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Abstract

:

In this note, a new equilibrium version of Ekeland’s variational principle is presented. It is a modification and promotion of previous results. Subsequently, the principle is applied to discuss the equilibrium points for binary functions and the fixed points for nonlinear mappings.
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1. Introduction


Ekeland’s variational principle (abbrev.  EVP ), which is considered to be the basis of modern calculus of variations, was presented in 1974 (see, for instance [1,2]). It is widely used in many fields, such as differential equations, optimization, fixed point theory, etc. It is precisely the wide application of this theorem that it has attracted the attention of a large number of scholars, and has been promoted from all directions. For example, Zhong [3] extended the form of EVP in metric space; we rewrite the result as follows.



Theorem 1

(EVP of Zhong-type [3]). Let   ( X , d )   be a complete metric space and    x 0  ∈ X   fixed. The function   f : X → R ∪ { + ∞ }   is bounded from below, lower semi-continuous, and not identically   + ∞  .



If   g : [ 0 , + ∞ ) → [ 0 , + ∞ )   is a continuous non-decreasing function such satisfying


    ∫  0   + ∞    1  1 + g ( r )   d r = + ∞ ,   











then, for any   ε > 0 , y ∈ M   such that


   f  ( y )  <  inf  x ∈ X   f  ( x )  + ε   











and, for any   λ > 0  , there exists   z ∈ X   satisfying


   f ( z ) ≤ f ( y )   










   d  ( z ,  x 0  )  ≤  r ¯  +  r 0    











and


   f  ( x )  ≥ f  ( z )  −  ε  λ ( 1 + g  ( d  (  x 0  , z )  )  )   d  ( x , z )   ∀ x ∈ M   











where    r 0  = d  (  x 0  , y )    and   r ¯   is such that


    ∫   r 0     r ¯  +  r 0     1  1 + g ( r )    d r ≥ λ .   













Oettli and Théra [4] and Blum and Oettli [5] investigated the equilibrium versions of EVP. In [6], Bianchi et al. presented equilibrium versions of EVP as follows



Let X be an Euclidean space,   C ⊆ X   be a closed set and   f : C × C → R  .



Theorem 2

([6]). Assume the following assumptions are satisfied:








	(i)

	
  f ( x , · )   is lower bounded and lower semicontinuous, for every   x ∈ C  ;




	(ii)

	
  f ( t , t ) = 0  , for every   t ∈ C  ;




	(iii)

	
  f ( z , x ) ≤ f ( z , t ) + f ( t , x )   for every   x , t , z ∈ C  .









Then, for every   ε > 0   and for every    x 0  ∈ C  , there exists    x ¯  ∈ C   such that








	(a)

	
  f  (  x 0  ,  x ¯  )  + ε  ∥  x 0  −  x ¯  ∥  ≤ 0  ;




	(b)

	
  f  (  x ¯  , x )  + ε  ∥  x ¯  − x ∥  > 0 ,  ∀ x ∈ C , x ≠  x ¯   .











Farkas and Molnar [7] improved the conclusion in [6], and obtained a Zhong-type variational principle for bi-functions as follows:



Theorem 3

([7]). Let   ( X , d )   be a complete metric space,   C ⊂ X   be a closed set, and   f : C × C →  R +    be a mapping. Let   g : [ 0 , + ∞ ) → ( 0 , + ∞ )   be a continuous nondecreasing function such that


   ∫  0   + ∞    1  g ( s )   d s = + ∞  











Let    x 0  ∈ C   be fixed. Assume that the following assumptions be satisfied:








	(i)

	
  f ( x , · )   is bounded from below and lower semicontinuous, for every   x ∈ C  ;




	(ii)

	
  f ( z , z ) = 0  , for every   z ∈ C  ;




	(iii)

	
  f ( z , x ) ≤ f ( z , t ) + f ( t , x )   for every   x , t , z ∈ C  ;









Then, for every   ε > 0   and   y ∈ C   for which we have


    inf  z ∈ C   f  ( y , z )  > − ε   



(1)







and for every   λ > 0  , there exists   x ε   such that








	(a)

	
  d  (  x 0  ,  x ε  )  < r +  r ¯   ;




	(b)

	
  f  (  x ε  ,  x 0  )  +  ε  λ ( 1 + g  ( d  (  x 0  ,  x ε  )  )  )   d  (  x ε  ,  x 0  )  ≤ 0  ;




	(c)

	
  f  (  x ε  , x )  +  ε  λ ( 1 + g  ( d  (  x 0  ,  x ε  )  )  )   d  ( x ,  x ε  )  > 0  ,  ∀ x ∈ C , x ≠  x ε   ;









where    r 0  = d  (  x 0  , y )    and   r ¯   are chosen such that


    ∫   r 0     r 0  +  r ¯     1  1 + g ( r )   d r ≥ λ .   













However, when proving (a), there are some errors in [7].



In the process of proving    { d  (  x 0  ,  x n  )  <  r 0  +  r ¯  }   ( 14 )   , they presented the following inequality,


      ∑  n = 1   k − 1     d (  x n  ,  x  n + 1   )   1 + g ( d  (  x 0  ,  x  n + 1   )  )      ≥     ∑  n = 1   k − 1     d  (  x 0  ,  x  n + 1   )  − d  (  x 0  ,  x n  )    1 + g ( d  (  x 0  ,  x  n + 1   )  )         ≥     ∑  n = 1   k − 1    ∫  d (  x 0  ,  x n  )   d (  x 0  ,  x  n + 1   )    1  1 + g ( r )   d r       =     ∫  d (  x 0  ,  x 1  )   d (  x 0  ,  x k  )    1  1 + g ( r )   d r     











But in fact, by the continuity and monotonicity of g and the definition of   W (  x n  )  , we have   d  (  x 0  ,  x n  )  < d  (  x 0  ,  x  n + 1   )   , then for   d  (  x 0  ,  x n  )  ≤ r ≤ d  (  x 0  ,  x  n + 1   )   ,


   1  1 + g ( r )   ≥  1  1 + g ( d  (  x 0  ,  x  n + 1   )  )    











Hence,


      ∑  n = 1   k − 1    ∫  d (  x 0  ,  x n  )   d (  x 0  ,  x  n + 1   )    1  1 + g ( r )   d r    ≥     ∑  n = 1   k − 1    ∫  d (  x 0  ,  x n  )   d (  x 0  ,  x  n + 1   )    1  1 + g ( d  (  x 0  ,  x  n + 1   )  )   d r       =      ∑  n = 1   k − 1     d  (  x 0  ,  x  n + 1   )  − d  (  x 0  ,  x n  )    1 + g ( d  (  x 0  ,  x  n + 1   )  )    ,     








which contradicts their conclusion.



In this note, we aim at modifying the result of [7], and establish a new equilibrium form of the Ekeland’s variational principle for bi-function. Then, the conclusions are used to discuss the equilibrium point problem and fixed point problem. Some recent advances in Ekeland’s variational principles and applications can be seen in [8,9,10,11,12,13,14,15,16,17,18,19] and references therein.



This paper is organized as follows: In Section 2, we state a new version of Ekeland’s variational principle for bi-functions. In Section 3, as applications of the main result, we discuss a equilibrium problem and a fixed point problem.




2. A New Equilibrium Version of EVP


In this section, we establish a new equilibrium version of EVP.



Theorem 4.

Let   ( X , d )   be a complete metric space,   C ⊂ X   be a closed set,    x 0  ∈ C   fixed, and   g : [ 0 , + ∞ ) → ( 0 , + ∞ )   be a continuous nondecreasing function such that


    ∫  0   + ∞    1  g ( s )   d s = m ,    ( 0 < m ≤ + ∞ )  .   











If   f : C × C → R   satisfies:








	(i)

	
  f ( x , · )   is bounded from below and lower semi-continuous,   ∀ x ∈ C  ;




	(ii)

	
  f ( y , y ) = 0  ,   ∀ y ∈ C  ;




	(iii)

	
  f ( x , z ) ≤ f ( x , y ) + f ( y , z )  ,   ∀ x , y , z ∈ C  .









Then, for any   ε > 0 , 0 < α < m   fulfilling


    inf  z ∈ C   f  (  x 0  , z )  > − α ε   



(2)







there is    x ε  ∈ C   such that








	(a)

	
   f  (  x 0  ,  x ε  )  +  ε  g ( d  (  x 0  ,  x 0  )  )   d  (  x 0  ,  x ε  )  ≤ 0   




	(b)

	
  f  (  x ε  , x )  +  ε  g ( d  (  x 0  ,  x ε  )  )   d  (  x ε  , x )  > 0  ,  ∀ x ∈ C , x ≠  x ε   ;




	(c)

	
  d (  x 0  ,  x ε  ) ≤ l  ,









where l satisfies


    ∫  0  l   1  g ( s )   d s = α .   













Proof. 

Let


  T  ( x )  = { y ∈ C \ B  (  x 0  , d  (  x 0  , x )  )  | f  (  x 0  , x )  +  ε  g ( d  (  x 0  , x )  )   d  (  x 0  , x )  ≤ 0 } .  








In the same manner as the proof of Theorem 2.1 in [7], we can construct a sequence     {  x n  }   n = 0  ∞  ⊆ C   such that








	(1)

	
   x  n + 1   ∈ T  (  x n  )  , T  (  x  n + 1   )  ⊂ T  (  x n  )  , n = 0 , 1 , 2 , ⋯  ;




	(2)

	
diam  T (  x n  ) → 0  .









Due to the completeness of X and the closeness of C, there is a unique    x ε  ∈ C   such that


   lim  n → ∞    x n  =  x ε  ,    ⋂  n = 0  ∞  T  (  x n  )  =  {  x ε  }  .  











As    x ε  ∈ T  (  x 0  )   , we have


  f  (  x 0  ,  x ε  )  +  ε  g ( d  (  x 0  ,  x 0  )  )   d  (  x 0  ,  x ε  )  ≤ 0 .  








This verifies assertion (a).



Due to    x ε  ∈ T  (  x n  )  , n = 0 , 1 , 2 , ⋯  , we obtain   T  (  x ε  )  ⊂ T  (  x n  )  , n = 0 , 1 , 2 , ⋯  . Hence


  T  (  x ε  )  ∈  ⋂  n = 0  ∞  T  (  x n  )  .  








and   T  (  x ε  )  =  {  x ε  }   .



Therefore, the assertion


   ( b )    f  (  x ε  , x )  +  ε  g ( d  (  x 0  ,  x ε  )  )   d  (  x ε  , x )  > 0 ,   ∀ x ∈ C , x ≠  x ε  ,  








holds.



In what follows, let us verify conclusion (c).



As    x  n + 1   ∈ T  (  x n  )   ,


     f  (  x n  ,  x  n + 1   )  +  ε  g ( d  (  x 0  ,  x n  )  )   d  (  x n  ,  x  n + 1   )  ≤ 0 ,   ( n = 0 , 1 , 2 , ⋯ )      











Hence,


      ∑  j = 0  n  f  (  x j  ,  x  j + 1   )  +  ∑  j = 0  n   ε  g ( d  (  x 0  ,  x j  )  )   d  (  x j  ,  x  j + 1   )  ≤ 0 .     








Noting that


      ∑  j = 0  n  f  (  x j  ,  x  j + 1   )  ≥ f  (  x 0  ,  x  n + 1   )  ,     



(3)




we obtain


      ∑  j = 0  n   ε  g ( d  (  x 0  ,  x j  )  )   d  (  x j  ,  x  j + 1   )  ≤ −  ∑  j = 0  n  f  (  x j  ,  x  j + 1   )  ≤ − f  (  x 0  ,  x  n + 1   )  < α ε ,     








which means


      ∑  j = 0  ∞   1  g ( d  (  x 0  ,  x j  )  )   d  (  x j  ,  x  j + 1   )  < α     











We assert   d (  x 0  ,  x ε  ) ≤ l  . Contrarily, assume   d (  x 0  ,  x ε  ) > l  .



Take   {  n i  }   as a subsequence of   { n }   such that   { d  (  x 0  ,  x  n i   )  }   is monotone increasing, converges to   d (  x 0  ,  x ε  )   and


  d  (  x 0  ,  x k  )  ≤ d  (  x 0  ,  x  n  i − 1    )    ( k =  n  i − 1   + 1 ,  n  i − 1   + 2 , ⋯ ,  n i  − 1 )  ,  








then


      ∑  k =  n  i − 1      n i  − 1     d (  x k  ,  x  k + 1   )   g ( d  (  x 0  ,  x k  )  )      ≥     ∑  k =  n  i − 1      n i  − 1     d (  x k  ,  x  k + 1   )   g ( d  (  x 0  ,  x  n  i − 1    )  )   ≥   d (  x  n  i − 1    ,  x  n i   )   g ( d  (  x 0  ,  x  n  i − 1    )  )         ≥      d  (  x 0  ,  x  n i   )  − d  (  x 0  ,  x  n  i − 1    )    g ( d  (  x 0  ,  x  n  i − 1    )  )   ≥  ∫  d (  x 0  ,  x  n  i − 1    )   d (  x 0  ,  x  n i   )    1  g ( s )   d s     








which implies


     α >  ∑  n = 0  ∞    d (  x n  ,  x  n + 1   )   g ( d  (  x 0  ,  x n  )  )   ≥  ∫  0   d (  x 0  ,  x ε  )    1  g ( s )   d s >  ∫  0  l   1  g ( s )   d s = α ,     








a contradiction.



This completes the proof of conclusion (c). □





If there exists   φ : X →  R +    such that   f ( x , y ) = φ ( y ) − φ ( x )  , we have the following corollary.



Corollary 1.

Let   ( X , d )   be a complete metric space,   C ⊂ X   be a closed set,    x 0  ∈ C   fixed and   φ : C →  R +    be a bounded from below and lower semi-continuous mapping,   g : [ 0 , + ∞ ) → ( 0 , + ∞ )   be a continuous nondecreasing function such that


    ∫  0   + ∞    1  g ( s )   d s = m ,  ( 0 < m ≤ + ∞ )    











If and   ε > 0  ,   0 < α < m   satisfy


   φ  (  x 0  )  ≤  inf  x ∈ C   φ + α ε ,   











then there exists   x ε   such that








	(a)

	
  φ  (  x ε  )  ≤ φ  (  x 0  )   ;




	(b)

	
  φ  ( x )  > φ  (  x ε  )  −  ε  g ( d  (  x 0  ,  x ε  )  )   d  ( x ,  x ε  )   ∀ x ∈ C  w i t h  x ≠  x ε   ;




	(c)

	
  d (  x 0  ,  x ε  ) ≤ l  ;









where l satisfies


    ∫  0  l   1  g ( s )   d s = α   













Remark 1.

Corollary 1 can be seen as an extension of Theorem 2.1 in [8].






3. Applications


As applications of Theorem 4, we first discuss the existence of equilibrium point for a bi-function.



By an equilibrium problem (abbrev. EP), we understand the problem of finding


   x ¯  ∈ X  s u c h  t h a t  f  (  x ¯  , x )  ≥ 0  , ∀ x ∈ C .  








where C is a given subset of a metric space X and   f : C × C → R   is a given bi-function.



Theorem 5.

Let   ( X , d )   be a complete metric space,   C ⊂ X   be a compact set. Assume   f : C × C → R   satisfies








	(i)

	
  f ( x , · )   is bounded from below and lower semi-continuous, for every   x ∈ C  ;




	(ii)

	
  f ( z , z ) = 0  , for every   z ∈ C  ;




	(iii)

	
  f ( z , x ) ≤ f ( z , t ) + f ( t , x )   for every   x , t , z ∈ C  ;




	(iv)

	
  f ( · , y )   is upper semi-continuous, for every   y ∈ C  .









Then, the equilibrium problem (EP) has a solution.





Proof. 

Let   g ( s ) ≡ 1  . It is a continuous nondecreasing function such and


   ∫  0   + ∞    1  g ( s )   d s = + ∞  











Let    x 0  ∈ C   be fixed, for every    ε n  =  1 n    and   α = n ( b − 1 )  , where   b =  inf  z ∈ C   f  (  x 0  , z )   . Then, by Theorem 4 (b), there exists    x n  ∈ C   such that


  f  (  x n  , x )  +  1 n  d  (  x n  , x )  ≥ 0 , ∀ x ∈ C  











Due to compactness of C, there is a subsequence   {  x  n k   }   of   {  x n  }   which is convergent, i.e., there exists    x ¯  ∈ C  , such that


   lim  k → ∞    x  n k   =  x ¯  .  











Hence, we have


  f  (  x ¯  , x )  ≥  lim  k → ∞   sup  [ f  (  x  n k   , x )  +  1  n k   d  (  x  n k   , x )  ]  ≥ 0 , ∀ x ∈ C  











This implies that   x ¯   is a solution to the equilibrium problem (EP). □





Then, we establish the following Caristi type fixed point theorem.



Theorem 6.

Let   ( X , d )   be a complete metric space,    x 0  ∈ X   fixed, and   φ : X →  R +    be a bounded from below and lower semicontinuous mapping,   g : [ 0 , + ∞ ) → ( 0 , + ∞ )   be a continuous nondecreasing function such that


    ∫  0   + ∞    1  g ( s )    d s = m   











where   m ∈  R +  ⋃  { + ∞ }   .





If a mapping   K : X → X   satisfies: for some   ε > 0  ,


    ε d ( x , K ( x ) )   g ( d  (  x 0  , x )  )   ≤ φ  ( x )  − φ  ( K  ( x )  )    ∀ x ∈ X ,  



(4)




then K has a fixed point in X.



Proof. 

Let   f ( x , y ) = φ ( y ) − φ ( x ) , C = X  . By the proof of Theorem 4, for each   ε > 0  , there exists a sequence     {  x n  }   n ∈ N   ⊂ X   and    x ε  ∈ X  , such that    x n  →  x ε    as   n → ∞   and


  φ  ( x )  > φ  (  x ε  )  −  ε  g ( d  (  x 0  ,  x ε  )  )   d  ( x ,  x ε  )   ∀ x ∈ C , x ≠  x ε   



(5)







In what follows, we will prove that   x ε   is a fixed point of K.



Conversely, suppose that    x ε  ≠ K  (  x ε  )   . Let   x = K (  x ε  )   and substitute it into (5), we find


  φ  ( K  (  x ε  )  )  ≥ φ  (  x ε  )  −  ε  g ( d  (  x 0  ,  x ε  )  )   d  ( K  (  x ε  )  ,  x ε  )  .  



(6)




Taking   x ε   instead of x in (4), we have that


    ε d (  x ε  , K  (  x ε  )  )   g ( d  (  x 0  ,  x ε  )  )   ≤ φ  (  x ε  )  − φ  ( K  (  x ε  )  )   



(7)







Combing the inequalities (6) with (7), we know


    ε d (  x ε  , K  (  x ε  )  )   g ( d  (  x 0  ,  x ε  )  )   ≤ φ  (  x ε  )  − φ  ( K  (  x ε  )  )  <   ε d (  x ε  , K  (  x ε  )  )   g ( d  (  x 0  ,  x ε  )  )    








which is a contradiction.



Thus    x ε  = K  (  x ε  )   , i.e.,   x ε   is a fixed point of K. □
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