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Abstract: The best–worst method (BWM) has recently demonstrated its applicability in addressing
various decision-making problems in a practical setting. The traditional BWM method is based on
deterministic information gathered from experts as pairwise comparisons of several criteria. The
advantage of BWM is that it uses fewer calculations and analyses while maintaining good, acceptable
consistency ratio values. A multi-choice best–worst method (MCBWM), which considers several
options for pairwise comparison of preferences between the criteria, has recently been developed. The
experts are given the option to select values from several comparison scales. The MCBWM technique
has been shown to be better. Presenting the options for which an optimal solution has been found
simplifies the calculation and establishes the ideal weight values. This study proposes two different
mathematical programming models for solving multi-criteria decision-making problems having
multiple decision-makers. The two methods are proposed considering the multi-choice uncertainty
assumption in pairwise criteria comparisons. Additionally, it considers the best–worst method as
the base model. The multi-choice uncertainty is applied to determine the best choice out of multiple
choices. It gives a real-life scenario to the decision-making problems. Although there are many other
forms of uncertainty, such as fuzzy, intuitionistic fuzzy, neutrosophic, probabilistic, etc., it focuses
on choices instead of ambiguity in terms of the probabilistic or fuzzy nature of parameters. The
parameter considered as multi-choice is the pairwise comparison. These parameters are handled by
applying the Lagrange interpolating polynomial method. The proposed models are novel in terms
of their mathematical structure and group decision-making approach. The models are formulated
and further validated by solving numerical examples. It provides a framework for solving mcdm
problems where the weightage to the decision-makers is also incorporated. The CR values for all the
models of example 1 and 2, and the case study has been found acceptable.

Keywords: best–worst method; multi-choice best–worst method; multi-criteria decision-making;
group decision-making; mathematical programming

1. Introduction

Multiple-criteria decision-making (MCDM) plays an important role in real-life decision-
making problems. The MCDM approach determines the ranking of the options and selects
the best option using the appropriate approach based on certain criteria. There are an
enormous number of applications of MCDM methods in real-life problems. These methods
include elimination and choice expressing reality (ELECTRE) [1,2], data envelopment anal-
ysis (DEA) [3,4], analytic hierarchy process (AHP) [5,6], preference ranking organization
method for enrichment evaluations (PROMETHEE) [7,8], VlseKriterijumska Optimizacija
I Kompromisno Resenje (VIKOR) [9,10], decision-making trial and evaluation laboratory
(DEMATEL), the technique for order of preference by similarity to ideal solution (TOP-
SIS) [7,11], analytic network process (ANP) [12,13], and best–worst method (BWM) [14,15].
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The best suitable method to handle an MCDM problem is determined based on the structure
of the problem of decision-making. In general, the process of MCDM consists of multiple
steps from formulation to identification of criteria to decision metric and, finally, calculation
of weights and rank of criteria.

Among the above-mentioned MCDM approaches, In 2015, Rezai [14] developed an
MCDM method named as the best–worst method. As compared to the mostly applied
MCDM approach, i.e., AHP, BWM has shown a more reliable approach as it takes fewer
number pairwise comparisons leading to fewer calculations and, hence, low inconsistency
of pairwise comparisons.

Let us consider for AHP [16], a matrix X having xij; i, j = 1, 2, 3, . . . , n as a pairwise
importance comparison between the i-th criteria and the j-th criteria. from the n criteria
C1, C2, C3, . . . , Cn, then the comparison matrix X will become as follows:

X =

c1
c2
...

cn

c1 c2 · · · cn
x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

. . .
...

xn1 xn2 · · · xnn

 (1)

where xij represents the degree of relative importance (or the relative preference) of criterion
Ci over criterion Cj, the values of xij range between the 1/9 to 9 scale. For an equal
preference of criterion Ci over Cj, xij will take value 1. xij ≥ 1 shows that criterion C1 is
relatively more important than criterion C2, with xij = 9 exhibiting the extreme preference
of criterion Ci over Cj. The relative importance of Cj over Ci is given by xji. It is essential
that the relative importance of Ci over Ci is (xii = 1) and xij = 1/xji, ∀i, j. For X to be
perfectly consistent xik × xkj = xij, ∀i, j.

In comparison to AHP, the BWM approach is based on pairwise comparisons between
the best criterion to all other criteria and all others to the worst criterion. All the favorites are
assigned to a number through a scale ranging from 1 to 9. Since the secondary comparisons
are not performed, the BWM technique seems to be more convenient, very precise, and
far less redundant [14]. Meanwhile, executing a pairwise comparison, a decision-maker
expresses both direction and the strength of the preference of i over j. In most situations,
the decision-maker has no problem in conveying the direction; however, representing the
strength of the choice is a difficult task that is almost the primary source of inconsistency.
Since the degree of preference relation is assigned with a numeric number, it may be possible
that the provided value is insufficient to accommodate the uncertainty with the linguistic
term. Based on the above discussion, in this paper, the pairwise reference comparisons are
considered multi-choice comparisons [17,18]. While taking responses from decision-makers
(DMs), uncertain information may come up in terms of options. When comparing criterion
i over j pairwise, the DM may offer many responses.

Multi-choice programming problem [17,18] is a sort of mathematical programming
in which the goal is to select the best alternative among multiple potential combinations
to optimize an objective function under a number of constraints. A good review of multi-
choice mathematical programming is presented in [19]. The situation of multiple choices for
a parameter exists in many managerial decision-making problems. Choosing the optimum
combination of parameter values from a variety of parameter values is aided by the multi-
choice programming approach. Our goal is to better comprehend the supposed multi-
choice parameter, which is multiple opinions in the pairwise comparison that forms the
foundation of our proposed method. In the MCDM problem, the multi-choice parameters
were essential when a specialist was unsure of the significance of a certain criterion. It
is due to a lack of information, unclear criteria, unfavorable factors, and the decision-
point makers of view and judgment. The reference comparison’s reference parameters
with several choices will increase the decision-making problems’ flexibility. It prompts
the decision-makers to use not only a single value but more than one benefit to compare
criterion i over j. This approach of pairwise comparison results in inconsistency. The
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decision-makers are supported in their efforts to comprehend accurately and correctly with
regard to their final decisions by the obtained value of inconsistency. This approach aids
in examining the consistency of the assessments of the decision’s importance. Because
there are so many options for criteria, it is possible to take into account every viewpoint
when comparing one criterion to another in pairs. The multi-choice best–worst method
is a novel MCDM strategy that is introduced in this research to supplement the BWM for
multi-choice comparisons.

The BWM method is a well-established, tested, and verified method. Since its incep-
tion, it has been applied to various kinds of real-life problems. A lot of extensions, including
uncertainty and hybrid methods, have also been proposed in recent years. Additionally,
we have seen that there is no extension of BWM with multi-choice parameters in a group
decision-making scenario. This motivated us to carry out this proposed work. In recent
years, some new methods have also been developed for determining the weights of the
criteria, such as the fully consistency method (FUCOM) [20], level-based weight assessment
(LBWA) [21], and defining interrelationships between ranked (DIBR) [22]. In literature, it
has been shown that these methods are better than the AHP and BWM. The reason behind it
is the less number of pairwise comparisons, higher level of consistency, requires an (n− 1)
number of pairwise comparisons, reliability of results, and simple algorithm. As a limited
study has only been carried out using them, so we have incorporated the multi-choice
concept for group decision-making in the best–worst method. This work is not yet explored
by anyone. The key reasons for the motivation behind this work are as follows:

• Numerous group decision-making models have been put out in the literature, but no
one has ever taken into account pairwise comparisons as multi-choice parameters.

• Multiple options for a parameter, such as pairwise comparisons, are another type of
uncertainty that can be managed in real-world problems utilizing the multi-choice
mathematical programming approach in MCDM.

• The decision that determines whether a solution is optimal is revealed in the solution
that results from solving the proposed models. The goal is to reduce inconsistency.
Therefore, multiple models can be solved to find the option with the least amount of
inconsistency.

Following are the main objectives of this study:

• This study’s major goal is to provide group decision-making techniques that incorpo-
rate the freedom to select several options for pairwise comparisons.

• To validate the proposed model by applying it to experimental studies.

Rest of this paper is organized as follows: The next Section 2 is about the literature
survey. Some preliminaries are presented in the next Section 3. The proposed models
incorporating multi-choice in group decision-making are presented in Section 4. In Section 5,
an experimental study conducted using the proposed approach is presented. In Section 6,
a case study of the piping selection problem has been presented. Finally, the manuscript
concludes in Section 7 and discusses the future directions of the work along with the
limitations of the proposed work.

2. Literature Survey

When choosing, organizing, and prioritizing various actions, MCDM considers the
decision-makers subjectivity. It also examines the acceptability of alternative options in
light of the resources at hand. There are multiple kinds of MCDM methods for ranking
and prioritization of criteria. In MCDM, the best–worst method [14] has played a key role
in solving many kinds of real-life decision-making problems. Initially, it was applied to a
mobile selection problem. Later, It was applied in linking supplier segmentation [23] for
enhancing the supplier development model. Gupta and Barua [24] worked on micro-small
and medium-sized enterprises (MSMEs) in India, where they found the most significant
enablers of technological innovation. Recently [25], the flexibility of information gran-
ularity is integrated with the best–worst method along with interval and type-2 fuzzy
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sets in linguistic terms. A novel model by Tavana et al. [26] has proposed a model which
combines the compromise solution with the best–worst method. Malakoutikhah et al. [27]
have incorporated fuzzy uncertainty in best–worst method and cognitive map and further
applied it in the modeling of criteria and subcriteria affecting unsafe behaviors in organiza-
tional, individual, and socio-economic domains. Kharola et al. [28] utilized the best–worst
method in prioritizing factors associated with green waste management in the food supply
chain. They prioritized a total of 5 criteria and 25 sub-criteria. Bilbao et al. [29] incorporated
multiple reference point concepts in the best–worst method and showed application in the
assessment of non-life insurance companies. Sadaghiani et al. [30] studied the importance
of external forces on the supply chain sustainability in the oil and gas industry; Groenendijk
et al. [31] applied it to improve the quality of public transportation, water scarcity manage-
ment [32], failure mode and effects analysis [33], the judgment of investment projects [34]
etc. A good review of BWM articles is presented in [35]. Combination of BWM with other
MCDM methods, such as TOPSIS [36], MULTIMOORA [37], VIKOR [38], FDA [39], and
ELECTRE [40].

Researchers incorporated uncertainties, such as fuzzy, intuitionistic fuzzy, neutro-
sophic fuzzy [41], hesitant fuzzy [42], spherical fuzzy [43], probabilistic [44], interval type-2
fuzzy [45], and Bayesian [46] in the best–worst method. A Fuzzy hybrid BWM along
with the geographic information system has been applied for the power station selection
problem [47]. Fuzzy BWM has been applied to assess the potential environmental impacts
of the process of ship recycling [48]. A rough BWM has been applied to the problem of
prioritizing recovery solutions to the tourism sector after COVID-19 [49]. BWM has been
applied for the land valuation model in three different scenarios [50]. An integrated model
of BWM with superiority and inferiority ranking applied in an environment of probabilistic
dual hesitant fuzzy sets to a Green supplier selection problem [51]. In [52], a probabilistic-
based hybrid model has been proposed for solving group decision-making problems by
combining BWM and Bayesian approaches to assess the quality index of medical devices.
In [53], blockchain technology has been assessed using Bayesian BWM. A cost–benefit
analysis of shale development in India has been carried out using the best–worst method
approach [54]. In [55], identification and prioritization of criteria to tackle the COVID-19
outbreak has been carried out. Ref. [56] applied fuzzy BWM in prioritizing factors affecting
ad hoc wireless networks. There are many applications of BWM, along with uncertainty,
that exists in the literature.

The BWM model is a kind of linear mathematical programming model [15]. Linear
mathematical programming refers to mathematical models having mathematical equations
for an objective function that is needed to be achieved—with an optimal value under
some set of constraints. The condition is that all equations should be of linear nature [57].
Multi-choice mathematical programming is a kind of mathematical programming having
multi-choice parameters [18]. In the work of Hasan et al. [58], they have assumed a situation
where the pairwise comparison parameter is considered multi-choice in nature. Hasan
et al. [58] incorporated a type of uncertainty in the multi-choice form in the best–worst
method. They have shown that having multiple choices for pairwise comparison of two
criteria can be chosen by the experts instead of using any other kind of uncertainty, such as
probabilistic, fuzzy, neutrosophic, etc. They have handled it using Lagrange interpolation
and chosen those choices for which inconsistency has been minimized. Their approach has
shown a significant decrease in inconsistency. This approach has not yet been explored in
the case of group decision-making problems. So, on the basis of the above discussion, it
can be observed that the researchers have not considered the most critical point, which
is employing a multi-choice mathematical programming model to the MCDM problems
in a group decision-making scenario. This has motivated me to work on such models,
where multi-choice uncertainty can be incorporated into group decision-making problems.
The issue, as mentioned above, is vital in the decision-making of real-world problems.
Therefore, the present work focuses on a multi-choice mathematical programming model
for group decision-making problems. This work presents two mathematical models. Both
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models are different with respect to the constraints and objective function. The authors
have shown the approaches to solving group decision-making problems.

3. Preliminaries

As preliminary, this section provides an overview of Multi-choice mathematical pro-
gramming models and the Lagrange interpolation method as follows:

Multi-choice mathematical programming:

It is a mathematical programming model to determine the solution set X, where X
is (x1, x2, x3, . . . , xn). The objective is the maximization of the function denoted by Z. The
model is as follows:

Max Z =
n

∑
j=1

Cjxj (2)

subject to ∑ aijxj ≤ {b
(1)
i , b(2)i , b(3)i , . . . , b(ki)

i }, i = 1, 2, . . . , m, (3)

xj ≥ 0, j = 1, 2, . . . , n. (4)

The choice set of parameter b is {b(1)i , b(2)i , b(3)i , . . . , b(ki)
i } with ki number of choices.

The solution set will consist of only one choice from the choice set, which is to be selected
for the optimized model.

To determine the solution of the above model, it is necessary to convert it into the
standard form of mathematical programming. There are many interpolating polynomial
methods [17] for handling the multi-choice parameter b, such as using Lagrange, Newton’s
divided differences, Newton’s forward difference, and Newton’s backward difference
interpolating polynomial. For the proposed extended methods, the Lagrange interpolation
method is utilized.

Lagrange interpolation:

Let 0, 1, 2, . . . , (ki − 1) be ki number of node points, where b(1)i , b(2)i , . . . , b(ki)
i are

the associated functional values of the interpolating polynomial at ki different node points.
A polynomial Pki−1

(z(i)) of degree (ki − 1) which interpolates the given data is:

Pki−1
(z(i)) =

(z(i) − 1)(z(i) − 2) . . . (z(i) − ki + 1)

(−1)ki−1(ki − 1)!
b(1)i +

z(i)(z(i) − 2) . . . (z(i) − ki + 1)

(−1)ki−2(ki − 2)!
b(2)i

+
z(i)(z(i) − 1)(z(i) − 3) . . . (z(i) − ki + 1)

(−1)ki−3(ki − 3)!2!
b(3)i

+ . . . +
z(i)(z(i) − 1)(z(i) − 2) . . . (z(i) − ki + 2)

(ki − 1)!
b(ki)

i ∀ i = 1, 2, 3, . . . m. (5)

4. The Proposed Multi-Criteria Group Decision-Making Models in
Multi-Choice Environment

Suppose k numbers of decision-makers are represented by the set D = {D1, D2, . . . , Dk},
where Dk (k ∈ 1, 2, . . . , m) denotes the k-th expert. There are n numbers of decision criteria
C = {c1, c2, . . . , cn} with n ≥ 2, where cj (j ∈ {1, 2, . . . , n}) indicates the j-th criteria. The
expertise of the decision-makers in expressing their importance in comparing criteria may
be identical or different. The criterion’s importance is described using finite, pre-specified,
and ordered linguistic terms sets, as shown in Table 1. The k-th decision-maker describes
the multi-choice preference details Sk

ij = {1, 2, . . . , sij}k; i, j ∈ 1, 2, . . . , n, where sij repre-
sents the linguistic term of the i-th criterion, over j-th criterion with Tk cardinalities, i.e.,
Sk = {sk

1, sk
2, sk

3, . . . , sk
Tk
}.
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The notations used in this paper are presented in Table 2. The steps involved in the
proposed group multi-choice best–worst method (GMCBWM) to obtain the criteria weights
are described as follows.

Table 1. Linguistic expression for reference comparison.

Value Linguistic Expression Value Linguistic Expression

1 EI: Equal important 2 IEM: Intermediate b/w EI and MI
3 MI: Moderate important 4 IMI: Intermediate b/w MI and I
5 I: Important 6 IVI: Intermediate b/w I and VI
7 VI: Very important 8 IEI: Intermediate b/w VI and EXI
9 EXI: Extreme important

Table 2. Symbols/Notations used in this study.

Notations Descriptions

n Number of Criteria in group decision-making system
m number of decision-makers in group decision-making system
c1, c2, . . . , cn Criteria of group decision-making system with indices of i, j = 1, 2, . . . , n
D1, D2, . . . , Dk Decision-makers of group decision-making system with index of k = 1, 2, . . . , m
Sk Number of multi-choices in the reference comparisons of k-th decision-maker
{xsij

ij }
k Multi-choice preference comparison of criterion i with j having sij ≥ 1 number of possibilities

for decision maker k
cB Best criterion with index B
cW Worst criterion with index W
Xk

B Multi-choice preference comparisons best-to-others vector for k-th decision-maker
Xk

W Multi-choice preference comparisons others-to-worst vector for k-th decision-maker
Pk Interpolation polynomial of k-th decision-maker
λk Weight of k-th decision-maker (λk ∈ [0, 1] and ∑k λk = 1)
ξk The consistency ratio for the k-th decision-maker
ωi The weight of criterion i
ξ The consistency ratio group decision-making
CI Consistency index
CRk Consistency ratio of k-th DM in the group decision-making problem
CRG Overall consistency ratio of the group decision-making problem

(I). Defining the system of decision-making mechanism.

The decision criteria system comprises a collection of decision criteria essential in
making a judgment on diverse alternatives to consider—assuming n number of decision
criteria, {c1, c2, . . . , cn}. Then, the decision matrix can be presented as follows.

Xk =

c1
c2
...

cn

c1 c2 · · · cn
{x(1)11 , x(2)11 , . . . , x(s11)

11 }k {x(1)12 , x(2)12 , . . . , x(s12)
12 }k · · · {x(1)1n , x(2)1n , . . . , x(s1n)

1n }k

{x(1)21 , x(2)21 , . . . , x(s21)
21 }k {x(1)22 , x(2)22 , . . . , x(s22)

22 }k · · · {x(1)2n , x(2)2n , . . . , x(s2n)
2n }k

...
...

. . .
...

{x(1)n1 , x(2)n1 , . . . , x(sn1)
n1 }k {x(1)n2 , x(2)n2 , . . . , x(sn2)

n2 }k · · · {x(1)nn , x(2)nn , . . . , x(snn)
nn }k

 (6)

where, Xk represents the pairwise multi-choice comparison matrix of the k-th decision-

maker and {x(sij)

ij }
k denotes the relative importance of criteria i to criterion j with (sij) multi-

ple reference comparisons. Additionally, Xk
i =

(
{x(1)11 , . . . , x(s11)

11 }k, {x(1)12 , . . . , x(s12)
12 }k, · · · ,

{x(1)1n , . . . , x(s1n)
1n }k

)
is the vector of the i-th index’s multi-choice preference relation to other
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indexes. Furthermore, the multi-choice pairwise comparison matrix Xk is deemed entirely
consistent if and only if the following conditions are met:

{xsip
ip }

k × {xspj
pj }

k = {xsij
ij }

k ∀i, j (7)

(II). Finding the best and the worst criteria to use.

Decision-makers must recognize the best and worst, typically focused on the built-in
decision criteria mechanism of the previous step. The best and worst selection by assigning
ck

B to the best and ck
W to the worst criterion for the k-th decision-maker. Afterward, it can

determine whether two criteria experts often used in the great majority, ck
B and ck

W , are the
best and worst criteria. When several experts make recommendations, the best and worst
criteria are often subjective, resulting in various ck

B and ck
W . To eventually incorporate the

ck
B and ck

W of various experts, it is required to choose a set of widely accepted best and
worst criteria in front.

(III). Conducting multi-choice preference comparisons to determine best-to-others and
others-to-worst criteria.

This step defines pairwise multi-choice preference comparisons of best criteria B over
other criteria j(j = 1, 2, . . . , n), designated by Xk

B, of the k-th decision-maker. The decision-
makers pairwise multi-choice comparisons of all criteria j over the worst criterion W,
represented by Xk

W , are termed others-to-worst. The decision-makers determine pairwise
perceptions on the order of 1 to 9, as said in Table 1. Although there are several options
possible when it comes to such judgments. Figure 1 depicts the best-to-others Xk

B and
others-to-worst Xk

W vector multi-choice preferences with many alternatives. The resulting
multi-choice best-to-others vector is denoted by Xk

B in Equation (8) as follows:

Xk
B =

(
xSB1

B1 , xSB2
B2 , . . . , xSBn

Bn

)
, where x

SBj
Bj = {x(1)Bj , x(2)Bj , . . . , x

(sBj)

Bj }
k ∀j (8)

where x
SBj
Bj is the set of multi-choice reference comparisons for the k-th expert evaluating

the best criteria B over other criteria j, such that x
sBj
Bj ≥ 1∀j = 1, 2, . . . , n and sBj ≥ 1.

Similarly, the multi-choice preference comparisons of all criteria j over the worst
criterion W are obtained. The multi-choice others-to-worst vector (Xk

W) for k-th decision-
maker is expressed by Equation (9) as follows:

Xk
W =

(
xS1W

1W , xS2W
2W , . . . , xSnW

nW

)
, where x

SjW
jW = {x(1)jW , x(2)jW , . . . , x

(sjW )

jW }k ∀j (9)

where x
SjW
jW is the multi-choice preference of the criterion j(j = 1, 2, . . . , n) over the worst

criterion W, such that x
sjW
jW ≥ 1∀j = 1, 2, . . . , n and sjW ≥ 1.

Best 1 2 n-2 Worst 

𝑜𝐵1
1 , 𝑜𝐵1

2 ,…,𝑜𝐵1
𝑘  

𝑜𝐵2
1 , 𝑜𝐵2

2 ,…,𝑜𝐵2
𝑘  

𝑜𝐵𝑛−2
1 , 𝑜𝐵𝑛−2

2 ,…,𝑜𝐵𝑛−2
𝑘  

𝑜𝐵𝑊
1 , 𝑜𝐵𝑊

2 ,…,𝑜𝐵𝑊
𝑘  

𝑜𝑛−2𝑊
1 , 𝑜𝑛−2𝑊

2 ,…,𝑜𝑛−2𝑊
𝑘  

𝑜1𝑊
1 , 𝑜1𝑊

2 ,…,𝑜1𝑊
𝑘  

𝑜2𝑊
1 , 𝑜2𝑊

2 ,…,𝑜2𝑊
𝑘  

Figure 1. Multi-choice pairwise reference comparisons.
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(IV). Incorporate multi-choice preference comparisons of decision-makers’ evaluations.

Due to the fact that this work makes use of the input-based consistency ratio, first
examine the consistency of every decision-maker’s multiple-choice preference comparison
vectors. After obtaining the assessment of each decision-maker, now create the decision-
maker’s multi-choice pairwise comparison matrix. The multi-choice comparison matrix for
the k-th decision-maker is presented below:

Xk =



− − · · · − · · · {x(1)1W , x(2)1W , . . . , x(s1W )
1W }k · · · −

− − · · · − · · · {x(1)2W , x(2)2W , . . . , x(s2W )
2W }k · · ·

...
...

... −
...

...
...

...

{x(1)B1 , x(2)B1 , . . . , x(sB1)
B1 }k {x(1)B2 , x(2)B2 , . . . , x(sB2)

B2 }k · · · 1 · · · {x(1)BW , x(2)BW , . . . , x(sBW )
BW }k

... {x(1)Bn , x(2)Bn , . . . , x(sBn)
Bn }k

...
...

... −
...

...
...

...
...

...
... −

... 1
...

...
...

...
... −

...
...

...
...

− − · · · − · · · {x(1)nW , x(2)nW , . . . , x(snW )
nW }k · · · −



(10)

There are several techniques for combining the multi-choices of all the decision-makers.
The associated method covered is the Lagrange interpolation method.

The main goal of such methods is the aggregation to obtain accurate results from
either of the suitable choices from the multi-choice pairwise comparison matrix. There
exist various acceptable approaches for handling multi-choice parameters. For multi-choice
parameters, interpolating polynomials (IP) are defined by obtaining integer quantities
referred to as nodal points or nodes. Each node represents a single functional significance
of a multi-choice attribute. If a component includes sij possibilities, an exactly sij amount
of nodes are required. The proposed interpolating polynomials aggregate the multi-choice
comparison vector and obtain the non-linear function precisely at all nodes for multiple-
choice. Substitute a multi-choice component with an appropriate polynomial. Lagrange
method, Newton’s divided difference method, Newton’s forward difference method, and
Newton’s backward difference method are the four significant forms of interpolating
polynomials-based methods.

Lagrangian method of polynomial interpolation

Lagrange’s interpolating polynomial (LIP) is used to tackle the multi-choice preference com-
parisons vectors Xk

B and Xk
W from Equations (8) and (9), respectively. From Equation (8), for k-th

decision-maker, the x
SBj
Bj = {x(1)Bj , x(2)Bj , . . . , x

(sBj)

Bj } ∀j where sBj (sBj ≥ 1) denotes the number
of multiple choices in the comparison of criterion B to criterion j(j = 1, 2, . . . , n), assume the
zBj variable representing the number of node points whose values are (0, 1, 2, . . . , sBj − 1).
Derive a LIP Pk

LIP(z
Bj) of degree (sBj − 1) as follows:

Pk
LIP(z

Bj) =
(zBj − 1)(zBj − 2) . . . (zBj − sBj + 1)

(−1)sBj−1(sBj − 1)!
x(1)Bj +

zBj(zBj − 2) . . . (zBj − sBj + 1)

(−1)sBj−2(sBj − 2)!
x(2)Bj

+
zBj(zBj − 1)(zBj − 3) . . . (zBj − k + 1)

(−1)sBj−3(sBj − 3)!2!
x(3)Bj

+ . . . +
zBj(zBj − 1)(zBj − 2) . . . (zBj − sBj + 2)

(sBj − 1)!
x
(sBj)

Bj ∀ j (11)

In the same way, suppose zjW represents node points with values (0, 1, 2, . . . , (sjW − 1))

with respect to Xk
W . From Equation (9), for the k-th decision-maker the x

SjW
jW =

{
x(1)jW , x(2)jW , . . . ,

x
(sjW )

jW

}
∀j where sjW (sjW ≥ 1) denotes the number of multiple choices in the other-to-
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worst, assume zjW representing node points with values (0, 1, 2, . . . , (sjW − 1)). Derive a
LIP Pk

LIP(z
jW) of degree (sjW − 1) as follows:

Pk
LIP(z

jW) =
(zjW − 1)(zjW − 2) . . . (zjW − sjW + 1)

(−1)sjW−1(sjW − 1)!
x(1)jW +

zjW(zjW − 2) . . . (zjW − sjW + 1)

(−1)sjW−2(sjW − 2)!
x(2)jW

+
zjW(zjW − 1)(zjW − 3) . . . (zjW − k + 1)

(−1)sjW−3(sjW − 3)!2!
x(3)jW

+ . . . +
zjW(zjW − 1)(zjW − 2) . . . (zjW − sjW + 2)

(sjW − 1)!
x
(sjW )

jW ∀ j (12)

Using the interpolating polynomials, model the multi-choice mathematical program-
ming model as described in step V.

(V). Determine the optimal weights (ω∗1 , ω∗2 , . . . , ω∗n) by utilizing the optimization
model.

In this step, determine the optimal weights (ω∗1 , ω∗2 , . . . , ω∗n) corresponding to each
criteria (c1, c2, . . . , cn). Then the non-linear mathematical optimization models that mini-
mize the sum of the inconsistency variance for all decision-makers in accordance with the
original group BWM are proposed. Following group BWM, we present two optimization
models, MD-1 and MD-2. Both of them are discussed in detail.

MD-1: Mathematical model-1

The optimal weight for each criterion is where, for each multi-choice comparison,

ωB/ωj and ωj/ωW should have ωB/ωj = {x
(1)
Bj , x(2)Bj , . . . , x

(sBj)

Bj }
k and ωj/ωW =

{
x(1)jW , x(2)jW ,

. . . , x
(sjW )

jW

}k
of k-th decision-maker. To identify the best criteria weights with the group

decision-making, the maximal differences between the computed weights and the presenta-
tion of every decision-maker must be minimal. Every criterion j of the k-th decision-maker
fulfills such requirements, the actual discrepancy |ωB/ωj − Xk

B| and |ωj/ωW − Xk
W | for all

j could be established as follows.

min ∑
k∈D

λk max
j

{∣∣∣∣∣ωB
ωj
− {x(1)Bj , x(2)Bj , . . . , x

(sBj)

Bj }
k

∣∣∣∣∣,
∣∣∣∣∣ωB

ωj
− {x(1)jW , x(2)jW , . . . , x

(sjW )

jW }k

∣∣∣∣∣
}

(13)

s.t.


n
∑

j=1
ωj = 1

ωj ≥ 0
j = 1, 2, . . . , n

In the MD-1 model, presented in Equation (13), the objective function includes a parameter
λk for k− th expert having a value in the range [0, 100] presenting the individual weight (impor-

tance) of the decision-makers. Further, we define ξk = maxj

{∣∣∣∣ωB
ωj
− {x(1)Bj , x(2)Bj , . . . , x

(sBj)

Bj }
k
∣∣∣∣,∣∣∣∣ωB

ωj
− {x(1)jW , x(2)jW , . . . , x

(sjW )

jW }k
∣∣∣∣} to simplify the proposed MD-1. Therefore, the proposed

MD-1 model is transformed as:
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min ∑
k∈D

λkξk (14)

s.t.



∣∣∣∣ωB
ωj
− {x(1)Bj , x(2)Bj , . . . , x

(sBj)

Bj }
k
∣∣∣∣ ≤ ξk ∀j, k∣∣∣∣ωB

ωj
− {x(1)jW , x(2)jW , . . . , x

(sjW )

jW }k
∣∣∣∣ ≤ ξk ∀j, k

∑
j=1

ωj = 1 ∀j

ωj ≥ 0 ∀j
ξk ≥ 0 ∀k
j = 1, 2, . . . , n
k = 1, 2, . . . , m

The above mathematical model represents a non-linear multi-choice optimization prob-
lem with the multi-choice comparison vectors as multi-choice parameters in the constraints.
To tackle the multi-choice pairwise comparison parameters, we apply the polynomial
interpolation methods with the aim of integer nodal points by using the previous Step (IV).
Thus, the model presented in Equation (14) is transformed as follows:

min ∑
k∈D

λkξk (15)

s.t.



∣∣∣ωB
ωj
− Pk(zBj)

∣∣∣ ≤ ξk ∀j, k∣∣∣ωB
ωj
− Pk(zjW)

∣∣∣ ≤ ξk ∀j, k

∑
j=1

ωj = 1 ∀j

ωj ≥ 0 ∀j
ξk ≥ 0 ∀k
zBj = 0, 1, 2, . . . , (sBj − 1) ∀j
zjW = 0, 1, 2, . . . , (sjW − 1) ∀j
j = 1, 2, . . . , n
k = 1, 2, . . . , m

The optimal criteria weights (ω∗1 , ω∗2 , . . . , ω∗n) are evaluated by solving the above model
that is calculated as the actual values. Note that the proposed MD-1 model (as in Equation (15))
not only obtains the optimal criteria weights but also finds the position vectors, that
is, integer nodal points zBj, and zjW for all j = 1, 2, . . . , n of the polynomial Pk for all
k = 1, 2, . . . , m. Thus, the final solution includes the best pairwise comparison among the
multiple choices that are provided by the decision-makers.

MD-2: Mathematical model-2

As described in MD-1, each decision-maker has an individual weight component,
which is used to calculate their relative relevance in the proposed model. Consequently,
the second mathematical model, MD-2, with a min–max objective, is presented as follows:
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min max
k

λkξk (16)

s.t.



∣∣∣∣ωB
ωj
− {x(1)Bj , x(2)Bj , . . . , x

(sBj)

Bj }
k
∣∣∣∣ ≤ ξk ∀j, k∣∣∣∣ωB

ωj
− {x(1)jW , x(2)jW , . . . , x

(sjW )

jW }k
∣∣∣∣ ≤ ξk ∀j, k

∑
j=1

ωj = 1 ∀j

ωj ≥ 0 ∀j
ξk ≥ 0 ∀k
j = 1, 2, . . . , n
k = 1, 2, . . . , m

Here, similar to the mathematical model presented in MD-1 (as in Equation (14)),
we simplify the MD-2 model in Equation (16) as ξ = maxk λkξk. Additionally, the multi-
choice comparisons in the constraints of the model having the multi-choice parameter are
interpolated using the previous Step (IV). We transform the model MD-2 as follows:

min ξ (17)

s.t.



ξ ≥ λkξk ∀k∣∣∣ωB
ωj
− Pk(zBj)

∣∣∣ ≤ ξk ∀j, k∣∣∣ωB
ωj
− Pk(zjW)

∣∣∣ ≤ ξk ∀j, k

∑
j=1

ωj = 1 ∀j

ωj ≥ 0 ∀j
ξk ≥ 0 ∀k
zBj = 0, 1, 2, . . . , (sBj − 1) ∀j
zjW = 0, 1, 2, . . . , (sjW − 1) ∀j
j = 1, 2, . . . , n
k = 1, 2, . . . , m

The optimal criteria weights (ω∗1 , ω∗2 , . . . , ω∗n), integer nodal points zBj, and zjW for all
j = 1, 2, . . . , n are evaluated by solving the above proposed MD-2 model in Equation (17).

Following the solution of the mathematical models, MD-1 and MD-2, the optimum
values of ξk are used to compute the consistency ratio (CRk) for every k-th decision-maker
that will apply to evaluate the group consistency ratio (CRG) in a group decision-making
system. If xBj × xjW = xBW ∀j, where xBj is the preference of best criteria B over the all
other criteria j and xjW is the preference of criterion j over the worst criterion B, then
comparisons are said to be entirely consistent. Thus, the consistency ratio of the proposed
GMCBWM is calculated in the following step.

(VI).Consistency ratio for GMCBWM

The consistency ratio (CR) was used to demonstrate the validity of pairwise compar-
isons. The CR of the proposed GMCBWM of the k-th decision-maker CRk and further the
group decision-making CRG are calculated using Equations (18) and (19) given as follows.

CRk =λk
ξ∗k
CI

∀k = 1, 2, . . . , m (18)

CRG =max
k
{CRk} (19)
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In Equation (18), ξ∗k is the optimum value of inconsistency achieved by resolving
mathematical models (MD-1 or MD-2) for the k-th decision-makers, and λk is the individual
weight vector assigned to the k-th decision-maker depending on their degree of knowledge.
The consistency index (CI) is a constant value presented in Table 3 for each decision-maker’s
value xmax

BW . The conclusive CRG of the GMCBWM is the maximum CRk among all decision-
makers as in Equation (19). If CRG is zero, the result in the form of optimal weights is
totally consistent; nevertheless, as CRG grows, the consistency diminishes.

Table 3. CI [14].

xmax
BW 1 2 3 4 5 6 7 8 9

CI (max ξ) 0.00 0.44 1 1.63 2.30 3 3.73 4.47 5.23

5. Numerical Studies

This section presents two numerical illustrations of group decision-making problems
to demonstrate the applicability of the proposed GMCBWM in different circumstances and
analyze the outcomes. The proposed models are formulated under each case and evaluated
using the AMPL [59] and NEOS [60] to achieve the optimal weights criteria.

5.1. Numerical Example 1

In this example, the responses for four criteria (c1, c2, c3, c4) with n = 4 are taken from
two decision-makers (DMs), i.e., k = 2 as DM1 and DM2 [61]. The criteria c1 and c3 are
considered best (B) and worst (W) criteria by both experts having λ1 and λ2 individual
weights, respectively. The multi-choice best-to-others Xk

B (Equation (8)) and others-to-worst
Xk

W (Equation (9)) vector preferences on a scale of 1 to 9 are provided by each DM using
Table 1. As n = 4, according to the basic BWM, we require at least 2n− 3 = 2 ∗ 4− 3 = 5
preference responses from each DM [14]. The multi-choice pairwise preference comparing
the best-to-others and others-to-worst criteria are presented in Table 4 for both DMs. In
Table 4, the response x13 comparing c1 to c3 from DM1 is a multi-choice comparison with
two choices 8 and 9, that is, x13 = {8, 9} and for x14 comparing c1 to c4 from DM2 is 2 and
3, that is, x14 = {2, 3} with s13 = 2 and s14 = 2, respectively.

Table 4. Multi-choice preference comparisons of four criteria with two decision-makers in Example 1.

DM x12 x13 x14 x23 x43

DM1 2 {8, 9} 3 4 2
DM2 2 8 {2, 3} 4 2

Thus, the multi-choice best-to-others vector is X1
B = {x12, {x(1)13 , x(2)13 }, x14}} = {2, {8, 9},

3} and X2
B = {x12, x13, {x(1)14 , x(2)14 }} = {2, 8, {2, 3}} and others-to-worst vector is

X1
W = {{x(1)13 , x(2)13 }, x23, x43} = {{8, 9}, 4, 2} and X2

W = {x13, x23, x43} = {8, 4, 2} using
Table 4 from Step (III) of the proposed GMCBWM. The objective of the proposed mod-
els is to determine the best choice or the best pairwise comparison out of all the choices
of pairwise comparisons assigned by DM1 and DM2. However, before formulating the
mathematical model of the proposed GMCBWM, we first have to derive the polynomial
functions that interpolate the multi-choice reference parameters associated with each com-
parison vector.

Thus, interpolation polynomials (IPs) are derived for the x13 = {x(1)13 , x(2)13 } = {8, 9}
and x14 = {x(1)14 , x(2)14 } = {3, 4}multi-choice reference comparison taking integral values
for the nodal points z13 and z14. Each node will have s13 = s14 = 2 number of integer
values. The Lagrange interpolating polynomial (LIP) functions are derived using Step 4
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of Section 4. We formulate LIPs PLIP for (z13) of degree (s13 − 1) and for (z14) of degree
(s14 − 1) using Equations (11) and (12) as follows:

PLIP(z13) =
(z13 − 1)

(−1)s13−1(s13 − 1)!
x(1)13 +

z13

(−1)s13−2(s13 − 2)!
x(2)13

=
(z13 − 1)

(−1)2−1(2− 1)!
8 +

z13

(−1)2−2(2− 2)!
9

=z13 + 8

PLIP(z14) =
(z14 − 1)

(−1)s14−1(s14 − 1)!
x(1)14 +

z14

(−1)s14−2(s14 − 2)!
x(2)14

=
(z14 − 1)

(−1)2−1(2− 1)!
2 +

z14

(−1)2−2(2− 2)!
3

=z14 + 2

Now, to obtain the optimal weights (ω∗1 , ω∗2 , ω∗3 , ω∗4 ) of the criteria, we present the two
proposed mathematical programming model MD-1 and MD-2 from Step (V) of Section 4
using Equations (15) and (17) as follows:

MD− 1

min (λ1ξ1 + λ2ξ2) (20)

s.t.



∣∣∣ω1
ω2
− 2
∣∣∣ ≤ ξ1∣∣∣ω1

ω2
− 2
∣∣∣ ≤ ξ2∣∣∣ω1

ω3
− (z13 + 8)

∣∣∣ ≤ ξ1∣∣∣ω1
ω3
− 8
∣∣∣ ≤ ξ2∣∣∣ω1

ω4
− 3
∣∣∣ ≤ ξ1∣∣∣ω1

ω4
− (z14 + 2)

∣∣∣ ≤ ξ2∣∣∣ω2
ω3
− 4
∣∣∣ ≤ ξ1∣∣∣ω2

ω3
− 4
∣∣∣ ≤ ξ2∣∣∣ω4

ω3
− 2
∣∣∣ ≤ ξ1∣∣∣ω4

ω3
− 2
∣∣∣ ≤ ξ2

ω1 + ω2 + ω3 + ω4 = 1
ω1, ω2, ω3, ω4 ≥ 0
ξ1, ξ2 ≥ 0
z13, z14 = 0, 1.

MD− 2

min ξ (21)

s.t.


ξ ≥ λ1ξ1

ξ ≥ λ2ξ2

Rest of constraints are same as in Equation (20)

The non-linear mixed-integer mathematical programming models MD-1 and MD-2, as
shown in Equations (20) and (21), are solved to obtain the optimal weights (ω∗1 , ω∗2 , ω∗3 , ω∗4 )
and the nodal points (z13, z14) corresponding to the multi-choice reference comparison.
The optimal ξ∗ of the MDs are applied to evaluate the inconsistency of the group decision-
making of Example 1. Further, the individual weights (λ1, λ2) of DMs have a substantial
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effect on the resulting consistency ratio (CR). Therefore, we investigate five different pairs
(0.1,0.9), (0.3,0.7), (0.5,0.5), (0.7,0.3), and (0.9,0.1) of group decision instances to obtain
optimal weights of the criteria. The sensitivity of weight values has been evaluated based
on these pairs. Using the data provided in Table 4 of Example 1, we have solved the two
models with different combinations of individual weight vectors of DMs.

The optimal results of Example 1 after solving MD-1 and MD-2 are provided in Tables 5
and 6, respectively. The outcomes of five pairs of (λ1, λ2) with optimal weights of critical,
nodal points, inconsistency value (ξ1, ξ2), and consistency ratio (CR1, CR2) are presented
for DM1 and DM2 with k = 2 in tables. Importantly, in the last column of Tables 5 and 6,
the group consistency ratio (CRG) is presented. It has been found that the optimal weight
of criteria is the same for all pairs of λ1 and λ2 for both MD-1 and MD-2 for this numerical
illustration. However, the CRk of each DMs changes depending upon the values of λ1 and
λ2. In other words, the ranking of the criteria is the same for each pair in both models and
is c1 > c2 > c4 > c3. Moreover, the solutions of both models MD-1 and MD-2 for different
combinations of λ1 and λ2 shows that the best nodal values are z13 = 0, i.e., x13 = 8 for
DM1 comparing c1 to c3 and z14 = 0, i.e., x14 = 2 for DM2 comparing c1 to c4. Thus, the
best choice of xBW , i.e., x13 equals eight and remains unchanged for all models. Further, the
group consistency ratio of Example 1 is equal to the minimum among all CRG obtained
for different values of λ1 and λ2. Therefore, the minimum consistency value of Example 1
using MD-1 is CRG = 0.002982886 (see Table 5) and for MD-2 is CRG = 0.002982886 (see
Table 6) for λ1 = 0.5 and λ2 = 0.5. It is worth mentioning that the CRG of the Example
1 with Group-BWM [61] with both model-1 and model-2 is equal to 0.096 with ranking
c1 > c2 > c4 > c3. Hence, we can say that the proposed models of GMCBWM achieve the
best consistency value for Example 1 and also validate the ranking of criteria.

Table 5. Result of Example 1 solving with MD-1.

No. (λ1, λ2) (ω∗
1 , ω∗

2 , ω∗
3 , ω∗

4 ) z13, z14 ξ∗k CRk CRG

1 (0.1, 0.9) (0.506667, 0.266667 0 0.0266667 0.000596570 0.005369134
0.0666667, 0.160000) 0 0.0266667 0.005369134

2 (0.3, 0.7) (0.506667, 0.266667 0 0.0266667 0.001789732 0.004176000
0.0666667, 0.160000) 0 0.0266667 0.004176040

3 (0.5, 0.5) (0.506667, 0.266667 0 0.0266667 0.002982886 0.002982886
0.0666667, 0.160000) 0 0.0266667 0.002982886

4 (0.7, 0.3) (0.506667, 0.266667 0 0.0266667 0.004176040 0.004176040
0.0666667, 0.160000) 0 0.0266667 0.001789732

5 (0.9, 0.1) (0.506667, 0.266667 0 0.0266667 0.005369195 0.005369195
0.0666667, 0.160000) 0 0.0266667 0.000596577

Table 6. Result of Example 1 solving with MD-2.

No. (λ1, λ2) (ω∗
1 , ω∗

2 , ω∗
3 , ω∗

4 ) z13, z14 ξ∗k CRk CRG

1 (0.1, 0.9) (0.506667, 0.266667 0 0.0266667 0.000596577 0.005368993
0.0666667, 0.160000) 0 0.0266656 0.005368993

2 (0.3, 0.7) (0.506667, 0.266667 0 0.0266667 0.001789732 0.004175727
0.0666667, 0.160000) 0 0.0266652 0.004175727

3 (0.5, 0.5) (0.506667, 0.266667 0 0.0266667 0.002982886 0.002982886
0.0666667, 0.160000) 0 0.0266667 0.002982886

4 (0.7, 0.3) (0.506667, 0.266667 0 0.0266652 0.004175727 0.004175772
0.0666667, 0.160000) 0 0.0622189 0.004175772

5 (0.9, 0.1) (0.506667, 0.266667 0 0.0266656 0.005368993 0.005368993
0.0666667, 0.160000) 0 0.2399900 0.005368904
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5.2. Numerical Example 2

We have assumed three decision-makers (DM1, DM2, DM3), k = 3 with four criteria
(c1, c2, c3, c4), n = 4. The c1 and c3 criteria are assumed as best (B) and worst (W) criterion
by the all three experts having λ1, λ2, and λ3 individual weights, respectively. The pairwise
comparisons with the multi-choice response sets are presented in Table 7.

Table 7. Pairwise comparison of three decision-makers in Example 2.

DM x12 x13 x14 x23 x43

DM1 2 9 (3, 4) 4 2
DM2 2 (8, 9) 4 4 2
DM3 2 8 4 (3, 4) 2

The multi-choice best-to-others Xk
B (Equation (8)) and others-to-worst Xk

W (Equa-
tion (9)) vector preferences on a scale 1 to 9 are provided by each DM using Table 1. Table 4
shows the multi-choice pairwise comparisons of the worst and the best criteria than the
other criteria for the two DMs.

The response from DM1 for x13 is a multi-choice parameter with two choices 8 and 9,
that is, x13 = {8, 9} and for DM2, the response is 2 and 3, that is, x14 = {2, 3} with s13 = 2
and s14 = 2, respectively. The objective is to determine the best choice or the best pairwise
comparison out of all the choices of pairwise comparisons assigned by DM1 and DM2.

Interpolating polynomials (IPs) are formulated for the {x(1)13 , x(2)13 } = {8, 9} and

{x(1)14 , x(2)14 } = {3, 4}multi-choice reference comparison taking integral values for the nodal
points z13 and z14. Each node will have s13 = s14 = 2 number of integer values. The
Lagrange IP (LIP) functions are formulated using step 4 for each multi-choice reference
comparison. We derive LIPs PLIP for (z13) of degree (s13 − 1) and for (z14) of degree
(s14 − 1) using Equations (11) and (12) as follows:

PLIP(z13) =
(z13 − 1)

(−1)s13−1(s13 − 1)!
x(1)13 +

z13

(−1)s13−2(s13 − 2)!
x(2)13

=
(z13 − 1)

(−1)2−1(2− 1)!
8 +

z13

(−1)2−2(2− 2)!
9

=z13 + 8

PLIP(z14) =
(z14 − 1)

(−1)s14−1(s14 − 1)!
x(1)14 +

z14

(−1)s14−2(s14 − 2)!
x(2)14

=
(z14 − 1)

(−1)2−1(2− 1)!
2 +

z14

(−1)2−2(2− 2)!
3

=z14 + 2

Now, to obtain the optimal weights (ω∗1 , ω∗2 , ω∗3 , ω∗4 ) of the criteria, we present the two
proposed mathematical programming models MD-1 and MD-2 as follows:
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MD− 1

min (λ1ξ1 + λ2ξ2 + λ3ξ3) (22)

s.t.



∣∣∣ω1
ω2
− 2
∣∣∣ ≤ ξ1,

∣∣∣ω1
ω2
− 2
∣∣∣ ≤ ξ2,

∣∣∣ω1
ω2
− 2
∣∣∣ ≤ ξ3∣∣∣ω1

ω3
− 9
∣∣∣ ≤ ξ1,

∣∣∣ω1
ω3
− (z13 + 8)

∣∣∣ ≤ ξ2,
∣∣∣ω1

ω3
− 8
∣∣∣ ≤ ξ3∣∣∣ω1

ω4
− (z14 + 3)

∣∣∣ ≤ ξ1,
∣∣∣ω1

ω4
− 4
∣∣∣ ≤ ξ2,

∣∣∣ω1
ω4
− 4
∣∣∣ ≤ ξ3∣∣∣ω2

ω3
− 4
∣∣∣ ≤ ξ1,

∣∣∣ω2
ω3
− 4
∣∣∣ ≤ ξ2,

∣∣∣ω2
ω3
− (z23 + 3)

∣∣∣ ≤ ξ3∣∣∣ω4
ω3
− 2
∣∣∣ ≤ ξ1,

∣∣∣ω4
ω3
− 2
∣∣∣ ≤ ξ2,

∣∣∣ω4
ω3
− 2
∣∣∣ ≤ ξ3

ω1 + ω2 + ω3 + ω4 = 1
ω1, ω2, ω3, ω4 ≥ 0
ξ1, ξ2, ξ3 ≥ 0
z13, z14, z23 = 0, 1.

MD− 2

min ξ (23)

s.t.


ξ ≥ λ1ξ1

ξ ≥ λ2ξ2

Rest of constraints are same as MD-1

The results of Models 1 and 2 are provided in Tables 8 and 9. In Table 8, the obtained
weights are presented for six different sets of (λ1, λ2, λ3). The change in weight values of
the criterion has been evaluated based on these sets. It has been found that for model 2, no
change is visible for five sets of (λ1, λ2, λ3). Whereas, for (0.6, 0.2, 0.2), the weight values of
the criterion are different from the other five sets. In Table 9, the inconsistency value (ξ1, ξ2,
ξ3) and consistency ratio (CR1, CR2, CR3) for decision maker 1, 2, and 3 were presented,
respectively. Finally, in the last column, the Group CR is tabulated. All these are evaluated
for six sets of λ1, λ2, and λ3. For model 1, the minimum CRG is 0.002065 for set 3, whereas
the maximum is for set 6 of λk. For model 2, the minimum CRG is for sets 2 and 3, i.e.,
0.002065. The CRG is maximum for set 4, i.e., 0.002386 of λ1 = 0.3, λ2 = 0.3, and λ3 = 0.4.
The ranks of criteria for all models remain the same for all sets of λ1, λ2, and λ3.

Table 8. Result of Example 2 for MD-1.

No. λk (ω∗
1 , ω∗

2 , ω∗
3 , ω∗

4 ) z13, z14, z23 ξ∗k CRk CRG

1 0.2 (0.533333, 0.266667 1 0.066667 0.002549 0.002549
0.2 0.066667, 0.133333) 0 0.000000 0.000000
0.6 1 0.000000 0.000000

2 0.2 (0.533333, 0.266667 1 0.066667 0.002549 0.002549
0.6 0.066667, 0.133333) 1 0.000000 0.000000
0.2 1 0.000000 0.000000

3 0.6 (0.538462, 0.261538 1 0.015385 0.001765 0.002065
0.2 0.061539, 0.138462) 1 0.015385 0.000688
0.2 0 0.046154 0.002065

4 0.3 (0.533333, 0.266667 1 0.066667 0.003824 0.003824
0.3 0.066667, 0.133333) 1 0.000000 0.000000
0.4 1 0.000000 0.000000

5 0.3 (0.533333, 0.266667 1 0.066667 0.003824 0.003824
0.4 0.066667, 0.133333) 1 0.000000 0.000000
0.3 1 0.000000 0.000000

6 0.4 (0.533333, 0.266667 1 0.066667 0.005099 0.005099
0.3 0.066667, 0.133333) 1 0.000000 0.000000
0.3 1 0.000000 0.000000
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Table 9. Result of Example 2 for MD-2.

No. λk (ω∗
1 , ω∗

2 , ω∗
3 , ω∗

4 ) z13, z14, z23 ξ∗k CRk CRG

1 0.2 (0.528000, 0.272000 1 0.048000 0.001836 0.002148
0.2 0.064000, 0.136000) 1 0.016000 0.000612
0.6 1 0.016000 0.002148

2 0.2 (0.538462, 0.261538 0 0.046154 0.001765 0.002065
0.6 0.061539, 0.138462) 1 0.015385 0.002065
0.2 1 0.046154 0.002065

3 0.6 (0.538462, 0.261538 1 0.015385 0.001765 0.002065
0.2 0.061539, 0.138462) 1 0.046154 0.001765
0.2 1 0.046154 0.002065

4 0.3 (0.524444, 0.275556 1 0.035556 0.002040 0.002386
0.3 0.062222, 0.137778) 1 0.026667 0.001530
0.4 1 0.026667 0.002386

5 0.3 (0.527473, 0.272527 0 0.035165 0.002017 0.002360
0.4 0.061539, 0.138462) 1 0.026374 0.002360
0.3 1 0.035165 0.002360

6 0.4 (0.527473, 0.272527 1 0.026374 0.002017 0.002360
0.3 0.061539, 0.138462) 1 0.035165 0.002017
0.3 1 0.035165 0.002360

After solving all models, for example, 2, we have found that for all models, the ranks
of criteria remain unchanged, but there is a little difference in values of weights for some
sets of λ1, λ2, and λ3. Additionally, the CR ratio for MD-1 is 0 whereas for MD-2, it is
nearby to zero for all values of λ1, λ2, and λ3. The CR values for models are acceptable.

6. Case Study

We have considered a real case study from [61] having 10 decision-makers about a
piping selection method. The study consists of four criteria, i.e., total cost, security, social
cost, and environmental cost. The total cost is the best criterion, and environmental cost
is the worst criterion. The considered criteria, along with respective descriptions, are
presented in Table 10. The pairwise comparison data for the case study is presented in
Table 11. The multi-choice response sets were also presented in this table. The responses as
multi-choice data are presented in the last row of Table 11. This multi-choice row consists
of responses from all 10 decision-makers taken as choices. The objective is to determine
the optimal weights of criteria by choosing that set of responses from the multi-choice sets,
which will minimize the inconsistency. Two models, MD-1 and MD-2, are formulated and
solved similarly to previous examples to determine the optimal weights of criteria.

Table 10. Criteria and their description for piping selection.

Title Description

Total cost (C1) Direct costs employer pays to the contractor
Security (C2) Security of less damage to underground pipes
Social costs (C3) Problems due to noise and traffic limitations
Environmental costs (C4) Environmental pollution such as air and soil pollution.

Now modeling and solving, results are obtained. The criteria weights and their
respective ranks obtained for MD-1 and MD-2 are presented in Table 12. In Table 12, we
can see that in models 1 and 2, although the ranks of criteria are the same, there is a change
in the weight values of criteria.
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Table 11. Case study.

x12 x13 x14 x24 x34

DM1 {6, 7} 6 7 4 {2, 3}
DM2 7 7 {7,9} {4, 6} 5
DM3 7 {6, 7} 9 {8, 9} 8
DM4 {2, 3, 5} 4 {6,7} 4 3
DM5 3 4 8 {3,4,5} 5
DM6 5 {6, 7} 7 5 {2, 3, 5}
DM7 9 {4, 6} 9 9 8
DM8 9 {7, 9} 9 {6, 8} 2
DM9 {8, 9} 9 9 {3, 4} 1
DM10 {7, 9} 9 9 {3, 5} {1, 2, 3}

Table 12. Optimal weights obtained for case study using MD-1, and -2.

Criteria MD-1 Rank MD-2 Rank

1 0.754335 1 0.743833 1
2 0.0780347 3 0.0867027 3
3 0.0982659 2 0.103489 2
4 0.0693642 4 0.0659758 4

The individual consistency ratio for all 10 experts and respective consistency ratio
along with the CR of the group is presented in Table 13. The CRG obtained for model 1 is
0.018015, and for model 2, it is 0.018901. There is a minor difference in obtained consistency
ratios. Out of these two models, the consistency ratio is minimum for MD-1 and maximum
for MD-2.

Table 13. Result of case study for MD-1, and -2.

MD-1 MD-2

Expert Weight xBW CR CRG Weight xBW CR CRG

1 0.268786 7 0.018015147 0.282003 7 0.018901005
2 0.476879 7 0.003835488 0.441103 7 0.003547745
3 0.476879 9 0.002735444 0.441103 9 0.002530228
4 0.364162 6 0.004855493 0.570428 6 0.007605707
5 0.520231 8 0.008146794 0.018015 0.483725 8 0.007575112 0.018901
6 0.364162 7 0.007810445 0.31032 7 0.006655657
7 0.546243 9 0.010444417 0.507079 9 0.009695583
8 0.754335 9 0.014423231 0.705007 9 0.013480057
9 0.130058 9 0.003730153 0.187564 9 0.005379465
10 0.33815 9 0.009698375 0.470004 9 0.013480038

7. Limitations, Conclusions and Future Work

This study proposes two different mathematical programming models for solving
group MCDM problems. Since there is a large number of variants of mcdm methods, where
each method has its own suitability with respect to the assumptions and applications, the
proposed methods also have some limitations. The proposed approaches can be applied
when the pairwise comparisons collected are multi-choice in nature. The method has
some difficulty in its application since no excel or easy-to-apply software is available. The
decision-maker needs to code and solve it using optimization solvers, which is difficult for
the management or non-technical persons. In the future, this can be rectified by developing
easy to calculate excel file. The present work only proposes two models; in the future, these
models can be extended to some more models by incorporating more information, such as
the confidence level of experts, etc.

The two methods are proposed considering the assumption of multi-choice uncertainty
in pairwise comparisons of criteria. The multi-choice uncertainty has been applied to
determine the best choice out of multiple choices. It gives a real-life scenario to the
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decision-making problems. Although there are many other forms of uncertainty, such as
rough set, fuzzy, intuitionistic fuzzy, neutrosophic, probabilistic, etc., it focuses on choices
instead of the probabilistic or fuzzy nature of parameters. The parameters are considered
multi-choice in the pairwise comparison. These parameters are handled by applying the
Lagrange interpolating polynomial method. The proposed models are novel in terms
of their mathematical structure and group decision-making approach. The models are
formulated and further validated by solving numerical examples. It provides a framework
for solving MCDM problems and provides weightage to the decision-makers as well. In
the results of the numerical example 1 for MD-1 and MD-2, it can be seen that there is no
effect on the weights obtained for the criteria due to the weights of the decision-makers,
i.e., λk, also the ranking of criteria is similar to an earlier study conducted in [61]. For
numerical example 2, It can be seen that there is no effect of λk on the weights of criteria
using MD-1. For all variations of λk, weights are the same. Whereas in the case of MD-2,
there is a change in weights due to variation in λk. It has been found that for all models,
the ranks of criteria remain unchanged, but there is a little difference in values of weights
for some sets of λ1, λ2, and λ3. The CR values for all the models of example 1 and 2 has
been found acceptable.

This work is an extension of multi-choice MCDM models to group decision-making
models. In the future, the proposed models can be extended to models incorporating
other kinds of uncertain parameters, such as rough set theory, fuzzy set theory, proba-
bilistic, etc. The confidence level of decision-makers as probability or weights can also be
incorporated in future studies. This can be applied to any case study following similar
assumptions of proposed models. The study has shown the real-life application of proposed
models in piping selection problem. Similar to it, the proposed models can be applied to
other problems.
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