
Citation: Liu, S.; Qi, X.; Liu, L.

Multi-Objective Task Scheduling of

Circuit Repair. Axioms 2022, 11, 714.

https://doi.org/10.3390/

axioms11120714

Academic Editor: Palle E.T.

Jorgensen

Received: 21 October 2022

Accepted: 6 December 2022

Published: 9 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Multi-Objective Task Scheduling of Circuit Repair
Shengyu Liu 1 , Xiaogang Qi 1,* and Lifang Liu 2

1 School of Mathematics and Statistics, Xidian University, Xi’an 710071, China
2 School of Computer Science and Technology, Xidian University, Xi’an 710071, China
* Correspondence: xgqi@xidian.edu.cn

Abstract: With the development of technology and the increase of equipment usage intensity, the
original support mode of circuit repair, with an ideal model and single objective, is no longer
applicable. Therefore, we focus on improving the support mode of circuit repair in this article. First,
in this article, we propose three rest strategies, and consider the scheduling optimization of flexible
rest for repair teams, for the first time. We build a more scientific and comprehensive mathematical
model for the task scheduling of circuit repair. Specifically, this model aims to maximize benefits
and minimize risks during scheduling up to a certain moment, taking into account constraints,
such as geographic information, resources, etc. Second, in this article, we design three hybrid
algorithms, namely, NSGAII-2Opt-DE(N2D), SPEA2-2Opt-DE(S2D) and MOEA/D-2Opt-DE(M2D).
Third, in this article, we design a comprehensive evaluation indicator, area. It mainly contributes to
evaluation of the convergence speed of the multi-objective optimization algorithms. Finally, extensive
computational experiments were conducted to verify the scientificity of the rest strategies, model,
algorithms and evaluation indicator proposed in this article. The experimental results showed that
our proposed N2D, S2D and M2D outperformed the existing algorithms, in terms of solution quality
and convergence speed.
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1. Introduction

As one of the main methods of equipment maintenance, circuit repair can maintain
and restore the functions of equipment by dispatching repair teams to provide services at
demand points in different locations.

At present, the task scheduling information of circuit repair is quickly updated, the
demand points are widely distributed, the environments change dynamically, and the
equipment is complicated [1]. The original support mode of circuit repair, with an ideal
model and single objective, is no longer applicable. “Poor equipment integrity and high
repair costs” often occur. Therefore, it is very important to allocate resources in a balanced
manner, schedule tasks scientifically, transform extensive equipment maintenance support
into precise support, give full play to the effectiveness of the support system, and restore
the functions of the equipment system in a timely manner.

First, this article proposes three rest strategies, and considers the scheduling opti-
mization of flexible rest for repair teams. We built a more scientific and comprehensive
mathematical model for the task scheduling of circuit repair, on the basis of the research
in [2]. This model aims to maximize benefits and minimize risks during repair up to a
certain moment. We fully considered the facts involved, namely, that the repairable status
of various demand points is different, the work efficiencies of various repair teams are
different, the changes of work efficiency of various repair teams are different, and the rest
time arrangements of various repair teams are different.
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Second, this article proposes Reversal-1 and 2 operators for the local search algorithm,
2-Optimization(2-Opt) [3]. Based on multi-objective genetic algorithms, NSGA-II, SPEA2,
MOEA/D [4–6], combined with Differential Evolution (DE), we propose the following
three hybrid algorithms: NSGAII-2Opt-DE(N2D), SPEA2-2Opt-DE(S2D) and MOEA/
D-2Opt-DE(M2D).

Third, this article designs a comprehensive evaluation indicator, area. The area can
evaluate the convergence and one-sided spread of the sets solved by multi-objective opti-
mization algorithms. It mainly contributes to the evaluation of the convergence speed of
the multi-objective optimization algorithms.

Finally, we conducted computational experiments, and used indicators C, S, M∗3 [7–9]
and area to evaluate the convergence, distribution, spread and convergence speed of the
algorithms. The experimental results verified the scientificity of the rest strategies, model,
algorithms and evaluation indicator proposed in this article. Moreover, the experimental
results showed that our proposed N2D, S2D and M2D outperformed the existing algo-
rithms, including NSGA-II, SPEA2 and MOEA/D [4–6], in terms of solution quality and
convergence speed.

The contributions of this article are as follows:

(1) The proposal of three rest strategies, considering, for the first time, the flexible rest of
the repair teams in circuit repair.

(2) Research that is compatible with traversal and non-traversal task scheduling.
(3) Distinguishing the repairable status of different demand points, compatible with the

repair, to a certain status, in a situation involving a single faulty piece of equipment
and in a system composed of multiple pieces of equipment.

(4) The multi-layer coding method is adopted and three multi-objective hybrid genetic
algorithms are designed, which are compatible with the task scheduling of a single
repair team and multiple repair teams. The hybrid algorithms have good solution
qualities and convergence speeds.

(5) The current evaluation indicators of multi-objective algorithms are mostly used to
evaluate the quality of the solution. We propose that the indicator area can be used to
evaluate the convergence speed of multi-objective algorithms.

The rest of this article is as follows. Section 2 introduces the related work of circuit
repair. Section 3 presents the problem description and basic assumptions. Section 4 de-
scribes the building of the mathematical model. Section 5 designs the algorithms, including
N2D, S2D and M2D. Section 6 describes some evaluation indicators. Section 7 presents the
computational experiments. Section 8 concludes the whole article and offers prospects for
future research.

2. Related Work
2.1. Task Scheduling of Circuit Repair

First, the task scheduling of equipment maintenance is often abstracted into process
scheduling [10,11], project scheduling [12,13], and job-shop scheduling [14,15]. However, most
of the research in the above literature did not involve the transition of repair teams, and is,
therefore, more suitable for task scheduling of fixed-point repair, but not for circuit repair.

Second, the task scheduling of circuit repair is an extension of the traveling salesman
problem (TSP) and vehicle routing problem (VRP). Research in this context, such as dy-
namic TSP [16], multiple TSP [17], capacitated VRP [18], VRP with time windows [19],
heterogeneous fleet VRP [20] and dynamic VRP [21], does not involve factors such as
various equipment repair status and different changes in the work efficiency of repair
teams. Furthermore, the research mentioned considers minimizing the sum of time win-
dow penalties and costs to be objective functions, without taking into account the fact that
the timeliness of repair affects the benefits of completing tasks, and so cannot be directly
applied to the task scheduling of circuit repair.

Third, the task scheduling of circuit repair is very similar to the task scheduling of
unmanned aerial vehicles (UAVs). Subordinate research can be used for reference. The
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literature [22,23] considers the priority of tasks and the allocation of flexible resources. Multi-
objective intelligent optimization algorithms are used to optimize the task completion duration,
cost, quality, benefits, risks, etc. However, the research referred to does not consider the detour
coefficients of the transition and the dynamic factors of the target positions. Therefore, using
these for task scheduling of circuit repair still needs a lot of improvement.

Finally, equipment maintenance is an operational activity that ensures the mainte-
nance, or restoration, of equipment functions. Some scholars conducted targeted research
on task scheduling of equipment maintenance. Liu et al. [24] built a mathematical model.
The model aimed to maximize the total number of completed equipment maintenance tasks,
the total degree of importance and the total second operation time with constraints, such
as time windows and non-traversal. According to the event rescheduling strategy, they
optimized the task scheduling of fixed-point repair by adopting the variable neighborhood
search max-min ant system. Further, Liu et al. [1] analyzed the uncertainty of repair status
and the changes of personnel work efficiency. They used an improved Genetic Algorithm
(GA) to optimize the task scheduling of adjoint repair. Further, on the basis of [1,24],
Liu et al. [2] generalized the single-event rescheduling strategy to a multi-event reschedul-
ing strategy, and generalized the task scheduling of a single repair team to multiple repair
teams. They adopted Improved NSGA-II to solve the multi-objective dynamic scheduling
of circuit repair. However, the above research still had the following shortcomings: (1) They
considered maximizing the repair number to be an optimization goal, causing the repair
teams to transfer multiple times. The teams took risks and repaired a lot of old equipment
with low reliability, which might not have created many benefits. (2) They divided the
repairable status of the faulty equipment into emergency combat status (repair firepower
and chassis) and normal combat status (all repair). They ignored the difference in the initial
status of the faulty equipment and the dynamic changes in demand. (3) They believed
that the changes of personnel work efficiency were only related to the number of repair
tasks, but did not consider the difference in workload of various tasks. (4) They ignored
the difference in the penalty coefficient of each demand point time window. (5) They did
not consider some factors, such as re-damage of equipment, shortage of resources, flexible
rest of repair teams, and risks taken by repair teams.

2.2. Multi-Objective Intelligent Optimization Algorithms

The task scheduling of circuit repair can be solved by multi-objective intelligent
optimization algorithms. Zeedan et al. [25] used binary artificial bee colony and Pareto
dominance strategy to solve the scheduling problem of workflow in cloud computing.
Qin et al. [26] adopted a hybrid collaborative multi-objective fruit fly optimization algorithm
to solve the workflow scheduling problem in the cloud environment. Chen et al. [27] used
the multi-population grey wolf optimizer to solve the flow shop scheduling problem with
multi-machine collaboration. Sanaj et al. [28] used the chaotic squirrel search algorithm to
solve the multi-objective task scheduling problem in an IAAS cloud computing atmosphere.
Srichandan et al. [29] used a multi-objective hybrid bacterial foraging algorithm to solve
the cloud computing task scheduling problem. Tan et al. [30] used a multi-objective particle
swarm optimization algorithm to solve the issue of low-carbon joint scheduling in a flexible
open-shop environment with constrained automatic guided vehicles.

However, these algorithms had limitations of continuous coding or discrete coding
methods. Moreover, these algorithms were not applied to the entire engineering field, so
their reliability was not verified.

2.3. Work on Evaluation Indicators

Some scholars proposed a variety of evaluation indicators for the performance of algo-
rithms from various aspects, which have been widely used. However, most of them focus
on the quality of solution. For example, Xu et al. [31] used Hypervolume (HV) and Inverted
Generational Distance (IGD) to evaluate the MDOHSA algorithm. Tan et al. [30] used
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Generational Distance (GD) and IGD to evaluate the EMOPSO algorithm. Zhang et al. [32]
used GD, IGD, HV, Spacing, and Spread to evaluate the HMOEA-GL algorithm.

However, most indicators involve one or more of the following limitations:
(1) Some prior information needs to be known, such as real Pareto non-dominated solutions;
(2) The selection of reference sets and points is difficult, which affects the scientificity of the
indicators; (3) The number and distribution of solutions solved by algorithms affects the
indicators; (4) A comprehensive indicator cannot illustrate the specific performance of a
certain aspect of the algorithms; (5) Some indicators cannot be applied to preference [33],
dynamic [34], multimodal [35] multi-objective optimization simultaneously.

Therefore, in view of the above problems, this article proposes rest strategies, enriches
the mathematical model, designs effective algorithms, proposes an evaluation indicator,
and conducts computational experiments to verify the scientificity of the rest strategies,
model, algorithms and evaluation indicator.

3. Basic Description
3.1. Problem Description

Due to being hit or being used under high load, equipment randomly experiences
different degrees of failure at different moments and in different locations. This affects the
functions of the equipment system.

In a complex dynamic environment, we need to consider various factors, such as
the repairability, degree of importance, workload, second operational time, reliability,
utilization rate, and location, of faulty equipment, along with the risks taken by the repair
teams, and the work efficiency of repair teams. Solving the repair tasks scheduling problem
of who to do the repair, how to do the repair, and when to do the repair is an urgent need
and development direction in equipment maintenance support.

3.2. Basic Assumptions

In order to solve the problem scientifically and simplify the model, the following
assumptions were made:

(1) The focus was on solutions to static problems, so, the ideal driving speed of repair
teams was assumed to remain unchanged (adjusted by the route parameters oij).

(2) It was assumed that the workload of demand points was divided reasonably. If a
certain demand point had a large workload, it could be regarded as multiple demand
points at the same location.

(3) It was assumed that the degree of importance had been evaluated when the equipment,
or its system, was repaired to a certain status.

(4) It was assumed that geographic information had been measured, including the risk
factors among demand points, the route parameters, etc.

(5) For convenience, this article regarded the attenuation of the work efficiency of repair
teams, during work, and the improvement of work efficiency, during transition and
rest, as a linear function of time.

(6) The strategy of rest before repair was adopted. This strategy allows repair teams to
adjust the rest duration according to their own conditions.

In addition, the following strategies were available for selection.

(a) Rest before repair: The repair teams could rest before repair at a certain demand point.
If the risk factor of this demand point was larger, this strategy was not reasonable but
if the risk factor of the previous demand point was larger, this strategy was reasonable.

(b) Rest after repair: The repair teams could rest after repair at a certain demand point. If
the risk factor of this demand point was larger, the strategy was not reasonable but if
the risk factor of the next demand point was larger, the strategy was reasonable.

(c) Rest before and after repair: The repair teams could rest before and after repair at a
certain demand point. As the number of demand points increased, this strategy led to
an increase in the amount of computation, but it allowed for more flexible rest.
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4. Model

In order to solve the task scheduling of circuit repair precisely, various factors were
quantified into mathematical language. Symbol descriptions are shown in Table 1.

Table 1. Symbol Description.

Symbol Description Symbol Description

I, (i, j ∈ I) Set of demand points τri ∈ {0, 1} τri =

{
1, r repairs i
0, else

|I|= n Number of demand points ξrij ∈ {0, 1} ξrij =

{
1, r transfers from i to j
0, else

R, (r ∈ R) Set of repair teams Tg
ri , υ

g
ri

The moment and work efficiency
when r arrives at i

|R|= m Number of repair teams Th
ri , υh

ri
The moment and work efficiency
when r starts repairing i

vr Ideal driving speed for r Th
ri , υh

ri
The moment and work efficiency
when r leaves i

sij Route length between i and j Ai Time window penalty coefficient of i

oij, (oij 6= oji)
Influence parameters of driving
speed between i and j

Tpause − T f
ri ,

(τri = 1)

The second operation time of i
being repaired

sij
vr ·oij

=
Sij
vr

The time it takes for r to leave i to j υ̂r

Optimal work efficiency for r
(It reflects the quality of the repair
team r)

dij(i 6= j)

The risk factor of the route
between i and j
(It comprehensively reflects the
probability of being hit and the
degree of damage.)

υr(t) ∈
(0, υ̂r)

The current work efficiency of r

dii The risk factor of demand point i αr , (αr < 0) The attenuation factor of r work
efficiency during repair

k

The repairable status of the
demand points
(Generally, the k status of different
demand points are different.)

βr , (βr > 0) The improvement factor of r work
efficiency during transition

wik The workload of i repaired to k γr , (γr > βr)
The improvement factor of r work
efficiency during resting

δik
The importance degree of i
repaired to k crik

The professional coefficient of r
repair i to k

ηik
The importance degree of i
repaired to k with time window trik The time it takes for r to repair i to k

p1
ik The usage rate of i repaired to k ari The time it takes for r to rest at i

p2
ik The reliability of i repaired to k max_tr =

υ̂r
γr

Maximum rest duration for r

pik = . . .
p1

ik · p2
ik

The total usage rate of i repaired to
k

max_t = . . .
max
r∈R

υ̂r

min
r∈R

γr

The maximum rest duration of all
repair teams

Tpasue Deadline for circuit repair earnr Repair benefits created by r

[Tlow
i , Tup

i ]
Best duration for i repaired
(time window) dangerr Risks taken by r

The model was built as follows:

max bene f it = max ∑
r∈R

bene f itr (1)

min risk = min ∑
r∈R

riskr (2)

ηik =


δik, Tlow

i ≤ T f
ri ≤ Tup

i
Aiδik, Tup

i ≤ T f
ri ≤ Tpause

0, Tpause ≤ T f
ri

, (τri = 1) (3)

∑
r∈R

τri ≤ 1, τri ∈ {0, 1} (4)
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∑
j∈I

ξrij = τrj (5)

Other formulae are shown in Figure 1.
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(2) Once the order of the demand points, the repair status, and the tasks allocation are 
provided, by optimizing the rest duration there is at least one local optimal solution 

Figure 1. Work flow of a repair team.

Equation (1) represents maximizing the total repair benefits of all repair teams.
Equation (2) represents minimizing the total risks. Constraint (3) represents the importance
degree of the demand points with the time window penalty. Constraint (4) represents the
fact that each demand point is served by, at most, one repair team. Constraint (5) represents
the fact that the number of vehicles entering the demand point is equal to the number of
times the demand point is served. Figure 1 shows the workflow of a repair team leaving
the previous demand point for the next demand point, starting repairing after rest, and
leaving the next demand point after repair. Constraint (6) represents the updates of the
moment. Constraint (7) represents the updates of the repair team’s work efficiency. The
current work efficiency υr(t) is not higher than the optimal work efficiency υ̂r for r at all
times. Constraint (8) represents the updates of risks taken by the repair team r before the
deadline Tpasue. Constraint (9) represents the updates of benefits created by the repair team
r after completion of each repair task.

5. Methods

The following can be seen from the above analysis:

(1) The task scheduling of circuit repair is an extension of VRP [36], which is also NP-hard.
Traditional algorithms (branch bound, dynamic programming, etc.) cannot solve the
“combinatorial explosion” problem in a short time [37].
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(2) Once the order of the demand points, the repair status, and the tasks allocation are
provided, by optimizing the rest duration there is at least one local optimal solution
with high-benefits or low-risks. However, it is difficult to use traditional algorithms
to solve the optimization problem of multimodal functions [38].

(3) Traditional optimization algorithms often use weighted methods to convert multi-
objective problems into single-objective problems [39], or use fuzzy optimization
to solve them [40]. However, these algorithms have problems, such as difficulty in
determining parameters, and cannot effectively solve multi-objective problems.

Therefore, in this article, we adopted multi-objective intelligent optimization algo-
rithms to solve the task scheduling of circuit repair. The model in this article has many
constraints and the coding method is complex. The algorithms in literature [25–30] are
not convenient to solve the problem proposed in this article. However, the multi-objective
genetic algorithm NSGA-II [4] is one of the best and most widely used algorithms at
present in solving multi-objective optimization problems [2]. The multi-objective genetic
algorithms, SPEA2 [5] and MOEA/D [6], are classics and widely used in the engineering
field. These three algorithms have good reliability, robustness and scalability. Therefore,
we performed multi-layer coding, and discrete and continuous hybrid coding on the basis
of these three algorithms to solve more complex problems.

The three algorithms have strong global search abilities, but weak local search abilities,
are slow to converge and prone to early maturity. The local search algorithm, 2-Opt [3]
is often combined with other algorithms to improve the local search ability and speed up
the convergence speed. The Differential Evolution (DE) algorithm [41] has high reliability
and fast convergence speed. Therefore, the 2-Opt algorithm was used to optimize the
repair order, and the DE algorithm was used to optimize the rest duration, in order to
improve the local solution accuracy and speed up the convergence of the three algorithms
above. We attempted to find a suitable combination of algorithms to effectively solve the
new problems proposed in this article, without focusing too much on the innovation of
operators in hybrid algorithms.

5.1. Encoding and Decoding
5.1.1. Encoding

Considering factors such as multiple repair teams repairing multiple demand points
to a certain status in a certain order, and the uncertainty of the rest duration before repairs,
this article designed four-layer coding to solve the problem. The first layer of integer coding
represents the order of repair demand points. The second layer of integer coding indicates
that each demand point is repaired to a certain status. The third layer of continuous coding
indicates the rest duration after the repair teams arrive at the demand points. The fourth
layer of integer coding indicates the grouping positions of repair teams.

5.1.2. Decoding

As shown in Figure 2, repair team 1 starts repairing from the 1st demand point to
the 5 − 1th demand point (fourth layer coding). It repairs demand points 7∼3∼8∼5
(first layer coding), in turn, to the status 1∼3∼4∼3 (second layer coding). It rests for
0.0∼8.4∼12.1∼6.3 min (third layer coding) before repairing the demand points. Repair
team 2 starts repairing from the 5th demand point to the 8− 1th demand point (fourth layer
coding). It repairs demand points 2∼1∼4 (first layer coding), in turn, to the status 1∼5∼2
(second layer coding). It rests for 9.8∼20.1∼0.0 min (third layer coding) before repairing the
demand points. Repair team 3 starts repairing from the 8th demand point to the (10+1)-1th
demand point (fourth layer coding). It repairs demand points 9∼6∼10 (first layer coding),
in turn, to the status 3∼3∼1(second layer coding). It rests for 14.5∼22.9∼0.0 min (third
layer coding) before repairing the demand points. Due to the deadline, the repair tasks of
all demand points may not be completed.
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5.2. Operator Design
5.2.1. Genetic Algorithm (GA)

1. Selection: Use a binary tournament strategy to select better individuals in the
population for getting the mating Pool.

Explanation: It is easy to operate and avoids falling into a local optimal solution.
2. Crossover:
(1) Cross repair order: According to the crossover probability Pc, randomly exchange

a certain piece of the code in the two chromosomes. After exchanging each point, process re-
peated code in each chromosome. Perform corresponding operations on the corresponding
points of the repair status and rest duration code.

Explanation: The repairable status and workload of each demand point are inconsis-
tent, so the repair status and rest duration should be operated accordingly.

(2) Cross rest duration: According to the crossover probability Pc, randomly select
the point i to perform random weight = rand crossover on the two chromosomes ChromA
and ChromB:

ChromAi = (1− weight)ChromAi + weight · ChromBi
ChromBi = (1− weight)ChromBi + weight · ChromAi

Explanation: This improves global search capabilities of GA and also avoids frequent
handling of out-of-bounds for repair teams’ maximum rest duration caused by crossover.

Note: Only here the meaning of the symbols A, B, i are inconsistent with the above.
3. Mutation:
(1) Mutate repair order: According to the mutation probability Pm, randomly select

two points in a chromosome for exchange. Perform corresponding operations on the
corresponding points of the repair status and rest duration code.

Explanation: The repairable status and workload of each demand point are inconsis-
tent, so the repair status and rest duration should be operated accordingly.

(2) Mutate repair status: According to the mutation probability Pm, randomly select
the repairable status for mutation point by point.

Explanation: The repairable status of each demand point is inconsistent. The crossover
inevitably produces a large number of invalid solutions. For convenience, only mutation
is considered.

(3) Mutate rest duration: According to the mutation probability Pm, randomly select
the values in (0, max_t) for mutation point by point.

Explanation: Mutating with the values in (0, max_t) avoids frequent handling of
out-of-bounds for repair teams’ maximum rest duration caused by mutation.

(4) Mutate grouping position: According to the mutation probability Pm, randomly
select m−1 integers in the interval [2, n] and sort them from small to large for mutation on
the entire code of the grouping position.



Axioms 2022, 11, 714 9 of 19

Explanation: The crossover of the grouping position code inevitably destroys the order
of the grouping position from small to large, or generates repeated grouping positions.
This produces an invalid solution. Therefore, for convenience, only use the mutation on the
entire code of the grouping position.

The processes of GA1 and GA2 are shown in Operators 1.1 and 1.2.

Operator 1.1: GA1

INPUT: Parent with the size of pop_Parent
OUTPUT: Son with the size of pop_Parent
Step 1: Get a mating Pool with the size of pop_Pool from the Parent by Selection.
Step 2: Randomly select two chromosomes from the Pool to cross repair order, mutate repair status, cross

rest duration, and mutate grouping position. If a feasible solution is generated, add it to the
Son_c population until its size is Pc × pop_Parent.

Step 3: Randomly select a chromosome from the Pool to mutate repair order, mutate repair status, mutate
rest duration, and mutate grouping position. If a feasible solution is generated, add it to the
Son_m population until its size is Pm × pop_Parent.

Step 4: Combine the Son_c and Son_m to get Son = [Son_c; Son_m].

Operator 1.2: GA2

INPUT: Parent with the size of 2
OUTPUT: Son with the size of 2
If
rand<Pc

Select these two chromosomes from the Parent to cross repair order, mutate
repair status, cross rest duration, and mutate grouping position. If a feasible solution is
generated, add it to the Son population until its size is 2.

Else Randomly select a chromosome from the Parent to mutate repair order, mutate repair status,
mutate rest duration, and mutate grouping position. If a feasible solution is generated, add it to
the Son population until its size is 2.

5.2.2. The 2-Optimization Algorithm (2-Opt)

In terms of code, the 2-Opt, and its derivatives, exhibit reversals of a piece of code.
This article proposes the following operators for task scheduling of circuit repair.

1. Reversal-1: Randomly select a piece of code from the chromosome repair order
code for reversal. Perform the corresponding operation on the corresponding points of the
repair status and rest duration code.

2. Reversal-2: Randomly select a piece of code from the chromosome repair order
code for reversal. Perform the corresponding operation on the corresponding points of the
repair status code.

Explanation: Since the rest duration is affected by the work efficiency of repair teams,
the professional coefficients of the repair teams and the risk factors of demand points, two
reversal operators are used to generate two new individuals.

The process of 2-Opt is shown in Operator 2.

Operator 2: 2-Opt

INPUT: Son with the size of pop_Son
OUTPUT: Son with the size of pop_Son

For each individual in the population, perform 2-Opt by Reversal-1 and Reversal-2 respectively
to generate two new individuals. If there is a feasible solution in the new individuals and it
dominates the original individual, the original individual is replaced by the best.

5.2.3. Differential Evolution Algorithm (DE)

1. Initialization: Use the population truncation strategy in the multi-objective op-
timization algorithms to select a sub-population and optimize the rest duration code.
MOEA/D has no population truncation strategy and so it prefers non-dominant individu-
als. In order to respect the purpose of MOEA/D to pursue a uniform distribution of the
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solution set, the dominant individuals are randomly selected to fill the sub-population until
its size is pop_DE.)

Explanation: In order to reduce the amount of computation, only perform DE on the
better sub-population in the population.

2. Mutation and Crossover: Use the mutation and crossover of DE/rand/1/bin.
Explanation: The “rand” is adopted instead of the “best” because the rest duration is

affected by factors such as the work efficiency of the repair teams and the risk factors of
demand points.

3. Boundary processing: If the rest duration is greater than max_tr, it will be replaced
by a random value in (0, max_tr).

Explanation: It improves the local search ability of DE and ensures that new individu-
als generated are feasible solutions.

4. Selection operator: If the new individual is a feasible solution and dominates the
original individual, the original individual is replaced.

Explanation: The idea of the greedy algorithm drives the algorithm to choose a
better solution.

The process of DE is shown in Operator 3.

Operator 3: DE

INPUT: Parent with the size of pop_Parent
OUTPUT: Parent with the size of pop_Parent
Step 1: Select a f 1 sub-population with the size of pop_DE from the Parent by the Initialization.
Step 2: Perform Crossover, Mutation and Boundary processing in the rest duration coding part of f 1 to

generate a new f 2 sub-population.
Step 3: If an individual in f 2 is feasible and dominates the corresponding individual in f 1, replace it in f 1

with it in f 2.
Step 4: If the iteration termination condition is satisfied, output the new Parent. Otherwise go to Step 2

to continue the iteration.

5.3. Algorithms Process

We did not repeat the NSGA-II [4], SPEA2 [5], MOEA/D [6] algorithms process,
population update and other strategies, but directly enumerated the processes of the hybrid
algorithms NSGAII-2Opt-DE(N2D), SPEA2-2Opt-DE(S2D) and MOEA/D-2Opt-DE(M2D)
as Algorithms 1, 2 and 3.

Algorithm 1: N2D

INPUT: pop_GA, termination condition
OUTPUT: Approximate Pareto optimal solution set
Step 1: Initialization parameters.
Step 2: Randomly generate a feasible solution set with the size of pop_GA to get Parent.

Calculate the objective function value.
Perform fast-non-dominated-sort and crowding-distance-assignment.

Step 3: Generate Son = GA1(Parent) with the size of pop_GA by GA1.
Calculate the objective function value.

Step 4: Update Son = 2-Opt(Son) by 2-Opt.
Calculate the objective function value.

Step 5: Combine Parent and Son to get Combine = [Parent; Son].
Perform fast-non-dominated-sort and crowding-distance-assignment.

Step 6: Select a new Parent with the size of pop_GA from Combine by the elite strategy.
Perform fast-non-dominated-sort and crowding-distance-assignment.

Step 7: Determine whether to perform DE.
If so, Parent = DE(Parent). Perform fast-non-dominated-sort and crowding-distance-assignment.
Otherwise, go to Step 8.

Step 8: If the termination condition is satisfied, output the non-dominated solution set in Parent.
Otherwise, go to Step 3 to continue the iteration.
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Algorithm 2: S2D (In this article, Parent corresponds to Pt in the original algorithm. Son corresponds to Pt in
the original algorithm.)

INPUT: pop_GA, termination condition
OUTPUT: Approximate Pareto optimal solution set
Step 1: Initialization parameters.
Step 2: Randomly generate a feasible solution set with the size of pop_GA to get Parent.

Calculate the objective function value.
Calculate the fitness function.

Step 3: Generate Son = GA1(Parent) with the size of pop_GA by GA1.
Calculate the objective function value.

Step 4: Update Son = 2-Opt(Son) by 2-Opt.
Calculate the objective function value.

Step 5: Combine Parent and Son to get Combine = [Parent; Son].
Calculate the fitness function.

Step 6: Select a new Parent with the size of pop_GA from Combine by the environmental selection.
Calculate the fitness function.

Step 7: Determine whether to perform DE.
If so, Parent = DE(Parent). Calculate the fitness function.
Otherwise, go to Step 8.

Step 8: If the termination condition is satisfied, output the non-dominated solution set in Parent.
Otherwise, go to Step 3 to continue the iteration.

Algorithm 3: M2D (Archive corresponds to EP in the original algorithm. 1_Son corresponds to y′ in the
original algorithm.)

INPUT: pop_GA, termination condition
OUTPUT: Approximate Pareto optimal solution set
Step 1: Initialization parameters.

For each individual, randomly generate weights and find neighbors with the size of pop_Neighbor
according to Euclidean distance.

Step 2: Randomly generate a feasible solution set with the size of pop_GA to get Parent.
Calculate the objective function value.
Find the maximum value of each objective function value to get vector z.

Step 3: Store non-dominated individuals in Parent to get Archive.
Step 4: Perform the following for each individual in Parent:

Randomly select two neighbors to get Neighbor = [Neighbor1; Neighbor2].
Generate Son = GA2(Neighbor) with the size of 2 by GA2.
Update Son = 2-Opt(Son) by 2-Opt. Calculate the objective function value.
Select a non-dominated individual 1_Son in Son.
Update z.
Calculate gte and update neighbors.

Step 5: Determine whether to perform DE.
If so, Parent = DE(Parent). Update z.
Otherwise, go to Step 6.

Step 6: Select the non-dominated individual Nd from Parent. Combine Nd and the original Archive to get
Combine = [Archive; Nd].

Step 7: Select the non-dominated individuals from the Combine to get the Archive. If its size
pop_Archive > pop_GA, some individuals will be randomly discarded to make
pop_Archive = pop_GA.

Step 8: If the termination condition is satisfied, output the Archive. Otherwise, go to
Step 4 to continue the iteration.

5.4. Algorithm Scientificity

The Schema Theorem [42] points out that, under selection, crossover and mutation of
GA, low-level, short-range, and high-fitness patterns grow exponentially in the population.
Fogel [43] proved that the algorithms converged with probability 1 when the evolutionary
sequence of individuals in the population being monotonic was satisfied. Rudolph [44]
proved that the multi-objective evolutionary algorithms converged with probability 1 when
monotonic screening was based on Pareto ranking.

In this article, the NSGAII, SPEA2 algorithms adopted the elite strategy [45] to update
the population. The MOEAD algorithm was based on the monotonic optimization of
“gte”. In the hybrid algorithms, 2-Opt and DE were also updated through greedy thinking,
according to the Pareto dominance relationship, so the scientificity of the algorithms
was guaranteed.
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6. Evaluation Indicators
6.1. Algorithms’ Solution Quality

The task scheduling of circuit repair has the following characteristics:

(1) It is NP-hard. The intelligent optimization algorithms used involve continuous coding.
so even a larger population and more iterations could only obtain an approximate
Pareto optimal solution set.

(2) It is a multi-objective optimization problem, involving preference, and is dynamic
and multimodal at the same time.

According to the above characteristics, this article analyzed the indicators in the litera-
ture [30–32], and selected the following commonly used indicators to evaluate
the algorithms:

(1) C-metric (C) [7] was used to evaluate the convergence of the sets solved by
the algorithms;

(2) Spacing(S) [8] was used to evaluate the distribution of the sets solved by the algorithms;
(3) M∗3 [9] was used to evaluate the spread of the sets solved by the algorithms.

6.2. Algorithms’ Solution Efficiency

This article designed a comprehensive evaluation indicator area. For convenience, this
indicator is illustrated using the problem in this article as an example.

Definition: We established a Cartesian coordinate system with benefit as the horizontal axis and
risk as the vertical axis. We added the origin (0, 0) to the approximate Pareto optimal solution set
solved by an algorithm, and drew the solution set in the coordinate system. We connected adjacent
points to form a polyline. On the vertical axis, we selected the upper bound “md” of risk and drew a
straight line parallel to the horizontal axis. The area above the polyline and below the straight line
was denoted as area.

Supplement:

(1) The benefit and risk are not less than 0, and the point (0, 0) must belong to the true
Pareto optimal solution set. Therefore, this point was selected as a reference point to
be added to the approximate Pareto optimal solution set.

(2) The work efficiency of m repair teams is not greater than max
r∈R

υ̂r. The risk factors of

routes or demand points are not greater than 1. The deadline for circuit repair is Tpause.
Therefore, md = m× 1×max

r∈R
υ̂r × Tpause was selected as the upper bound of risk.

(3) This area was used to evaluate the 2-objective optimization algorithm. If the area was
generalized to a hypervolume, it could be used to evaluate multi-objective optimiza-
tion algorithms.

Properties: From the analysis in 5.4, it could be seen that the approximate Pareto
optimal solution set converged to the real Pareto optimal solution set. Therefore, the area
also converged. From the definition, the following properties were clearly established:

(1) The faster the area changed with the number of iterations, the faster the
algorithm converged;

(2) The larger the area was, the closer the approximate Pareto optimal surface was to the
real Pareto optimal surface, and the better the quality of the solution set was;

(3) The larger the area was, the better the spread of the solution set on the other side of
the reference point (0, 0) was;

(4) We drew a curve, which was generated by the area changing with the number of
iterations. The smaller the number and degree of curve mutation, the denser the
distribution of the solution set in the approximate Pareto optimal surface was. Figure 3
shows why the smoothness of the curve was destroyed.
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7. Computational Experiments

In this part, computational experiments were carried out to illustrate the scientificity
of the strategies, model, algorithms and evaluation indicator proposed in this article. The
proposal was implemented using Matlab2018a, and the experiments were run on a desktop
computer with a Processor Intel(R) Core(TM) i5-9400F CPU @2.9GHz, 16GB of RAM, and
running Microsoft Windows 7 Pro 64 bits system.

7.1. Parameter Settings

The algorithms’ parameters were set as follows:

(1) GA: The number of iterations was 600, the population size was 200, the mating pool
size was 100, the crossover probability was 0.9, the mutation probability was 0.1, and
the number of neighbors was 20.

(2) DE: The number of iterations was 10, the population size was 100, the mutation
operator was 0.5, and the crossover operator was 0.1.

The problem parameters were set as follows:

(1) The initial positions of the repair teams and the demand points, the upper limits of
the time windows, and the importance degree penalty coefficients were taken from
the literature [2]. We assumed that all faults had occurred, that is, the lower limits of
the time windows were 0. The deadline was pointed out by the decision makers. In
order to reflect the lack of time, this article took the deadline to be equal to 410 min,
which was less than the upper limit of the time windows of 5 demand points in the
20 demand points.

(2) According to the model in this article, the other information in the literature [2] was
transformed and adjusted as shown Tables 2 and 3.

Table 2. Demand points information.

i k wik(×102) δik(×10−1) pik i k wik(×102) δik(×10−1) pik
01 1, 2, 3 0.9, 1.4, 1.6 3.7, 4.0, 4.8 0.7, 0.8, 0.9 11 1, 2 1.4, 2.0 4.1, 5.5 0.8, 0.9
02 1, 2 1.1, 2.0 5.2, 6.7 0.7, 0.8 12 1, 2, 3 2.4, 3.0, 3.2 5.2, 6.5, 6.7 0.7, 0.8, 0.7
03 1, 2 1.0, 1.8 5.5, 8.2 0.8, 0.7 13 1, 2 1.2, 1.8 3.7, 4.8 0.7, 0.7
04 1, 2 1.8, 2.5 5.2, 6.7 0.7, 0.8 14 1, 2 1.3, 2.0 5.2, 6.7 0.7, 0.9
05 1, 2, 3 1.6, 1.8, 2.4 6.6, 7.0, 7.4 0.8, 0.8, 0.9 15 1, 2 1.6, 2.3 5.5, 8.2 0.9, 0.6
06 1, 2 2.1, 3.2 3.8, 5.2 0.7, 0.8 16 1, 2, 3 1.8, 2.0, 2.6 5.2, 6.0, 6.7 0.4, 0.5, 0.9
07 1, 2 1.5, 2.2 3.2, 4.8 0.7, 0.8 17 1, 2 1.0, 1.8 6.6, 7.4 0.7, 0.9
08 1, 2, 3 1.2, 1.8, 2.0 3.9, 4.2, 5.9 0.7, 0.8, 0.8 18 1, 2 1.7, 2.5 3.8, 5.2 0.8, 0.8
09 1, 2 1.6, 2.8 4.1, 5.5 0.8, 0.9 19 1, 2, 3 1.6, 1.8, 2.4 3.2, 4.0, 4.8 0.6, 0.5, 0.8
10 1, 2 1.5, 2.4 3.6, 4.4 0.7, 0.9 20 1, 2 2.0, 2.8 3.9, 5.9 0.7, 0.6

We did not have the ability to obtain comprehensive data. Therefore, we randomly
generated 10 data sets according to a uniform distribution, which allowed us to study
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various cases with equal probability. The data included the risk factors dij ∈ (0, 1) and
the professional coefficients crik ∈ (0.5, 1.0). Then, we used the algorithms mentioned in
Section 5.3 to conduct computational experiments, and used the indicators mentioned in
Section 6 for evaluation. The obtained data is shown in Tables 4–7 and Figures 4–6.

Table 3. Demand points information.

r vr (km/h) υ̂r( WorkLoad
min ) υ0

r ( WorkLoad
min ) αr(∆υr/min) βr(∆υr/min) γr(∆υr/min)

1 20 25 25 −0.08 0.20 0.40
2 28 20 20 −0.12 0.14 0.30
3 25 22 22 −0.10 0.18 0.35

Table 4. The calculation results of C.

case 1 case 2 case 3 case 4
/ 3 10 0 0 0
7 / 10 0 0 1
0 0 / 0 0 0

10 10 10 / 8 8
10 10 10 2 / 3
10 9 10 2 7 /




/ 5 10 0 1 5
5 / 10 0 0 3
0 0 / 0 0 1

10 10 10 / 10 10
9 10 10 0 / 10
5 7 9 0 0 /




/ 2 10 0 0 3
8 / 9 0 0 3
0 1 / 0 0 1

10 10 10 / 1 3
10 10 10 9 / 4
7 7 9 7 6 /




/ 5 4 0 0 0
5 / 3 0 0 1
6 7 / 0 0 6

10 10 10 / 2 10
10 10 10 8 / 10
10 9 4 0 0 /


case 5 case 6 case 7 case 8

/ 5 7 0 0 7
5 / 8 0 0 6
3 2 / 1 0 2
10 10 9 / 7 8
10 10 10 3 / 10
3 4 8 2 0 /




/ 4 8 0 0 3
6 / 7 0 0 4
2 3 / 0 0 2
10 10 10 / 3 10
10 10 10 7 / 10
7 6 8 0 0 /




/ 6 9 0 0 1
4 / 10 0 0 3
1 0 / 0 0 0
10 10 10 / 5 8
10 10 10 5 / 7
9 7 10 2 3 /




/ 3 10 0 1 4
7 / 9 0 0 3
0 1 / 0 0 0

10 10 10 / 4 10
9 10 10 6 / 10
6 7 10 0 0 /


case 9 case 10
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NSGA-II 2.12 2.47 2.22 2.38 2.65 2.17 2.13 2.93 2.23 2.22
SPEA2 2.28 2.51 3.53 2.22 1.63 3.98 2.41 3.11 1.96 2.76
MOEAD 2.80 2.18 2.29 4.39 5.73 4.93 3.70 3.53 3.43 2.26
N2D 1.72 1.60 2.17 1.50 3.47 2.89 1.84 1.77 1.79 1.99
S2D 1.90 2.92 1.32 1.89 2.09 2.25 2.11 2.09 2.82 3.08
M2D 1.88 1.36 4.58 3.58 4.35 3.00 5.98 3.17 4.26 3.09

Table 6. The calculation results of M∗3 (Order of magnitude ×10).

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10

NSGA-II 8.13 8.45 8.22 8.70 8.49 8.58 8.83 8.88 8.19 8.47
SPEA2 8.18 7.93 8.65 8.26 8.15 8.53 8.59 8.74 7.70 8.45
MOEAD 6.98 7.31 7.87 6.40 7.34 7.95 7.78 7.70 6.82 7.08
N2D 7.35 7.63 7.80 7.61 7.54 7.52 8.11 7.63 7.41 7.46
S2D 7.22 7.86 7.71 7.44 7.50 7.79 7.82 7.62 7.43 7.59
M2D 6.45 5.93 7.10 7.07 6.84 6.76 6.86 6.88 6.77 6.89
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Table 7. The calculation results of area (Order of magnitude ×107).

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10

NSGA-II 7.81 7.58 7.30 7.63 7.59 7.64 7.52 7.65 7.52 7.45
SPEA2 7.74 7.72 7.39 7.58 7.41 7.66 7.49 7.73 7.20 7.56
MOEAD 6.45 6.22 6.02 6.18 6.10 6.81 6.79 6.67 6.57 6.58
N2D 8.66 8.91 8.55 8.52 8.59 8.65 8.47 8.68 8.69 8.49
S2D 8.71 8.67 8.59 8.62 8.38 8.77 8.65 8.75 8.63 8.51
M2D 7.73 7.61 7.32 7.49 6.66 7.06 7.51 7.11 7.24 7.51
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Figure 5. A simulation of case 1 as an example to show the convergence speed of the algorithms 
and the distribution of the solution sets (Task scheduling information and initial population set-
tings were consistent). (a) The convergence speed of the algorithms; (b) The distribution of the sets 
solved by NSGA-II and N2D; (c) The distribution of the sets solved by SPEA2 and S2D; (d) The 
distribution of the sets solved by MOEA/D and M2D 

Figure 5. A simulation of case 1 as an example to show the convergence speed of the algorithms and
the distribution of the solution sets (Task scheduling information and initial population settings were
consistent). (a) The convergence speed of the algorithms; (b) The distribution of the sets solved by
NSGA-II and N2D; (c) The distribution of the sets solved by SPEA2 and S2D; (d) The distribution of
the sets solved by MOEA/D and M2D.
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7.2. Experimental Results and Analysis

In this article, 1000 experiments were conducted. The comparison of the 6 algorithms
on the indicator C is shown in Table 4 and Figure 4. The means on the indicators, including
S, M∗3 and area, are shown in Tables 5–7. The boxplots are shown in Figure 6.

The algorithms’ convergence can be seen from Table 4 and Figure 4. Figure 4 is the
average of C for the 10 cases in Table 4.

(1) It can be seen from Figure 4a that N2D, S2D and M2D were better than NSGA-II,
SPEA2 and MOEA/D.

(2) It can be seen from Figure 4b that NSGA-II was not much different from SPEA2, but
both were better than MOEA/D, while N2D was not much different from S2D, but
both were better than M2D.

The 2-Opt and DE significantly improved the convergence of the hybrid algorithms. In
addition, NSGA-II performed fast non-dominated sort and crowding-distance-assignment,
and SPEA2 calculated the fitness function. When there were few non-dominated solutions,
the sub-optimal solutions had the opportunity to be optimized into non-dominated so-
lutions by 2-Opt and DE. However, MOEA/D only stored the non-dominated solutions
of each generation. When there were few non-dominated solutions, other dominated
individuals could be randomly selected for 2-Opt and DE optimization. The randomness
was large, which affected the convergence of MOEA/D.

The distribution of the sets solved by the algorithms can be seen in Table 5.

(1) NSGA-II was better than SPEA2 by 70%, SPEA2 was better than MOEA/D by 70%,
and MOEA/D was better than NSGA-II by 10%.

(2) N2D was better than S2D by 70%, S2D was better than M2D by 80%, and M2D was
better than N2D by 10%.

(3) N2D was better than NSGA-II by 80%, S2D was better than SPEA2 by 60%, and M2D
was better than MOEA/D by 60%.

The spread of the sets solved by the algorithms can be seen in Table 6.

(1) NSGA-II was better than SPEA2 by 80%, SPEA2 was better than MOEA/D by 100%,
and MOEA/D was better than NSGA-II by 0%.

(2) N2D was better than S2D by 60%, S2D was better than M2D by 100%, and M2D was
better than N2D by 0%.

(3) N2D was better than NSGA-II by 0%, S2D was better than SPEA2 by 0%, M2D was
better than MOEA/D by 10%.

NSGA-II performed crowding-distance-assignment, SPEA2 adopted a density infor-
mation, which resulted in better distribution and spread. However, the MOEA/D algorithm
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pursued a uniform distribution of solutions, and had no tendency to retain extreme solu-
tions, so the spread was poorer. In addition, the hybrid algorithms reduced the risks more
than the original algorithms under the same benefits. Therefore, the spread of the hybrid
algorithms was poorer.

From Table 7, we can see the comprehensive performance of the algorithms, which
includes the convergence of algorithms and the one-sided spread of the solution set away
from the origin (0, 0).

(1) NSGA-II was better than SPEA2 by 50%, SPEA2 was better than MOEA/D by 100%,
and MOEA/D was better than NSGA-II by 0%.

(2) N2D was better than S2D by 30%, S2D was better than M2D by 100%, and M2D was
better than N2D by 0%.

(3) N2D was better than NSGA-II by 100%, S2D was better than SPEA2 by 100%, M2D
was better than MOEA/D by 100%.

The solution sets of the hybrid algorithms had better convergence, and the area
was larger.

The convergence speed of the algorithms and the distribution of the solution sets can
be seen from Figure 5.

(1) The convergence speed of the algorithms can be seen from Figure 5a. NSGA-II was
not much different from SPEA2, but both were better than MOEA/D. N2D was not
much different from S2D, but both were better than M2D.

(2) The distribution of the solution sets can be seen from Figure 5b–d. NSGA-II was not
much different from SPEA2, but both were better than MOEA/D. N2D was not much
different from S2D, but both were better than M2D. N2D, S2D and M2D were better
than NSGA-II, SPEA2 and MOEA/D.

The distribution and stability of the algorithms on the indicators, including S, M∗3 and
area, can be seen from Figure 6.

(1) Overall, the stability of NSGA-II, SPEA2 and MOEA/D on these indicators decreased,
in turn. The stability of N2D, S2D and M2D on the indicators decreased, in turn.

(2) The stabilities of N2D, S2D and M2D on the indicators were not worse than those of
NSGA-II, SPEA2 and MOEA/D, respectively.

To sum up, NSGA-II and N2D were more stable in terms of convergence, distribution
and spread, while MOEA/D and M2D were less stable. According to the data in Tables 4–7
and the Figures 4–6, it can be seen that the area designed in this article was reasonable.

8. Conclusions and Outlook

The original support mode of circuit repair is no longer applicable. Therefore, we
focused on improving the support mode of circuit repair. First, we proposed three rest
strategies, and considered the scheduling optimization of flexible rest for the repair teams.
We built a mathematical model, which aimed to maximize benefits and minimize risks with
constraints such as geographic information and resource, etc. Second, we designed three
hybrid algorithms, namely, N2D, S2D and M2D. The algorithms had good solution qualities
and convergence speeds. Third, we designed a comprehensive evaluation indicator, area,
which could evaluate the convergence speed of the multi-objective optimization algorithms.
Finally, we conducted computational experiments to verify the scientificity of the rest
strategies, model, algorithms and evaluation indicator proposed in this article.

Since the real data collection and the evaluation were not comprehensive enough, the
following aspects could be studied in the future:

(1) Various repair teams have different personnel and equipment. There may be differ-
ences in the reliability of repairing a certain demand point to the same status. This
data could be collected, evaluated, and incorporated into existing literature models
and algorithms.

(2) The current parameters are single. Different time windows for various repair sta-
tuses, different penalty coefficients for the importance degrees of various demand
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points, different routes selection or inconsistent detour coefficients, due to different
thrust-to-weight ratios of heterogeneous vehicles, and different detour coefficients of
asymmetric routes could be collected and evaluated. These data could be integrated
into existing literature models and algorithms.
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