabilization of FO dynamic interval
systems. Furthermore, Li and Zhang [15] presented robust stability of the FO linear un-
certain system by focusing on the observer and obtaining the necessary conditions. All of
the results in some studies [14–16] were obtained based on LMI, although many design
problems cannot be represented by the LMI approach. The analysis stability by using
Lyapunov’s method is considered an explicit way of solving the FDE in nonlinear FDE sys-
tems. Thus, Mittag–Leffler introduced stability for nonlinear fractional differential systems
by the fractional Lyapunov’s method [17]. Based on this method, systems are stable but
have no candidate for the Lyapunov function [18]. Two theorems were proved for frac-
tional nonlinear time-delay systems that were related to stability in the study of Badri and
Tavazoei [19]. M-L stability for nonlinear FDE systems can generalize better convergence
performance against asymptotic stabilization. Chen et al. [20] studied the stabilization of
fractional nonautonomous systems by using the M-L function and the Lyapunov direct
method. Some studies reported that it is usually difficult to find a Lyapunov candidate
and calculate a fractional derivative for the FDE system (e.g., [10,18–20]). By considering
all of the above-mentioned studies, a new method was presented for finding a Lyapunov
candidate function. This method can help find the Lyapunov function more easily than
the previous methods. The result is based on the new property of the Caputo fractional
derivative, which allows the stability analysis of many FO systems to be studied [21,22].

Some studies reported that stability analysis based on M-L stability is more efficient
than asymptotic stabilization [17,19–23]. In this paper, the application of the Lyapunov
function method was expanded in PFD systems. To this aim, the stability of the PFD system
was analyzed by using three polynomial PFD inequalities, which can be solved via the
SOS toolbox in Matlab. Then, robust Mittag–Leffler stability conditions were obtained
based on the SOS approach, which can exhibit better convergence. The desired robust
M-L stabilization was obtained by selecting the polynomials state feedback control, which
resulted in designing flexible controllers.

This paper is organized as follows. In Section 2, some definitions and lemmas are
given. A sufficient condition of stability for PFD is given in Section 3. Section 4 provides
sufficient conditions for robust stability and the stabilization of the PFD system. Simulation
results are given in Section 5. Finally, some conclusions are made in Section 6.

2. Preliminaries
Notations and Definitions

There are several definitions of FO derivatives, among which Riemann–Liouville and
Caputo’s definition is considered the most common and practical definition in the literature.
Thus, the Caputo definition is selected in this study.

Definition 1 ([8]). The Caputo fractional derivative is defined as follows
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Dq
t f (t) =

1
Γ(n− q)

∫ t

t0

(t− τ)n−q−1 f (n)(τ)dτ. (1)

where q is the fractional order and n shows integer.

n− 1 ≤ q < n

Γ(·) represents the Euler’s function

Γ(t) =
∫ ∞

0
xt−1e−xdx. (2)

Mittag–Leffler is a function that is mostly used in solving in fractional-order systems
as follows

Eq(z) =
∞

∑
k=0

zk

Γ(kq + 1)
. (3)

where q > 0. The M-L function with two parameters appears most frequently and has the
following form

Eq,β(z) =
∞

∑
k=0

zk

Γ(kq + β)
. (4)

where q > 0, β > 0.
By using the Caputo derivative, an FO system is defined by

Dq
t x(t) = (A(x) + ∆A(x))x(t) + u(x). (5)

where x = (x1, x2, . . . ., xn)
T ∈ Rn is the state vector of the state system, A(x) ∈ Rn×n

defines a nonlinear matrix function field in the n× n-dimensional space, and ∆A(x) rep-
resents the admissible uncertainty function. q is the order of the fractional derivative,
(0 < q ≤ 1) u(x) as the control input. Let the equilibrium point be x = 0 when u(x) = 0.

Definition 2 ([24]). The sum of squares (SOS) approach is an important subset of the polynomials
used for modeling and controlling nonlinear systems. Assume that ∑n is the set of all SOS
polynomials with degree n defined as follows

∑
n

= {s ∈ Rn|∃M ≺ ∞, ∃{pi}M
i=1 ⊂ Rnsuch that s =

M

∑
i=1

pi
2}

where R indicates the real number. Assume that monomial
{

mαj

}k

j=1
is defined as mα(x) = xα =

xα1
1 .xα2

2 . . . . .xαn
n , α ∈ Z+. Then, polynomial p is the issue of squares if p is a monomial

{
mαj

}k

j=1
linear combination.{

mαj

}k

j=1
so that mα : Rn → R subject to

mα(x) = xα = xα1
1 .xα2

2 . . . . .xαn
n , α ∈ Z+,

{
cj
}k

j=1 ∈ R,

p = ∑k
j=1 cjmαj

p = ∑k
j=1 cjmαj ,

{
cj
}k

j=1 ∈ R

A subset of Rn, Rn,d = {p ∈ Rn|deg p ≤ d} is defined in such a way that n is the
number of variables and d is the degree of polynomials. Based on this definition, we can
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define ∑n,d, which can directly lead to sufficient conditions for polynomial programming.
Therefore, we have ∑n,d = ∑n ∩Rn,d.

Lemma 1 ([11]). Fix p ∈ Rn,2d. p ∈ ∑n,2d if and only if there exists a Q ≥ 0 such that

p(x) = z∗n,d(x)Qzn,d(x) (6)

According to Lemma 1, polynomial p is SOS if necessary and sufficient conditions are
satisfied for Lemma 1.

zn,d(x) is monomials with n variables of degree less than or equal to d.

Theorem 1 ([11]). The polynomial system
.
x(t) = f (x(t)) is globally asymptotically stable about

equilibrium point if there exists a positive-definite function V : Rn → R+ such that − .
v(x) is

positive-definite.

This theorem is important in stability, which is defined based on the following impor-
tant theorem in the field of stability of polynomial systems.

Theorem 2. Given the system
.
x(t) = f (x(t))and fixed positive-definite functions l1 , l2 ∈ Rn,

the system is globally asymptotically stable if there exists v(x) ∈ Rn with v(0) = 0 such that

v(x)− l1 ∈ ∑n .
−
( .
v(x) + l2

)
∈ ∑n .

.
v(x) = ∆v(x)A(x)x

(7)

Proof. Given a finite set {pi} m
i=0 ∈ Rn, the existence of (p0 + ∑m

i=1 αi pi) ∈ ∑n is such that
{αi}m

i=1 ∈ R. It is evident that the conditions (v(x)− l1) and −(∇v(x)A(x) + l2) are SOS
polynomials if a polynomial function of v(x) is found for satisfying these conditions. The
positive definiteness of l1 and l2 is selected to satisfy the assumptions of theorem, in which
both v(x) and − .

v(x) are positive-definite. �

Definition 3 ([20]). Assume that v(x) : Ω→ R , Ω ∈ Rn is a convex function in Ω
and x : [t0, ∞)→ Ω is a continuous differential function. For t ≥ t0

c
t0

Dq
t v(x) ≤ (

∂v
∂x

)
T

c
t0

Dq
t x(t). (8)

Definition 4 ([20]). Consider the FO nonlinear system

c
t0

Dq
t x(t) = A(x)x(t). (9)

If the convex Lyapunov function v(x) can satisfy the following conditions, x = 0 is an
equilibrium point for the FO system and the system is globally Mittag–Leffler stable in
equilibrium point.

γ1||x||α ≤ v(x) ≤ γ2||x||αb.
c
t0

Dq
t v(x) ≤ −γ3||x||αb.

(10)

3. PFDE Stability

In this section, a sufficient condition of stability is presented for the PFD equations
system.

Theorem 3. Consider the system c
t0

Dq
t x(t) = A(x)x(t). Suppose that Let x = 0 is an equilib-

rium point in the domain D ⊂ Rn and v(x) : [0, ∞)× D → R is a continuously differentiable
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function and locally Lipschitz in x. System is M-L stable in x = 0 if and only if there exists
w1(x), w2(x), w3(x) ∈ ∑n by satisfying the following condition

w1(x) ≤ v(x) ≤ w2(x).
c
t0

Dq
t v(x) ≤ −w3(x). (11)

Proof. It follows from inequalities (11) that

c
t0

Dq
t v(x) ≤ −w3(x) ≤ −w3(x)

w2(x)
v(x) ≤ −in fx

(
w3(x)
w2(x)

)
v(x) = −βv(x). (12)

where β = in fx

(
W3(x)
W2(x)

)
.

w2(x), w3(x) are positive and have the same degree, therefore: β > 0.
There exists a nonnegative function m0(t) satisfying

c
t0

Dq
t v(x) + m0(t) = −βv(x). (13)

By taking the Laplace transform from both sides of Equation (13)

v(s) = v(0)sq−1−M0(s)
sq+β

sqv(s)− v(0)sq−1 + M(s) = −βv(s)
(14)

Then, if x(0) = 0, then v(0) = 0, and if x 6= 0, then v(0) > 0. Applying the inverse
Laplace transform to (14) and according to Definition 1 gives

v(t) = v(0)Eq(−βtq)−M(t)
[
tq−1Eq(−βtq)

]
. (15)

tq−1 ≥ 0, Eq ≥ 0 are nonnegative functions. It follows that

v(t) ≤ v(0)Eq(−βtq). (16)

Substituting (16) into (11) yields

w1(x) ≤ v(0)Eq(−βtq) = v(0)∑∞
k=0

(−βtq)k

Γ(kq + 1)
. (17)

where v(0) > 0 for x(0) 6= 0.
Therefore w1(x) is bounded, also v(x) is locally Lipschitz in x. v(0, x(0)) = 0 if and

only if x(0) = 0, which guarantees the Mittag–Leffler stability of system (9). �

4. Robust Stability

In this section, a sufficient condition of robust stability is presented for the PFD
equations system. The uncertain FDE system (18) is robust M-L stable if there is SOS
polynomial w1(x), w2(x), w3(x) so that conditions (20) are satisfied.

Theorem 4. Consider the FO nonlinear system

c
t0

Dq
t x(t) = (A(x) + ∆A(x, t))x(t). (18)

where ∆A(x, t) represents the admissible uncertainty function
and where the following condition is satisfied

||∆A(x, t)||≤ γ. (19)
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This polynomial FO system is robust Mittag–Leffler stability if and only if this condi-
tion is satisfied

w1(x) ≤ v(x) ≤ w2(x). (20)

(
∂v(x)

∂x
)

T
A(x)x(t) ≤ −w3(x)−

M

∑
k=1

αk||x||2k. (21)

∣∣∣∣∣∣∣∣∂v(x)
∂x

∣∣∣∣∣∣∣∣γ||x|| ≤ w(x). (22)

w(x)−
M

∑
k=1

αk||x||2k ≤ (1− η)w3(x). (23)

where: w1(x), w2(x), w3(x) are SOS, αk > 0, M ∈ N and η ∈ (0, 1).

Proof. The convex function v(x) = x(t)T p(x)x(t) is selected as the Lyapunov function for
the PFD system c

t0
Dq

t x(t) = (A(x) + ∆A(x, t))x(t). Based on Definition 3, we have

c
t0

Dq
t v(x) ≤ ( ∂v(x)

∂x )
T
(A(x) + ∆A(x))x(t) =

( ∂v(x)
∂x )

T
A(x)x(t) + ( ∂v(x)

∂x )
T

∆A(x)x(t) ≤ ( ∂v(x)
∂x )

T
A(x)x(t) +

∣∣∣∣∣∣ ∂v(x)
∂x

∣∣∣∣∣∣γ||x||
≤ −w3(x)−

M
∑

k=1
αkx2k + w(x) ≤ −ηw3(x).

(24)

Therefore, according to Theorem 3, the system is Mittag–Leffler stable. �

For simplicity, we assume that

h(x) = (1− η)w3(x) +
M

∑
k=1

αk||x||2k − w(x). (25)

Therefore, if conditions (20)–(23) are satisfied and h(x) ≥ 0, the system is Mittag–
Leffler stable. In this theorem, if ∆A(x, t) = 0 then γ = 0, α = 0, η = 0 and conditions of
Theorem 4 are converted to Theorem 3.

5. Robust Stabilization

In this section, robust stability PFD equations are studied by designing a polynomial
feedback controller.

Theorem 5. Consider the PFDE systems

c
t0

Dq
t x(t) = (A(x) + ∆A(x))x(t) + u(x). (26)

System (26) is robust Mittag–Leffler stability if and only if the condition of Theorem 4 is
satisfied for A(x) = A(x)− k(x). By using state feedback controller,u(x) = −k(x)x, k(x) ∈
Rn×n, the closed-loop system including (23) becomes as follows

c
t0

Dq
t x(t) = (A(x)− k(x))x + ∆A(x)x = A(x)x + ∆A(x)x. (27)

The main purpose is designing the controller, which ensures asymptotic stability.
The flowchart of the proposed method is drawn in Figure 1.
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Figure 1. The proposed method.

6. Examples and Simulations

In this section, by giving examples, we show the efficiency of the methods expressed
in Theorems 3–5.

Example 1. Consider the following PFD equations system

c
t0

D0.8
t x1(t) = −x1 − 2x1x2

2 − 2x2
3.

c
t0

D0.8
t x2(t) = −2x1

2x2 − 2x2 + 0.33x2
3.

A(x) =
[
−1 −2x1x2 − 2x2

2

−2x1x2 0.33x2
2 − 2

]
, ∆A(x) = 0

(28)

By using SOSTOOLS we have

v(x) = 0.40401x1
4+0.375x1

2x2
2 + 0.866x1

2 + 0.396x2
3x1 − 0.026x1x2

+0.473x2
4 + 0.918x2

2.
(29)

The Lyapunov function obtained is degrees four in this example, whereas no quadratic
function can be found for the system.

v(x) = zTQz, where zT =
[
x1 x2 x1

2 x1x2 x2
2 ] and

Q =


0.8662
−0.0134
0.0000

−0.0134
0.9180
0.0000

0.0000 0.0000 0.0000
0.0000 0.0000 0.0000

0.4016 0.0000 −0.1046
0.0000 0.0000 0.000 0.5843 0.1981
0.0000 0.0000 −0.1046 0.1981 0.4737

 (30)
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According to Theorem 3:

w1(x) = 0.246x1
4+0.22875x1

2x2
2 + 0.571x1

2 + 0.1702x2
3x1 − 0.026x1x2

+0.010x2
4 + 0.605x2

2.
(31)

w2(x) = 0.741x1
8+0.695x1

6x2
2 + 1.866x1

6 + 0.3315x2
3x1

5 − 0.0228x1
5x2

+1.575x2
4x1

4 + 1.683x2
2x1

4 + 0.695x1
4x2

6 + 1.866x1
2x2

4

+0.3315x2
7x1 − 0.0228x2

5x1 + 0.875x2
8 + 1.683x2

6.

(32)

w3(x) = −4.77x1
4x2

2−1.606x1
4 − 5.590x3

1x3
2 + 0.053x1

3x2 − 0.0075x1
2x6

2

−5.064x2
1x4

2 − 9.38x2
1x2

2 − 1.73x2
1 − 0.011x1x7

2

−1.935x1x5
2 − 6.192x1x1x3

2 + 0.0803x1x1x2
2 − 0.018x8

2.

(33)

Then x = 0 is Mittag–Leffler stable.
Figure 2 is drawn for different initial conditions that show the stability of the system (25).
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Example 2. Consider the following PFD system

c
t0

D0.8
t x1(t) = −4x1 + 2x1x2

2 + 0.2x1 sin (x1 + 2x2).
c
t0

D0.8
t x2(t) = −x2 − 2x1

2x2 + 0.3x2cosx1.
(34)

Thus A(x) =

[
−4 2x1x2

−2x1
2x2 −1

]
, ∆A(x(t)) =

[
0.2 sin(x1 + 2x2) 0

0 0.3 cos x1

]
is the

uncertainty function and ||∆A(x)||≤ 0.36 . The state response of the system (34) with q
= 0.8 demonstrate the instability of the system. According to Equation (26), we obtain
polynomial controller u1(x) = 2.98x1 + 4.0761x2

2x1 and obtain the condition of Theorem 4
by using SOSTOOLS.

The degree of Lyapunov function is 6 by using η = 0.01, α1 = 3.6 in Equations (21)
and (23).

v(x) = 0.0328x6
1 + 0.3831x4

1x2
2 + 0.3287x4

1 + 1.211x2
1x4

21.512x2
1x2

2
+0.9734x2

1 + 1.285x6
2 + 1.313x4

2 + 1.276x2
2.

(35)

w1(x) = 0.001x6
1+0.1731x4

1x2
2 + 0.0187x4

1 + 0.134x2
1x4

2 + 0.414x2
1x2

2

+0.253x2
1 + 0.175x6

2 + 0.115x4
2 + 0.575x2

2.
(36)
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w2(x) = 1.234x6
1+2.485x4

1x2
2 + 1.52x4

1 + 4.314x2
1x4

2 + 3.812x2
1x2

2

+0.973x2
1 + 1.285x6

2 + 1.313x4
2 + 3.54x2

2.
(37)

w3(x) = 0.24x4
1x2

2+0.206x4
1 + 0.744x2

1x4
2 + 1.01x2

1x2
2 + 2.62x2

1 + 0.39x4
2

+2.16x2
2 .

(38)

w1(x), w2(x), w3(x) are SOS and h(x) ≥ 0. Then the closed-loop system (34) is robust
M-L stable.

Figure 3 is drawn for different initial conditions that show the stability of the closed-
loop system (34).
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Figures 4 and 5 demonstrate that Equation (25) is valid and its value is also valid for
different values of x1(t), x2(t).
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Example 3. Consider the following PFD equations system

c
t0

D0.9
t x1(t) = −2x1 − 4x1x2

2 + 0.3x1 sin(t) sin(x1 − x2).
c
t0

D0.9
t x2(t) = −x2 − 2x1

2x2 + 0.4x2 cos x1 cos(t)
(39)

where ∆A(x(t), t) =
[

0.3 sin(t) sin(x1 − x2) 0
0 0.4 cos(t) cos x1

]
is the uncertainty function and

||∆A(x, t)||≤ 0.5 .

The state response of the system (39) with q = 0.9 demonstrates the instability of the
system.

According to Equation (26), we obtain a polynomial controller

u1(x) = −1.85x1 + 7.24x1x2
2. (40)

By obtaining η = 0.98, α1 = 0.2, then

w1(x) = 0.002x6
1+0.218x4

1x2
2 + 0.224x4

1 + 0.325x2
1x4

2 + 0.458x2
1x2

2

+0.281x2
1 + 0.021x6

1 + 0.321x4
1x2

2 + 0.236x4
1 + 0.352x2

1x4
2

+0.432x2
2 + 0.621x2

1 + 0.321x6
2 + 0.123x4

2 + 0.218x2
2.

(41)

w2(x) = 3.78738x6
1x2

2+0.9357x6
1 + 14.481x4

1x4
2 + 14.200x2

1x2
2 + 2.79x2

1

+14.52x4
1x2

2 + 3.4918x4
1 + 13.8665x2

1x6
2 + 14.10980x2

1x4
2

+3.5244x6
2 + 0.89449x4

2 + 2.2365x2
2.

(42)

w3(x) = 0.98x6
1x2

2+1.77x6
1 + 2.985x4

1x4
2 + 7.2x4

1x2
2 + 6.633x4

1 + 3.64x2
1x6

2

+7.9x2
1x4

2 − 7.864x2
1x2

2 + 5.319x2
1 + 2.467x6

2 + 0.626x4
2

−1.656x2
2.

(43)

The degree of Lyapunov function is 6 by using the conditions of Theorem 4.

v(x) = 0.007798x6
1+0.479x4

1x2
2 + 0.4365x4

1 + 0.8522x2
1x4

2 + 0.6879x2
1x2

2

+0.741x2
1 + 0.07798x6

1 + 0.479x4
1x2

2 + 0.4365x4
1

+0.8522x2
1x4

2 + 0.67879x2
1x2

2 + 0.7x2
1 + 0.5874x6

2

+0.2236x4
2 + 1.118x2

2.

(44)

Figure 6 is drawn for different initial conditions that show the stability of the closed-
loop system (39).
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Figures 7 and 8 demonstrate that Equation (25) is valid and its value is also valid for
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7. Advantages of the Proposed Approach and Suggestions for Future Research

In this paper, the method of PFD systems was highlighted. The main advantages of
the proposed method are as follows.

First, the convex Lyapunov methods in the literature such as [19,21] are complicated
and are not able to handle the stability and control performances. Second, although the
results of some studies (e.g., [9,14,15]) are obtained based on the LMI approach, many
design problems cannot be represented by the LMI inequality. This paper focused on
the sum of squares approach for finding a Lyapunov candidate function for PFD systems
with uncertainty.

Finally, compared with the existing studies on the stability analysis of nonlinear
fractional differential systems (e.g., [14]), the results use the Lyapunov quadratic function
in the stability analysis. In this paper, higher-order Lyapunov functions were used in the
stability analysis of FDE systems based on the sum of squares approach. Following this, by
working on PFD fuzzy systems, the stability analysis and stabilization of these systems can
be obtained.

8. Conclusions

Finding a Lyapunov candidate function is difficult considering the previous methods.
In this paper, the stability and stabilization of PFD systems are presently based on the
Lyapunov candidate function. This method can provide the Lyapunov candidate function
with a degree higher than two. Therefore, they cannot be solved with LMI techniques.
Accordingly, the SOS method is used for solving. For this reason, the system (7) is Mittag–
Leffler stable if the Lyapunov functional can satisfy the conditions of Theorem 3. Following
this, the sufficient condition of a robust stability system (17) is expressed in Theorem (4).
Finally, the polynomial Lyapunov approach is proposed using SOSTOOLS for fractional
systems. This method can provide an efficient way for analyzing the stability of an uncertain
polynomial fractional system.
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