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Abstract: A fractional-order memristive system without equilibrium is addressed. Hidden attrac-
tors in the proposed system are discussed and the coexistence of a hidden attractor is found. Via
theoretical analysis, the hybrid synchronization of the proposed system with partial controllers is
investigated using fractional stability theory. Numerical simulation verifies the validity of the hybrid
synchronization scheme.
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1. Introduction

In the past few decades, chaotic systems have received significant attention and were
applied in many fields [1–4] because of their complex behavior and sensitivity to the initial
value [5–7]. Then, many chaotic or hyperchaotic systems were investigated, such as chaotic
Jerk circuit capabilities and their application in communication [8], a novel chaotic system
deduced from different 3D five-term chaotic flows and its realization in electronic circuit [9],
robust chaos in an exponential chaotic model [10], etc.

With further research on chaotic systems, fractional calculus [11] was introduced and
many fractional-order systems were proposed [12–14]. Chaotic behavior of a fractional-
order Liu system with time delay can be controlled to an appointed point via designing
only one controller [15]. Effects of system parameters on the dynamics of a fractional-order
system were revealed and dynamic behavior transition was given [16]. A fractional-order
system with negative parameters is proposed and its complex dynamics were analyzed [17].
Recently, as a vital electronic component with complex dynamics, a memeristor was
introduced into the circuit system and corresponding dynamics were investigated. For
example, a delayed fractional-order system with a memristor was presented and the
system’s stability interval was deduced [18]; an active fractional-order memristor model
was addressed and coexisting bifurcations as well as coexisting attractors were found [19].
Hidden attractors of Chua’s circuit coupled with the memristor were found [20]. Existing
results suggest that introducing a memristor into a chaotic system can make the system
appear more complex in its dynamics. Simultaneously, it can be found that the mentioned
memristor is complicated and has some difficulty in application. Therefore, a simple
memristor should be explored.

As a vital collective behavior, synchronization fractional-order systems have been fo-
cused on. Various controlling methods were proposed to realize different kinds of synchro-
nization. Function projective synchronization and generalized synchronization of fractional-
order systems were achieved using tracking control [21] and the pole-placement technique
with one controller [22], respectively. Synchronization between multidrive systems and
one response system was obtained by designing suitable controllers [23]. By designing
fractional-order proportion integral sliding mode surface, synchronization of fractional-
order systems was realized [24]. Complete synchronization between fractional-order
systems with external disturbance was realized by designing a feedback controller [25].
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Finite time synchronization of fractional-order networks with discontinuous activation was
discussed via discontinuous controller [26]. Global synchronization of delayed fractional-
order networks was discussed and the upper bound of the setting time for synchronization
was given [27]. Dual synchronization between fractional-order systems with uncertain
parameters was explored with adaptive controllers and adaptive laws were depicted [28].

Based on existing results, hybrid synchronization of a fractional-order memristive
system without an equilibrium point is to be considered. Other parts of this paper are
arranged as follows: Section 2 describes preliminaries to be used in the research. In Section 3,
the system to be investigated is introduced and its hidden attractors are discussed. In
Section 4, a hybrid synchronization scheme is given and the result is verified via theoretical
analysis as well as numerical simulations. In Section 5, some conclusions are drawn.

2. Preliminaries

A fractional-order differential operator can be regarded as an extended concept of an
integer-order differential operator and can be written as

aDα
t =


dα

dtα , α > 0

1, α = 0∫ t
a (dτ)−α, α < 0

(1)

where α is the fractional order. With the development of a fractional-order derivative,
several definitions were given, including Riemann–Liouville, Grünwald–Letnikov, and
Caputo definition [28]. Much attention has been paid to the Caputo definition because its
Laplace transformation formula has the same form as that of an integer-order derivative.
Thus, the Caputo definition will be utilized in the next discussion, which is given as
Definition 1 [29].

Definition 1. Suppose f (t) is a continuous function, Caputo fractional-order derivative of f (t)
with order α (0 < α ≤ 1) is denoted as

c
t0

Dα
t f (t) =

{
1

Γ(m−α)

∫ t
t0

f m(τ)

(t−τ)α−m+1 dτ, m− 1 < α < m,
dm

dtm f (t), α = m,
(2)

where m = [α] suggests the least integer no less than α. Γ(·) means Gamma function.

Specifically, for 0 < α < 1, Equation (2) can be simplified as

c
t0

Dα
t f (t) =

1
Γ(1− α)

∫ t

t0

f ′(τ)
(t− τ)α dτ (3)

For simplicity, in the following discussion, c
t0

Dα
t f (t) is denoted as Dα f (t).

3. System Description and Its Dynamical Behaviors

In this paper, to investigate the dynamics of the circuit system deeply, a kind of
fractional-order system is constructed, refereed to the system in [30] and depicted as

Dαx = y
Dαy =

(
z + x2 − βx4)y−ω2

0W(ω)x
Dαz = µ− x2

Dαw = x− w

, α ∈ (0, 1) (4)

where W(w) = a + 2bw is memductance, a and b are positive parameters for controlling
the behavior of memductance. Obviously, µ is a key parameter determining the solutions
of system (4), which has no equilibrium for µ 6= 0 and a single equilibrium point can be
obtained for µ = 0.
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Compared to the system in [30], the novelty of system (4) lies in the linear property of
the memristor, which is simple in construction and implication.

According to the description about the attractor [31–34], it can be known that continu-
ous chaotic systems can be classified into two categories: self-excited attractors and hidden
attractors. When the basin of attraction of attractors intersects with any arbitrary neighbor-
hood of an unstable equilibrium point, it is called self-excited attractors; otherwise, it goes
by the name of hidden attractors. Therefore, hidden attractors involve two cases. In one
case, the basin of attraction of attractors does not intersect with any arbitrary neighborhood
of an unstable equilibrium point. In another case, the continuous chaotic system itself has
no equilibrium point but with attractors. In this manuscript, the case when the system
has no equilibrium point is taken into account. In the following study, suppose µ 6= 0, but
system (4) can also generate various attractors with the change in the order of the system
and other parameters, including periodic attractor, quasi-periodic attractor, and chaotic
attractor. These attractors are hidden attractors. Additionally, coexisting attractors can be
detected. These results are discussed as follows via numerical simulations.

3.1. Hidden Attractors in the Proposed System

Choose a = 1, b = 0.1, µ = 0.5, ω0 = 2.01, β = 0.75 and initial value (0, 2, 0, 0), with α
changing from 0.21 to 0.98, system (4) can show different hidden attractors, such as chaotic
attractor (Figure 1), periodic attractor (Figure 2), and quasi-periodic attractor (Figure 3),
which is confirmed in Figure 4. Furthermore, for a chaotic attractor, Lyapunov exponents are
calcuted and depicted in Figure 5, which shows that when α = 0.28, the largest Lyapunov
exponent in system (4) is positive. It verifies the result in Figure 1.
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Figure 1. Hidden chaotic attractor of system (4) when α = 0.28. (a) Phase trajectory diagram in yz
plane; (b) Poincare map in xz plane.
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Figure 3. Hidden quasi-periodic attractor of system (4) when α = 0.95. (a) Phase trajectory diagram
in yz plane; (b) Poincare map in xz plane.
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Figure 5. Lyapunov exponents of system (4) when α = 0.28.

Select a = 1, b = 0.1, µ = 0.5, ω0 = 2.01, initial value (0, 2, 0, 0), fixed α = 0.95, numerical
simulations suggest that system (4) can also appear with different hidden attractors with
β changing from 0.1 to 0.9 (Figures 6–8). It can be verified in the bifurcation diagram in
Figure 9. Then, Lyapunov exponents in system (4) are calculated and given in Figure 10,
which indicates that, for β = 0.3, system (4) demonstrates a hidden chaotic attractor.
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Figure 6. Hidden chaotic attractor of system (4) when β = 0.30. (a) Phase trajectory diagram in yz
plane; (b) Poincare map in xz plane.
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Figure 7. Hidden periodic attractor of system (4) when β = 0.4. (a) Phase trajectory diagram in yz
plane; (b) Poincare map in xz plane.

Axioms 2022, 11, x FOR PEER REVIEW 6 of 12 
 

 
Figure 8. Hidden quasi-periodic attractor of system (4) when  = 0.58. (a) Phase trajectory diagram in 
yz  plane; (b) Poincare map in xz  plane. 

 
Figure 9. Bifurcation diagram of  in system (4) with change of  from 0.1 to 0.8. 

 
Figure 10. Lyapunov exponents in system (4) when = 0.3. 
3.2. Coexistence of Different Hidden Attractors 

When system parameters and the order are all taken as fixed constants, the proposed 
system (4) can exhibit various hidden attractors according to different initial values, 
which means that the coexistence of different hidden attractors can be found in fraction-
al-order system (4) (see Figures 11 and 12). Figure 11 depicts the phase trajectory and the 
Poincare map of the coexistences of hidden chaotic attractors in system (4) when 

0.28α = , = 0.8. Phase trajectory and the Poincare map of the coexistences of the 
hidden chaotic attractor and 2D torus are shown in Figure 12, where α = 0.95, = 0.58. 
In all simulations, the other values of parameters are chosen as above. 

  

Figure 8. Hidden quasi-periodic attractor of system (4) when β = 0.58. (a) Phase trajectory diagram
in yz plane; (b) Poincare map in xz plane.



Axioms 2022, 11, 645 6 of 12

Axioms 2022, 11, x FOR PEER REVIEW 6 of 12 
 

 
Figure 8. Hidden quasi-periodic attractor of system (4) when  = 0.58. (a) Phase trajectory diagram in 
yz  plane; (b) Poincare map in xz  plane. 

 
Figure 9. Bifurcation diagram of  in system (4) with change of  from 0.1 to 0.8. 

 
Figure 10. Lyapunov exponents in system (4) when = 0.3. 
3.2. Coexistence of Different Hidden Attractors 

When system parameters and the order are all taken as fixed constants, the proposed 
system (4) can exhibit various hidden attractors according to different initial values, 
which means that the coexistence of different hidden attractors can be found in fraction-
al-order system (4) (see Figures 11 and 12). Figure 11 depicts the phase trajectory and the 
Poincare map of the coexistences of hidden chaotic attractors in system (4) when 

0.28α = , = 0.8. Phase trajectory and the Poincare map of the coexistences of the 
hidden chaotic attractor and 2D torus are shown in Figure 12, where α = 0.95, = 0.58. 
In all simulations, the other values of parameters are chosen as above. 

  

Figure 9. Bifurcation diagram of x in system (4) with change of β from 0.1 to 0.8.

Axioms 2022, 11, x FOR PEER REVIEW 6 of 12 
 

 
Figure 8. Hidden quasi-periodic attractor of system (4) when  = 0.58. (a) Phase trajectory diagram in 
yz  plane; (b) Poincare map in xz  plane. 

 
Figure 9. Bifurcation diagram of  in system (4) with change of  from 0.1 to 0.8. 

 
Figure 10. Lyapunov exponents in system (4) when = 0.3. 
3.2. Coexistence of Different Hidden Attractors 

When system parameters and the order are all taken as fixed constants, the proposed 
system (4) can exhibit various hidden attractors according to different initial values, 
which means that the coexistence of different hidden attractors can be found in fraction-
al-order system (4) (see Figures 11 and 12). Figure 11 depicts the phase trajectory and the 
Poincare map of the coexistences of hidden chaotic attractors in system (4) when 

0.28α = , = 0.8. Phase trajectory and the Poincare map of the coexistences of the 
hidden chaotic attractor and 2D torus are shown in Figure 12, where α = 0.95, = 0.58. 
In all simulations, the other values of parameters are chosen as above. 

  

Figure 10. Lyapunov exponents in system (4) when β = 0.3.

3.2. Coexistence of Different Hidden Attractors

When system parameters and the order are all taken as fixed constants, the proposed
system (4) can exhibit various hidden attractors according to different initial values, which
means that the coexistence of different hidden attractors can be found in fractional-order
system (4) (see Figures 11 and 12). Figure 11 depicts the phase trajectory and the Poincare
map of the coexistences of hidden chaotic attractors in system (4) when α = 0.28, β = 0.8.
Phase trajectory and the Poincare map of the coexistences of the hidden chaotic attractor
and 2D torus are shown in Figure 12, where α = 0.95, β = 0.58. In all simulations, the other
values of parameters are chosen as above.
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(a1,a2) are phase trajectory and Poincare maps with initial value (0, 2, 0, 0), respectively. (b1,b2) are
phase trajectory and Poincare maps with initial value (1, −2, 0, 0), respectively.
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4. Hybrid Synchronization Scheme

A scheme to realize the hybrid synchronization for system (4) is investigated utilizing
fractional-order stability theory. For this purpose, the master system is taken as

Dαx1 = y1
Dαy1 =

(
z1 + x2

1 − βx4
1
)
y1 −ω2

0W(w1)x1
Dαz1 = µ− x2

1
Dαw1 = x1 − w1

(5)

and corresponding slave system with controllers is written as
Dαx2 = y2 + u1
Dαy2 =

(
z2 + x2

2 − βx4
2
)
y2 −ω2

0W(w2)x2 + u2
Dαz2 = µ− x2

2 + u3
Dαw2 = x2 − w2

(6)

where Ui(i = 1, 2, 3) are controllers to be determined.
To deliberate hybrid synchronization between systems (5) and (6), some definitions

and lemmas are given as follows.

Lemma 1 ([35]). Considering system

DαX = A(X)X (7)

where X = (x1, x2, · · · , xn) ∈ Rn is state variable with 0 < α < 1. It is said that system (7)
converges to be stable when every eigenvalue λ of A(X) in (7) satisfies |arg(λ)| ≥ απ/2.

Lemma 2 ([36]). The fractional-order system (7) will be stable if there is positive definite matrix P,
for any variable X, XT PDαX ≤ 0 holds.

Theorem 1. If the controllers are chosen as
u1 = −k1(x2 + x1)
u2 = −k2(y2 + y1)
u3 = −k3(z2 − z1)

(8)

with ki (i = 1, 2, 3) being the feedback gains, then hybrid synchronization between systems (5) and
(6) can be realized.

Proof. Let e1 = x2 + x1, e2 = y2 + y1, e3 = z2 − z1 and e4 = w2 + w1, and error system
between systems (6) and (5) can be achieved as �

Dαe1 = e2 + u1
Dαe2 = −ω0

2ae1 + f1e1 + f2e2 + f3e3 + f + u2
Dαe3 = −(x2 − x1)e1 + u3
Dαe4 = e1 − e4

(9)

where
f1 = β

(
x2

2 + x2
1
)
(x2 − x1)y1 − (x2 − x1)y1,

f2 = z2 + x2
2 − βx4

2,

f3 = −y1,

f = −2bω2
0(w2x2 + w1x1)

The f1, f2, f3, f mentioned below are the same as here. Substitute (8) into (9) and we
can obtain
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Dαe1 = e2 − k1(x2 + x1)
Dαe2 = −ω2

0ae1 + f1e1 + f2e2 + f3e3 + f − k2(y2 + y1)
Dαe3 = −(x2 − x1)e1 − k3(z2 − z1)
Dαe4 = e1 − e4

(10)

Namely, 
Dαe1 = e2 − k1e1
Dαe2 = −ω2

0ae1 + f1e1 + f2e2 + f3e3 + f − k2e2
Dαe3 = −(x2 − x1)e1 − k3e3
Dαe4 = e1 − e4

(11)

Furthermore,

e1Dαe1 + e2Dαe2 + e3Dαe3 + e4Dαe4 = e1(e2 − k1e1)+

e2
(
−ω2

0ae1 + f1e1 + f2e2 + f3e3 + f − k2e2
)

+e3(−(x2 − x1)e1 − k3e3) + e4(e1 − e4)

= e1e2 − k1e2
1 + z2e2

2 − y1e2e3 + x2
2e2

2 − (x2 − x1)y1e1e2 − βx4
2e2

2

+β
(

x2
2 + x2

1
)
(x2 − x1)y1e1e2 −ω2

0ae1e2 − 2bω2
0(w2x2 + w1x1)e2 − k2e2

2−
(x2 − x1)e1e3 − k3e2

3 + e1e4 − e2
4

(12)

Due to the boundness of chaotic systems, there exist constant M, such that |xi| < M,
|yi| < M, |zi| < M, |wi| < M (i = 1, 2). Therefore, Equation (12) can be calculated as

e1Dαe1 + e2Dαe2 + e3Dαe3 + e4Dαe4 ≤ 1
2
(
e2

1 + e2
2
)
− k1e2

1 + Me2
2 +

M
2
(
e2

2 + e2
3
)
+

M2e2
2 + M2(e2

1 + e2
2
)
+ βM2e2

2 + 2M4β
(
e2

1 + e2
2
)
+

ω2
0 a
2
(
e2

1 + e2
2
)
− k2e2

2+

M
(
e2

1 + e2
3
)
− k3e2

3 +
1
2
(
e2

1 + e2
4
)
− e2

4

=

(
1 + M + M2 + 2βM4 +

ω2
0 a
2 − k1

)
e2

1+(
1
2 + 3M

2 + (2 + β)M2 + 2βM4 +
ω2

0 a
2 − k2

)
e2

2+(
3M

2 − k3

)
e2

3 −
1
2 e2

4

(13)

Denote
L1 = 1 + M + M2 + 2βM4 +

ω2
0 a
2 − k1,

L2 = 1
2 + 3M

2 + (2 + β)M2 + 2βM4 +
ω2

0 a
2 − k2,

L3 = 3M
2 − k3,

(14)

It is easy to know that, if k1, k2, k3 are selected large enough, one can obtain L1 < 0,
L2 < 0, L3 < 0. Then, we can obtain that

e1Dαe1 + e2Dαe2 + e3Dαe3 + e4Dαe4 ≤ L1e2
1 + L2e2

2 + L3e2
3 −

1
2

e2
4 ≤ 0 (15)

In line with Lemma 2, one can know that error system (10) or (11) will stabilize to
zero under a feedback controller (8). That is to say, hybrid synchronization of systems (6)
and (5) can be achieved with less controllers than the dimension of the system. Theorem 1
is proved.

To test the aforementioned result, the Adams–Bashforth–Moulton predictor-corrector
algorithm in MATLAB program is used. In the following numerical simulations, system pa-
rameters are selected as a = 1, b = 0.1, µ = 0.5, ω0 = 2.01, β = 0.75 and fractional order α = 0.98.
Initial values are chosen as (x1, y1, z1, w1) = (0, 2, 0, 0), (x2, y2, z2, w2) = (1, 0.2,−2,−10),
respectively. Feedback gains in controllers are set as k1 = k2 = k3 = 2.1. The time evolu-
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tions in the error system are given in Figure 13, from which it can be obtained that the error
states converge to zero quickly, which indicates that hybrid synchronization between the
master system (5) and slave system (6) can be achieved in a short time.
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In this paper, a novel fractional-order memristive system without equilibrium is
presented via introducing a memristor into the considered system [3]. Some dynamics of
the mentioned system are investigated. Some results are obtained as follows. (1) Various
hidden attractors are found via altering the order of the system and value of system
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