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Abstract: The objective of this paper is to study the issue of the projection uniformity of asymmetric
fractional factorials. On the basis of level permutation and mixture discrepancy, the average projection
mixture discrepancy to measure the uniformity for low-dimensional projection designs is defined,
the uniformity pattern and minimum projection uniformity criterion are presented for evaluating
and comparing any asymmetric factorials. Moreover, lower bounds to uniformity pattern have been
obtained, and some illustrative examples are also provided.
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1. Introduction

Many criteria were proposed for comparing U-type designs, but none of these criteria
can directly distinguish non-isomorphic saturated designs. A special criterion can measure
all these subdesigns, and the related values are called its projection pattern. We can use the
distribution or the vector of these projection values as a tool to distinguish the underlying
designs. Ref. [1] firstly defined the projection discrepancy pattern and proposed the mini-
mum projection uniformity (MPU) criterion, which is equivalent to generalized minimum
aberration criterion (GMA [2]). Ref. [3] studied the projection discrepancies of two-level
fractional factorials in terms of the centered L2-discrepancy (CD [4]). Subsequently, ref. [5]
discussed the relationships among criteria of MPU proposed in [1] and minimum gen-
eralized aberration [6]. Following this projection discrepancy, [7] studied the projection
properties of two-level factorials in view of geometry and proposed the uniformity pattern
and MPU criterion to assess and compare two-level factorials. The relations between MPU
and minimum aberration, and GMA and orthogonality are clarified; this close relationship
raises the hope of improving the connection between uniform design theory and factorial
design theory.

Following the uniform pattern and MPU, projection uniformity of asymmetric design
based on CD and wrap-around L2-discrepancy (WD [8]) has been studied, respectively.
As a measure of uniformity, CD does not have fewer cursed dimensions and WD is not
sensitive to a shift for one or more dimensions, Mixture discrepancy (MD [9]) retains the
good properties of CD and WD and overcomes the shortcomings of both. Aided by the
level permutation technique in [10,11], ref. [12] obtained the relationship between the
mean of mixture discrepancies and the generalized word–length pattern for multi-level
designs. Ref. [13] defined the MPU criterion for two- and three-level factorials under
MD. Refs. [14,15] generalize the findings in [13] to q-level and mixed two- and three-level
factorials, respectively. Moreover, ref. [16] proposed the uniform projection design that
have the smallest average CD values of all two-dimensional projections and are shown to
have good-filling properties over all sub-spaces in terms of the distance, uniformity, and
orthogonality. Based on the findings of [16], many applications and studies on uniform
projection designs have emerged [17–22].
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While the work of [13–15] discussed the projection uniformity for two-level, three-level,
q-level, and mixed two- and three-level designs under MD, respectively, the present paper
aims at obtaining further results. We extend the findings in [13–15] to general asymmetrical
factorials. First, the uniformity pattern and MPU criterion are proposed for selecting
asymmetrical designs. Second, we build some analytic linkages between uniformity pattern,
orthogonality, and generalized word–length pattern. Third, we integrate two lower bound
methods in [23], which can be served as a benchmark for searching MPU designs. Finally,
the results of [13–15] can be used as our special cases, and some numerical examples are
provided to illustrate our theoretical results.

This paper is organized as follows: Section 2 describes some notations and basic con-
cepts such as distance distribution and generalized word–length pattern, which are useful
throughout in this paper. Section 3 defines the average projection mixture discrepancy
and related uniformity pattern, presents a statistical justification of MPU criterion, and
establishes a connection between MPU and GMA. Section 4 provides a lower bound of
the uniformity pattern. Some illustrative examples to verify our theoretical results are
presented in Section 5.

2. Notations and Preliminaries

Consider a class of U-type designs, denoted by U (n; q1
s1 × q2

s2), of mixed q1- and
q2-level factorials in n runs and s(= s1 + s2) factors, where each factor of the first s1
factors takes values from a set of {0, 1, . . ., q1 − 1} equally often and each factor of the
last s2 factors takes values from a set of {0, 1, . . ., q2 − 1} equally often. For any design
d ∈ U (n; q1

s1 × q2
s2), a typical treatment combination (or run) of design d is defined by

w = (w(1), w(2)), where, for i = 1, 2, w(i) = (w(i)
1 , . . ., w(i)

si ), w(1)
j ∈ {0, 1, . . ., q1 − 1} and

w(2)
j ∈ {0, 1, . . ., q2 − 1}. Denote d = (d(1), d(2)), where w(i) ∈ d(i), i = 1, 2. If all the

possible qt1
1 × qt2

2 level combinations corresponding to any t(= t1 + t2) columns of design d
appear equally often, 0 ≤ t1 ≤ s1, 0 ≤ t2 ≤ s2, design d is called to be an orthogonal array
of strength t and denoted by OA(n; q1

s1 × q2
s2 , t).

For any design d ∈ U (n; q1
s1 × q2

s2), its distance distribution is defined by

Ej1 j2(d) =
1
n

∣∣∣{(i, k) : H(1)
i1k1

= j1, H(2)
i2k2

= j2}
∣∣∣,

where |u| is the cardinality of the set |u|, Ht
ik is the Hamming distance between two runs i

and k of design d(t), t = 1, 2, 0 ≤ j1 ≤ s1, 0 ≤ j2 ≤ s2.
The MacWilliams transforms of the {Ej1 j2(d)} of any design d ∈ U (n; q1

s1 × q2
s2) are

defined as

E
′
i1i2(d) =

1
n

s1

∑
j1=0

s2

∑
j2=0

Pi1(j1; s1, q1)Pi2(j2; s2, q2)Ej1 j2(d), i1 = 0, . . . , s1, i2 = 0, . . . , s2,

where Pi(j; s, q) = ∑i
r=0(−1)r(q − 1)i−r( j

r)(
s−j
i−r) is the Krawtchouk polynomial,

(m
k ) = m(m− 1) · · · (m− k + 1)/k! and (m

k ) = 0 for m < k.
Ref. [2] showed that the generalized word–length pattern is the MacWilliams trans-

form of the distance distribution, that is,

Ai(d) = ∑
i1+i2=i

E
′
i1i2(d), (1)

where the vector (A1(d), . . ., As(d)) is called the generalized word–length pattern. For
any two designs d1 and d2 in U (n; q1

s1 × q2
s2), d1 is said to have less aberration than d2 if

there exists a positive integer t ≤ s, such that At(d1) < At(d2) and Ai(d1) = Ai(d2) for
i = 1, . . . , t− 1. The design d1 has generalized minimum aberration if there is no other
design with less aberration than d1.
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For any positive integer g ≤ s, defined Cg = {(g1, g2) : g1 = 0, . . . , s1,
g2 = 0, . . . , s2, g1 + g2 = g}, and for any (g1, g2) ∈ Cg, let Sg1g2 be the set of all nonempty
subsets of {1, . . ., s} with the first g1 elements from {1, 2, . . ., s1} and the next g2 elements
from {s1 + 1, . . ., s1 + s2}. For any g, 1 ≤ g ≤ s, let Sg be the set of all nonempty subsets of
{1, 2, . . ., s} with cardinality g, it is to be noted that Sg =

⋃
(g1,g2)∈Cg

Sg1g2 .

For any design d ∈ U (n; q1
s1 × q2

s2), define the nonempty set u = u1 ∪ u2 =
{u11, . . ., u1g1} ∪ {u21, . . ., u2g2} ∈ Sg1g2 and g = g1 + g2, let du be the corresponding projec-
tion design of d onto factors with indexes from u. A typical treatment combination of du

is represented as wu = (w(1)
u , w(2)

u ), where w(i)
u = (w(i)

ui1 , . . ., w(i)
uigi

), w(i)
uigi
∈ {0, 1, . . ., qi − 1},

i = 1, 2. Let Hu
ik be the Hamming distance between two runs iu and ku of the projection

design du, denote δu
ik = g− Hu

ik as the coincide number between two runs iu and ku, where
iu = (iu

1 , iu
2 ) and ku = (ku

1 , ku
2).

3. Projection Uniformity of U(n; q1
s1 × q2

s2)

For any design d ∈ U (n; q1
s1 × q2

s2), g(= g1 + g2) ≤ s and u ∈ Sg, let MDu(d) be the
mixture discrepancy value of the corresponding projection design du; following [9], we can
derive the below formula for MDu(d),

[MDu(d)]2 =

(
7

12

)g
− 2

n

n

∑
i=1

∏
j∈u

f1(xij) +
1
n2

n

∑
i=1

n

∑
k=1

∏
j∈u

f (xij, xkj), (2)

where f1(xij) = 2
3 −

1
4 |xij − 1

2 | −
1
4 |xij − 1

2 |2, f (xij, xkj) = 7
8 −

1
4 |xij − 1

2 | −
1
4 |xkj − 1

2 | −
3
4 |xij − xkj|+ 1

2 |xij − xkj|2, i, k = 1, . . . , n.
When considering all q1! × q2! possible level permutations for every factor of

d ∈ U (n; q1
s1 × q2

s2), there are (q1!)s1 × (q2!)s2 combinatorially isomorphic designs of
d that can be obtained, and denote the set of these designs as P(d). Similarly, for any
positive integer g(= g1 + g2) ≤ s and u ∈ Sg, we can obtain (q1!)g1 × (q2!)g2 combinatori-
ally isomorphic designs of du; the corresponding set of these combinatorially isomorphic
designs d′u is denoted by P(du). The mean of projection mixture discrepancies of all the
designs in P(du) is denoted by AMDu(d), that is,

AMDu(d) =
1

(q1!)g1(q2!)g2 ∑
d′u∈P(du)

[MDu(d′)]2. (3)

The following lemma, which can be proved similarly as [14,15], gives the expression
for AMDu(d).

Lemma 1. For any design d ∈ U (n; q1
s1 × q2

s2), u ∈ Sg and 1 ≤ g ≤ s,
(i) when both q1 and q2 are even,

AMDu(d) =
(

7
12

)g
− 2
(

28q1
2 + 1

48q1
2

)g1(28q2
2 + 1

48q22

)g2

+
1
n

(
3
4

)g1
(

3
4

)g2 g1

∑
i1=0

g2

∑
i2=0

(
7q1 − 2

9q1

)i1(7q2 − 2
9q2

)i2
Ei1i2(du);

(ii) when both q1 and q2 are odd,

AMDu(d) =
(

7
12

)g
− 2
(

7q1
2 + 1

12q1
2

)g1(7q2
2 + 1

12q22

)g2

+
1
n

(
6q1

2 + 1
8q1

2

)g1(6q2
2 + 1

8q22

)g2

×
g1

∑
i1=0

g2

∑
i2=0

(
14q1

2 − 4q1 + 3
18q1

2 + 3

)i1(14q2
2 − 4q2 + 3

18q22 + 3

)i2
Ei1i2(du);
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(iii) when q1 is even and q2 is odd,

AMDu(d) =
(

7
12

)g
− 2
(

28q1
2 + 1

48q1
2

)g1(7q2
2 + 1

12q22

)g2

+
1
n

(
3
4

)g1
(

6q2
2 + 1

8q22

)g2

×
g1

∑
i1=0

g2

∑
i2=0

(
7q1 − 2

9q1

)i1(14q2
2 − 4q2 + 3

18q22 + 3

)i2
Ei1i2(du). (4)

We can obtain the following lemma when the design d is an orthogonal array
OA(n; q1

s1 × q2
s2 , t).

Lemma 2. Suppose design d is an orthogonal array OA(n; q1
s1 × q2

s2 , t), then

AMDu(d) = Φu,

where |u| = g1 + g2, 1 ≤ g1 + g2 ≤ t, Φu is a constant only depending on q1, q2, g1 and g2.
In particular,

(i) when both q1 and q2 are even,

Φu =

(
7

12

)g
− 2
(

28q1
2 + 1

48q1
2

)g1(28q2
2 + 1

48q22

)g2

+

(
7q1

2 + 2
12q1

2

)g1(7q2
2 + 2

12q22

)g2

;

(ii) when both q1 and q2 are odd,

Φu =

(
7

12

)g
− 2
(

7q1
2 + 1

12q1
2

)g1(7q2
2 + 1

12q22

)g2

+

(
14q1

2 + 7
24q1

2

)g1(14q2
2 + 7

24q22

)g2

;

(iii) when q1 is even and q2 is odd,

Φu =

(
7

12

)g
− 2
(

28q1
2 + 1

48q1
2

)g1(7q2
2 + 1

12q22

)g2

+

(
7q1

2 + 2
12q1

2

)g1(14q2
2 + 7

24q22

)g2

.

It is well known that strength is an important measure of orthogonality. For comparing
the difference between design d ∈ U (n; q1

s1 × q2
s2) and orthogonal array

OA(n; q1
s1 × q2

s2 , t) of strength t, the definition of uniformity pattern of design d is given as
follows, which provides a measure of the projection uniformity of d onto different dimensions.

Definition 1. For any design d ∈ U (n; q1
s1 × q2

s2), any positive integer g(= g1 + g2) ≤ s and
u ∈ Sg, define

MIg(d) = ∑
|u|=g

[AMDu(d)−Φu],

where Φu is shown in Lemma 2. The vector (MI1(d), . . ., MIs(d)) is called the uniformity pattern
of design d.

We now state the above discussion as the following theorem, which gives a relationship
between the uniformity pattern (MI1(d), . . . , MIs(d)) of design d and the strength t of
orthogonal array OA(n; q1

s1 × q2
s2 , t).

Theorem 1. For any design d ∈ U (n; q1
s1 × q2

s2), design d is an orthogonal array
OA(n; q1

s1 × q2
s2 , t) if and only if MIk(d) = 0 for k = 1, . . . , t and MIt+1(d) 6= 0.

Theorem 1 indicates that there is a close relationship between MIt(d) and strength
t for a design d ∈ U (n; q1

s1 × q2
s2), that is, the smaller the value of MIt(d), the design d

will be closer to an orthogonal array of strength t. Based on Theorem 1, {MIk(d)}may be
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used as a measure for evaluating designs; it suggests to define some similar criteria, such
as MPU.

Definition 2. For two designs d1, d2 ∈ U (n; q1
s1 × q2

s2), there is an integer t such that
MIt(d1) 6= MIt(d2) and MIk(d1) = MIk(d2) for k = 1, . . . , t − 1; then, d1 is said to have
less MPU than d2. If there is no other design in U (n; q1

s1 × q2
s2) that has less MPU than d1, then

d1 is said to have MPU, or d1 is an MPU design.

Here, we mainly establish the connections between projection uniformity and orthog-
onality, and some relationships between criteria of MPU and GMA will also be included.

Theorem 2. For any design d ∈ U (n; q1
s1 × q2

s2), any positive integer g(= g1 + g2) ≤ s and
u ∈ Sg, we have

MIg(d) = ∑
|u|=g

αg1g2 ∑
(r1,r2)∈R

βr1r2

(
s1 − r1

s1 − g1

)(
s2 − r2

s2 − g2

)
Ar1+r2(d),

whereR = {(r1, r2) : r1 = 0, . . . , g1, r2 = 0, . . . , g2, (r1, r2) 6= (0, 0)}, and
(i) when both q1 and q2 are even,

αg1g2 =

(
7q1

2 + 2
12q1

2

)g1(7q2
2 + 2

12q22

)g2

, βr1r2 =

(
2q1 + 2
7q1

2 + 2

)r1
(

2q2 + 2
7q22 + 2

)r2

;

(ii) when both q1 and q2 are odd,

αg1g2 =

(
14q1

2 + 7
24q1

2

)g1(14q2
2 + 7

24q22

)g2

, βr1r2 =

(
4q1 + 4

14q1
2 + 7

)r1
(

4q2 + 4
14q22 + 7

)r2

;

(iii) when q1 is even and q2 is odd,

αg1g2 =

(
7q1

2 + 2
12q1

2

)g1(14q2
2 + 7

24q22

)g2

, βr1r2 =

(
2q1 + 2
7q1

2 + 2

)r1
(

4q2 + 4
14q22 + 7

)r2

.

4. A Lower Bound of Uniformity Pattern

This section provides a lower bound of uniformity pattern defined in Definition 1. It is
very important that the lower bounds of uniformity pattern can be served as a benchmark
not only in searching for uniform designs with minimum projection uniformity but also in
helping to validate that some good designs are in fact uniform.

Define ∆u = q1ev1 + p1ev3 + q2(ev2 − ev3) when p1 > q2, and ∆u = p2ev1 + q2ev4 +
p1(ev2 − ev4) when p1 ≤ q2.

Theorem 3. For any design d ∈ U (n; q1
s1 × q2

s2) and positive integer g(= g1 + g2) ≤ s,
we have

MIg(d) ≥ LMI
′
g(d),

(i) when both q1 and q2 are even,

LMI
′
g(d) = ∑

|u|=g
Ψg1g2 +

1
n2

(
7q1 − 2

12q1

)g1
(

7q2 − 2
12q2

)g2

∑
u∈Sg

∆u,

where Ψg1g2 = 1
n (

3
4 )

g1( 3
4 )

g2 − ( 7q1
2+2

12q1
2 )g1( 7q2

2+2
12q2

2 )g2 ;
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(ii) when both q1 and q2 are odd,

LMI
′
g(d) = ∑

|u|=g
Ψg1g2 +

1
n2

(
14q1

2 − 4q1 + 3
24q1

2

)g1(14q2
2 − 4q2 + 3
24q22

)g2

∑
u∈Sg

∆u,

where Ψg1g2 = 1
n (

6q1
2+1

8q1
2 )g1( 6q2

2+1
8q2

2 )g2 − ( 14q1
2+7

24q1
2 )g1( 14q2

2+7
24q2

2 )g2 ;
(iii) when q1 is even and q2 is odd,

LMI
′
g(d) = ∑

|u|=g
Ψg1g2 +

1
n2

(
7q1 − 2

12q1

)g1
(

14q2
2 − 4q2 + 3
24q22

)g2

∑
u∈Sg

∆u,

where Ψg1g2 = 1
n (

3
4 )

g1( 6q2
2+1

8q2
2 )g2 − ( 7q1

2+2
12q1

2 )g1( 14q2
2+7

24q2
2 )g2 .

Theorem 4. For any design d ∈ U (n; q1
s1 × q2

s2) and positive integer g(= g1 + g2) ≤ s,

MIg(d) ≥ LMI
′′
g (d),

(i) when both q1 and q2 are even,

LMI
′′
g (d) = ∑

|u|=g

[
1
n2

(
7q1 − 2

12q1

)g1
(

7q2 − 2
12q2

)g2
(

g1

i1

)(
g2

i2

)

×
(

2q1 + 2
7q1 − 2

)i1(2q2 + 2
7q2 − 2

)i2
θi1i2 −

(
7q1 + 2

12q1

)g1
(

7q2 + 2
12q2

)g2
]

;

(ii) when both q1 and q2 are odd,

LMI
′′
g (d) = ∑

|u|=g

[
1
n2

(
14q2

1 − 4q1 + 3
24q1

)g1
(

14q2
2 − 4q2 + 3

24q2

)g2(
g1

i1

)(
g2

i2

)

×
(

4q2
1 + 4q1

14q2
1 − 4q1 + 3

)i1( 4q2
2 + 4q2

14q2
2 − 4q2 + 3

)i2

θi1i2 −
(

14q2
1 + 7

24q2
1

)g1
(

14q2
2 + 7

24q2
2

)g2]
;

(iii) when q1 is even and q2 is odd,

LMI
′′
g (d) = ∑

|u|=g

[
1
n2

(
7q1 − 2

12q1

)g1
(

14q2
2 − 4q2 + 3

24q2

)g2(
g1

i1

)(
g2

i2

)

×
(

2q1 + 2
7q1 − 2

)i1
(

4q2
2 + 4q2

14q2
2 − 4q2 + 3

)i2

θi1i2 −
(

7q1 + 2
12q1

)g1
(

14q2
2 + 7

24q2
2

)g2]
,

where θi1i2 = nλi1i2 + µi1i2(1+ λi1i2), µi1i2 = n− qi1
1 qi2

2 λi1i2 , λi1i2 be the largest integer contained
in n/(qi1

1 qi2
2 ).

Note that Theorem 3 is based on Hamming distances between any two runs of d,
but Theorem 4 comes from the quadratic form yT

d Dyd in Appendix A Equation (A1).
Some numerical examples show that these two lower bounds are not tight simultaneously.
Therefore, we give another lower bound of uniformity pattern as the following theorem:

Theorem 5. For any design d ∈ U (n; q1
s1 × q2

s2) and positive integer g(= g1 + g2) ≤ s,
we have

MIg(d) ≥ LMI∗g (d),
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where LMI∗g (d) = max {LMI
′
g(d), LMI

′′
g (d)}.

5. Illustrative Examples

In this section, some numerical examples are provided to illustrate our theoretical results.

Example 1. Consider a design d1 ∈ U (4; 23 × 43), which are given below:

d1 =


0 0 0 0 3 2
1 0 1 2 0 1
0 1 1 1 2 0
1 1 0 3 1 3

.

The number of columns in design d1 is greater than the number of rows, its uniformity
pattern in Definition 1, and its lower bound values in Theorems 3–5 are listed in Table 1.

Table 1. Numerical results of designs d1.

g 1 2 3 4 5 6

MIg(d1) 0 0.0830 0.2193 0.2170 0.0954 0.0157
LMI

′
g(d1) 0 0.0830 0.2193 0.2170 0.0954 0.0157

LMI
′′
g(d1) 0 0.0146 0.0397 0.0429 0.0318 0.0157

LMI∗g (d1) 0 0.0830 0.2193 0.2170 0.0954 0.0157

It is clear that d1 is an orthogonal array of strength 1 and attains the lower bounds in
Theorem 3.

Example 2. Consider design d2 ∈ U (20; 23 × 5) and d3 ∈ U (48; 25 × 3), which are given below,

d2 =


0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1
0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1
0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4


T

,

d3 =



1111111100000000 0000000011111111 1111111100000000
1111000011110000 0000111100001111 1111000011110000
1100110011001100 0011001100110011 1100110011001100
1010101010101010 0101010101010101 1010101010101010
1001011001101001 0110100110010110 1001011001101001
0000000000000000 1111111111111111 2222222222222222



T

.

The number of rows in designs d2 and d3 are greater than the number of columns, and
the numerical results of both are shown in Table 2.

As can be seen from Table 2, designs d2 and d3 are an orthogonal array with strengths
of 2 and 4, respectively, and both reach the lower bound in Theorem 4.
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Table 2. Numerical results of designs d2 and d3.

g 1 2 3 4 5 6

MIg(d2) 0 0 7.8125× 10−5 1.2148× 10−4

LMI
′
g(d2) 0 −0.0450 −0.0282 −0.0040

LMI
′′
g(d2) 0 0 7.8125× 10−5 1.2148× 10−4

LMI∗g (d2) 0 0 7.8125× 10−5 1.2148× 10−4

MIg(d3) 0 0 0 0 3.3908× 10−6 4.0973× 10−6

LMI
′
g(d3) 0 −0.1837 −0.1742 −0.1300 −0.0365 −0.0044

LMI
′′
g(d3) 0 0 0 0 3.3908× 10−6 4.0973× 10−6

LMI∗g (d3) 0 0 0 0 3.3908× 10−6 4.0973× 10−6

It can be seen from Tables 1 and 2 that the lower bounds of uniformity pattern of
designs d1, d2, and d3 are achieved, so d1, d2, and d3 are all MPU designs. We can also
see that LMI

′′
g (d) is better than LMI

′
g(d) for large n and smaller s. Similar to the findings

of Fang et al. (2018) [24], none of the lower bounds in Theorems 3 and 4 are absolutely
dominant for all combinations of the number of runs n and of factors s. Therefore, we
choose the maximum value of Theorems 3–5.

6. Conclusions

In this paper, the projection uniformity and related properties under mixture dis-
crepancy of asymmetric factorials are explored. The relationship between uniformity
pattern and generalized minimum aberration is established. A lower bound of uniformity
pattern is also obtained, which can be served as a benchmark for searching minimum
projection uniformity designs. These results provide a theoretical basis for searching
optimal asymmetric designs with minimum projection uniformity measured by average
projection mixture discrepancy. Overall, this paper extends the results of [13–15] to the
asymmetric case, which makes the corresponding theory more flexible.

The results in this paper can be extended to any asymmetric designs d ∈ U (N;
qs1

1 × · · · × qsn
n ). Taking the first t factors as even and the last n− t factors as odd, and using

some simple calculation of tired multiplication, similar definition and results of uniformity
pattern and lower bounds can be obtained.
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Appendix A

Proof of Lemma 2. If a design d ∈ U (n; q1
s1 × q2

s2) is an orthogonal array OA(n;
q1

s1 × q2
s2 , t) of strength t; then, for any nonnegative integer g(= g1 + g2) ≤ s and

u = u1 ∪ u2 ∈ Sg1g2 , all possible q1
g1 × q2

g2 level combinations among any g columns
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of projection design du appear equally often. Given row i0u = (i0u1
, i0u2

) ∈ du, it is easy to

obtain that |{(i0u, ku) : Hu1
i0k = j1, Hu2

i0k = j2, ku ∈ d}| = (g1
j1
)(g2

j2
)

n(q1−1)j1 (q2−1)j2

q1
g1 q2

g2 .
Therefore, the third term in the right side of Formula (4) can be expressed as

1
n

(
3
4

)g1
(

6q2
2 + 1

8q22

)g2 g1

∑
i1=0

g2

∑
i2=0

(
7q1 − 2

9q1

)i1(14q2
2 − 4q2 + 3

18q22 + 3

)i2
Ei1i2(du)

=

(
7q1

2 + 2
12q1

2

)g1(14q2
2 + 7

24q22

)g2

,

which completes the proof.

Proof of Theorem 2. From Formulas (1), (3), (4) and Definition 1, we have

MIg(d)

= ∑
|u|=g

[
1
n

(
3
4

)g1
(

6q2
2 + 1

8q22

)g2 g1

∑
i1=0

g2

∑
i2=0

(
7q1 − 2

9q1

)i1(14q2
2 − 4q2 + 3

18q22 + 3

)i2
Ei1i2(du)

−
(

7q1
2 + 2

12q1
2

)g1(14q2
2 + 7

24q22

)g2]
= ∑
|u|=g

[(
3

4q1

)g1
(

6q2
2 + 1

8q23

)g2 g1

∑
r1=0

g2

∑
r2=0

g1

∑
i1=0

g2

∑
i2=0

(
7q1 − 2

9q1

)i1(14q2
2 − 4q2 + 3

18q22 + 3

)i2

× Pi1(r1; g1, q1)Pi2(r2; g2, q2)E
′
r1r2

(du)−
(

7q1
2 + 2

12q1
2

)g1(14q2
2 + 7

24q22

)g2]
= ∑
|u|=g

[(
7q1

2 + 2
12q1

2

)g1(14q2
2 + 7

24q22

)g2 g1

∑
r1=0

g2

∑
r2=0

(
2q1 + 2
7q1

2 + 2

)r1
(

4q2 + 4
14q22 + 7

)r2

E
′
r1r2

(du)

−
(

7q1
2 + 2

12q1
2

)g1(14q2
2 + 7

24q22

)g2]
= ∑
|u|=g

(
7q1

2 + 2
12q1

2

)g1(14q2
2 + 7

24q22

)g2

∑
(r1,r2)∈R

(
2q1 + 2
7q1

2 + 2

)r1
(

4q2 + 4
14q22 + 7

)r2

E
′
r1r2

(du)

= ∑
|u|=g

(
7q1

2 + 2
12q1

2

)g1(14q2
2 + 7

24q22

)g2

∑
(r1,r2)∈R

(
2q1 + 2
7q1

2 + 2

)r1
(

4q2 + 4
14q22 + 7

)r2

×
(

s1 − r1

s1 − g1

)(
s2 − r2

s2 − g2

)
Ar(d),

which completes the proof.

In order to prove Theorem 3, we need to know Lemmas A1–A3, where Lemma A1 can
be obtained from Lemma 1 and Definition 1.

Lemma A1. For any design d ∈ U (n; q1
s1 × q2

s2), positive integer g(= g1 + g2) ≤ s and
u = u1 ∪ u2 ∈ Sg,

(i) when both q1 and q2 are even,

MIg(d) = ∑
|u|=g

Ψg1g2 +
1
n2 ∑
|u|=g

(
7q1 − 2

12q1

)g1
(

7q2 − 2
12q2

)g2 n

∑
i=1

n

∑
k( 6=i)=1

eθu
ik ,

where Ψg1g2 is shown in Theorem 3, θu
ik = ln( 9q1

7q1−2 ) · δ
u1
ik + ln( 9q2

7q2−2 ) · δ
u2
ik ;
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(ii) when both q1 and q2 are odd,

MIg(d) = ∑
|u|=g

Ψg1g2 +
1
n2 ∑
|u|=g

(
14q1

2 − 4q1 + 3
24q1

2

)g1(14q2
2 − 4q2 + 3
24q22

)g2 n

∑
i=1

n

∑
k( 6=i)=1

eθu
ik ,

where Ψg1g2 is shown in Theorem 3, θu
ik = ln( 18q1

2+3
14q1

2−4q1+3 ) · δ
u1
ik + ln( 18q2

2+3
14q2

2−4q2+3 ) · δ
u2
ik ;

(iii) when q1 is even and q2 is odd,

MIg(d) = ∑
|u|=g

Ψg1g2 +
1
n2 ∑
|u|=g

(
7q1 − 2

12q1

)g1
(

14q2
2 − 4q2 + 3
24q22

)g2 n

∑
i=1

n

∑
k( 6=i)=1

eθu
ik ,

where Ψg1g2 is shown in Theorem 3, θu
ik = ln( 9q1

7q1−2 ) · δ
u1
ik + ln( 18q2

2+3
14q2

2−4q2+3 ) · δ
u2
ik .

The proof of Lemma A1 is similar to [14], so it is omitted.

Lemma A2 ([25]). For any design d ∈ U (n; qs) and positive integer t, we have

n

∑
i=1

n

∑
k( 6=i)=1

(δik)
t = Pwt + Q(w + 1)t.

where w = b (n−q)s
q(n−1) c, P and Q are integers such that P + Q = n(n− 1), and bAc means the

largest integer contained in A.

Lemma A3 ([26]). For any design d ∈ U (n; q1
s1 × q2

s2) and positive integer t, we have

n

∑
i=1

n

∑
k( 6=i)=1

θik =
α1n(n− q1)g1

q1
+

α2n(n− q2)g2

q2
, and

n

∑
i=1

n

∑
k( 6=i)=1

(θik)
t ≥

Q1vt
1 + Q2vt

2 + (P1 −Q2)vt
3, when P1 > Q2;

P2vt
1 + P1vt

2 + (Q2 − P1)vt
4, when P1 ≤ Q2.

where α1 > 0 and α2 > 0 are weights, P1 and Q1 are integers such that P1 + Q1 = n(n− 1) and
P1w1 +Q1(w1 + 1) = n(n− q1)s1/q1, P2 and Q2 are integers such that P2 +Q2 = n(n− 1) and
P2w2 + Q2(w2 + 1) = n(n− q2)s2/q2. Let v1 = α1(w1 + 1) + α2w2, v2 = α1w1 + α2(w2 + 1),
v3 = α1w1 + α2w2, v4 = α1(w1 + 1) + α2(w2 + 1), w1 = b (n−q1)s1

q1(n−1) c, w2 = b (n−q2)s2
q2(n−1) c.

Proof of Theorem 4. According to [23,24], let Iq and 1q respectively be the q× q identity
matrix and the q× 1 vector with all elements unity, define

L(0) = 1T
q , L(1) = Iq, Jq = 1q1T

q .

Let D(1)
g1 and D(2)

g2 be the g1-fold and g2-fold Kronecker products of D(1)
0 and D(2)

0 ,
respectively. Let Ω be the set of all binary (q1 + q2) tuples, Ωi1i2 be the set of Ω consisting
of those binary (g1 + g2)-tuples with exactly i1 elements of x1 unity and i2 elements of
x2 unity, respectively, where Ω = {x = (x(1), x(2)) : x(1) = (x(1)1 , . . ., x(1)g1 ) ∈ Ω(1), x(2) =

(x(2)1 , . . ., x(2)g2 ) ∈ Ω(2)}.

D = D(1)
g1

⊗
D(2)

g2 , D(1)
g1 =

g1⊗
i1=1

D(1)
0 , D(2)

g2 =
g2⊗

i2=1

D(2)
0 .
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For any design d ∈ U (n; q1
s1 × q2

s2), Lemma A1 gives an expression between the
uniformity pattern and the number of coincide. Based on this, we can obtain

(i) when both q1 and q2 are even,

D(1)
0 =

q1 + 1
6q1

Iq1 +
7q1 − 2

12q1
Jq1

, D(2)
0 =

q2 + 1
6q2

Iq2 +
7q2 − 2

12q2
Jq2

;

(ii) when both q1 and q2 are odd,

D(1)
0 =

q1 + 1
6q1

Iq1 +
14q2

1 − 4q1 + 3
24q2

1
Jq1

, D(2)
0 =

q2 + 1
6q2

Iq2 +
14q2

2 − 4q2 + 3
24q2

2
Jq2

;

(iii) when q1 is even and q2 is odd,

D(1)
0 =

q1 + 1
6q1

Iq1 +
7q1 − 2

12q1
Jq1

, D(2)
0 =

q2 + 1
6q2

Iq2 +
14q2

2 − 4q2 + 3
24q2

2
Jq2

.

Considering the case (iii) where q1 is even and q2 is odd, we have

MIg(d) = ∑
|u|=g

[
1
n2 yT

d Dyd −
(

7q1 + 2
12q1

)g1
(

14q2
2 + 7

24q2
2

)g2
]

, (A1)

where

D = γg1g2 ∑
x(1)∈Ω(1)

∑
x(2)∈Ω(2)

(
2q1 + 2
7q1 − 2

)∑ x(1)i
(

4q2
2 + 4q2

14q22 − 4q2 + 3

)∑ x(2)i

H(x)
′
H(x),

y
′
dDyd = γg1g2

g1

∑
i1=0

g2

∑
i2=0

(
2q1 + 2
7q1 − 2

)i1( 4q2
2 + 4q2

14q22 − 4q2 + 3

)i2

∑
x∈Ωi1 i2

y
′
d H(x)

′
H(x)yd,

and γg1g2 = ( q1+1
6q1

)g1( q2+1
6q2

)g2 .
Let yd(x) be the number of times the treatment combination x occurs in d and yd be

the n× 1 vector with elements yd(x) arranged in the lexicographic order. For any ∑x∈Ωi1 i2
,

the elements of the qi1
1 qi2

2 × 1 vector H(x)yd are nonnegative integers with sum n; then,
by [24], we have

y
′
d H(x)

′
H(x)yd ≤ λ2

i1i2(q
i1
1 qi2

2 − µi1i2) + (λi1i2 + 1)2µi1i2 = nλi1i2 + µi1i2(λi1i2 + 1),

which completes the proof of Case (iii).
The proof of Case (i) and Case (ii) are similar to Case (iii).
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