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Abstract: The paper deals with multiplayer normal form games which are preceded by a ‘preplay
negotiation phase’ consisting of exchange of preplay offers by players for payments of utility to other
players conditional on them playing designated in the offers strategies. The game-theoretic effect of
such preplay offers is a transformation of the payoff matrix of the game, obtained by transferring
the offered payments between the payoffs of the respective players; thus, certain groups of game
matrix transformations naturally emerge. The main result is an explicit and rather transparent
algebraic characterization of the possible transformations of the payoff matrix of any given N-
person normal form game induced by preplay offers for transfer of payments. That result can be
used to describe the ‘bargaining space’ of the game and to determine the mutually optimal game
transformations that rational players can achieve by exchange of preplay offers.

Keywords: normal form games; preplay offers; game transformations; groups of game matrix
transformations

MSC: 91A05; 91A06; 91A10; 15A30; 15B99

1. Introduction

Some normal form games have no pure strategy Nash equilibria, while others, such
as the Prisoners’ Dilemma, have rather unsatisfactory ones, i.e., they are strongly Pareto-
dominated. Sometimes, more mutually beneficial outcomes can be achieved if players
could communicate before the play of the game, to make binding offers for payments
of bonuses to other players to provide additional incentives for them to play as desired
by offering players strategies. More precisely, I assume the possibility that before playing
the game, any player A can make a binding offer to any other player B to pay them. After the game
is played, a declared amount of utility δ is awarded if B plays strategy s, as specified in the offer
by A.

Every player can make several such preplay offers (possibly to different players), and
I only consider offers contingent on pure strategies, even though players can still play
mixed strategies. Any preplay offer of player A is binding and irrevocable for A, and it is
contingent on B playing the strategy specified by A. However, such an offer does not create
any obligation for B (and, therefore, does not transform the game into a cooperative one),
as B remains free to choose their strategy when the game is actually played. The key
point here is that every preplay offer transforms the given normal form game into another one by
an explicitly defined transformation of the payoff matrix.

By exchanging preplay offers of payments, the players create a preliminary negotia-
tion phase essentially structured as an extensive-form bargaining game. Such scenarios
arise in a wide spectrum of economic, social, and political situations, such as collusions,
compensations, incentives, concessions, compromises, and other kinds of deals in economic
and political negotiations, out-of-court settlements of legal cases, and corruption schemes.
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Abstract: Factor analysis is one of the most important statistical tools for analyzing multivariate
data (i.e., items) in the social sciences. An essential case is the comparison of multiple groups on a
one-dimensional factor variable that can be interpreted as a summary of the items. The assumption
of measurement invariance is a frequently employed assumption that enables the comparison of the
factor variable across groups. This article discusses different estimation methods of the multiple-
group one-dimensional factor model under violations of measurement invariance (i.e., measurement
noninvariance). In detail, joint estimation, linking methods, and regularized estimation approaches
are treated. It is argued that linking approaches and regularization approaches can be equivalent to
joint estimation approaches if appropriate (robust) loss functions are employed. Each of the estimation
approaches defines identification constraints of parameters that quantify violations of measurement
invariance. We argue in the discussion section that the fitted multiple-group one-dimensional
factor analysis will likely be misspecified due to the violation of measurement invariance. Hence,
because there is always indeterminacy in determining group comparisons of the factor variable
under noninvariance, the preference of particular fitting strategies such as partial invariance over
alternatives is unjustified. In contrast, researchers purposely define fitting functions that minimize
the extent of model misspecification due to the choice of a particular (robust) loss function.

Keywords: multiple groups; confirmatory factor analysis; measurement invariance; one-dimensional
factor model; loss function; misspecification; linking; regularization; structural equation modeling;
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1. Introduction

Factor analysis is one of the most important statistical tools for analyzing multivariate
data (i.e., items) in the social sciences [1,2]. An important case is the comparison of multiple
groups on a one-dimensional factor variable that can be interpreted as a summary of
the multivariate input data. To enable a comparison on the factor variable, identification
constraints for model estimation must be posed [3–5].

A popular and heavily discussed identification is the assumption of measurement
invariance (MI, [6,7]) that assumes the existence of invariant (i.e., equal) item parameters
across groups. Noninvariant item parameters occur if not all parameters are equal across
groups. Practitioners and applied methodologists frequently claim that MI or only weak
violations of MI (i.e., partial invariance) are necessary to enable group comparisons on the
factor variable [8–10]. In this article, we discuss different estimation methods of the one-
dimensional factor model and their implied identification constraints in the violation of MI.
In more detail, we focus on joint estimation (maximum likelihood estimation), linking ap-
proaches (Haberman linking, invariance alignment), and regularized estimation (lasso-type
regularization, fused regularization, Bayesian approximate invariance). We derive identifi-
cation constraints on parameters that quantify violations of MI under different estimation
methods. By doing so, it turns out that joint estimation, linking, and regularization can
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be interpreted quite similarly under certain specifications. Therefore, this work discusses
competing approaches for handling violations of measurement invariance in a unified
framework and provides conditions for which these approaches can provide similar results.
We also try to convince the reader that there cannot be a right choice of an approach on
how to handle measurement invariance because an overidentified minimization problem is
made identifiable to selecting a fitting function. We derive implied identification constraints
by the different fitting functions and discuss the similarity in the sequel of this article.

The article is structured as follows: In Section 2, we discuss two important one-
dimensional factor models and their estimation: the tau-equivalent and the tau-congeneric
measurement model. In Section 3, the tau-equivalent model with noninvariant item in-
tercepts. Section 4 treats the tau-congeneric model with noninvariant item intercepts and
invariant item loadings, while Section 5 also allows noninvariant item loadings. Finally,
Section 6 closes with a discussion.

2. One-Dimensional Factor Model

Assume that there are I random variables X1, . . . , XI . These variables are also referred
to as items. Denote by X = (X1, . . . , XI) the vector of all items. Denote by µ = E(X) the
vector of means containing the entries E(Xi) and by Σ = Var(X) the covariance matrix
containing entries σij = Cov(Xi, Xj) for i 6= j. In one-dimensional factor analysis, we
represent the I items by a one-dimensional factor variable F. Hence, the covariances
among items are presented by a rank-one matrix. In the following, we discuss two main
measurement models of one-dimensional factor analysis: the tau-equivalent and the tau-
congeneric models [11–14].

2.1. Tau-Equivalent Model

We now assume a one-dimensional factor F in the tau-equivalent model [14]:

Xi = νi + F + εi , Var(εi) = φ ,

where the residuals εi are uncorrelated. Note that it is assumed that there are equal loadings
λ and equal residual variances θ, while item intercepts νi are item-specific parameters. For
identification, we assume E(F) = 0 and ψ = Var(F) is estimated. Denote by I the I × I
identity matrix and by 1 an I × 1 vector of ones. Then, the covariance matrix Σ of the items
X is represented by a model-implied covariance matrix Σ0

Σ0 = ψ11> +φI .

Note that the covariance matrix is parsimoniously represented by only two parameters.
The mean vector µ = E(X) = ν is estimated without constraints.

2.2. Tau-Congeneric Model

In the tau-congeneric measurement model [11], item-specific loadings and item-
specific residual variances are allowed:

Xi = νi + λiF + εi , Var(εi) = φi ,

where residuals εi are uncorrelated across items. Denote by λ = (λ1, . . . , λI) the vector
of item loadings λi and Φ = diag(φ1, . . . ,φI) the diagonal matrix containing residual
variances φi. For reasons of identification, we set E(F) = 0 and Var(F) = 1. The covariance
matrix Σ is modelled as

Σ0 = λλ> +Φ .

2.3. Overview of Estimation Methods

The tau-equivalent and the tau-congeneric model are special cases of structural equa-
tion models that impose restrictions on the mean vector and the covariance matrix [15].
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In maximum likelihood (ML) estimation assuming multivariate normality of X, the empiri-
cal mean vector x and empirical covariance matrix S are sufficient statistics. We denote by
θ the vector of all estimated parameters and define the fitting function

FML(θ; x, S) = −N
2

(
−I log(2π) + log|Σ0(θ)|+ tr(SΣ0(θ)

−1) + (x− µ0(θ))
>Σ0(θ)

−1(x− µ0(θ))
)

. (1)

In this article, we are only concerned with the statistical behavior of parameter esti-
mates in the population (i.e., infinite large sample sizes). Then, the sample quantities x and
S are replaced by population parameters µ and Σ. The fitting function in Equation (1) can
then be rewritten as

FML(θ;µ,Σ) = −log|Σ0(θ)| − tr(ΣΣ0(θ)
−1)− (µ− µ0(θ))

>Σ0(θ)
−1(µ− µ0(θ)) .

In practice, the model-implied covariance matrix will be misspecified [16], and θ is a
pseudo-true parameter that is defined as the maximizer of the fitting function FML.

A more general class of fitting functions is weighted least squares (WLS) estimation [15].
The parameter vector θ is determined as the minimizer of

FWLS(θ;µ,σ) = (µ− µ0(θ))
>W1(µ− µ0(θ)) + (σ−σ0(θ))

>W2(σ−σ0(θ)) (2)

with known weight matrices W1 and W2. The vectors σ and σ0 contain the nonduplicated
elements from covariance matrices Σ and Σ0(θ). Diagonally weighted least squares (DWLS)
estimation results by choosing diagonal weight matrices W1 and W2. If these matrices are
identity matrices, unweighted least squares (ULS) estimation is obtained. Interestingly, the
minimization in (2) can be interpreted as a nonlinear least squares estimation problem with
sufficient statistics µ and Σ as input data [17].

It has been shown that ML estimation can be approximately written as DWLS estima-
tion [18] with particular weight matrices. DWLS can be generally written as

FDWLS(θ;µ,σ) =
I

∑
i=1

w1i(µi − µ0,i(θ))
2 +

I

∑
i=1

I

∑
j=i

w2ij(σij − σ0,ij(θ))
2 , (3)

where µi etc. indicate the corresponding elements of vectors defined in (3). In ML estima-
tion, the weights are approximately determined by w1i = 1/u2

i and w2ij = 1/(u2
i u2

j ), where

u2
i are sample unique standardized variances with u2

i = φi/σii. With smaller residual
variances φi, more trust is put on a mean µi or a covariance σij in the fitting function. This
kind of weighting seems questionable in the case of misspecified models [18].

The model deviations µi − µ0,i(θ) and σij − σ0,ij(θ) can be differently weighted by
replacing the least squares functions with robust fitting functions ρ [19,20]:

Frob(θ;µ,σ) =
I

∑
i=1

w1iρ(µi − µ0,i(θ)) +
I

∑
i=1

I

∑
j=i

w2ijρ(σij − σ0,ij(θ)) . (4)

Siemsen and Bollen [19] proposed the absolute value function ρ(x) = |x| for fitting
the factor analysis model. This fitting function is robust to a few model violations such
as unmodelled correlations of residuals εi. Alternative robust loss functions such as
ρ(x) = |x|p with 0 < p < 1 can ensure even more model-robust estimates [21].

2.4. Estimation in the Presence of Slight Model Misspecifications

We now study the behavior of the estimate θ as the minimizer of Frob in (4) (see [16,22]).
A nondifferentiable loss function ρ is substituted by a differentiable approximation
(e.g., ρ(x) = |x| is replaced by ρ(x) = (x2 + ε)1/2 for a small ε > 0; see [21]) in the
following derivation.

We investigate slight model misspecifications for the mean and the covariance struc-
tures. For the mean structure, we define residuals γi(θ) = µi − µ0,i(θ) for i = 1, . . . , I.
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Furthermore, we define δij(θ) = σij − σ0,ij(θ) 6= 0 for model deviations in the covariance
structure. The estimate θ is obtained by taking the derivative of Frob with respect to θ and
setting it to zero:

H(σ,γ, θ) =
I

∑
i=1

w1iρ
′(µi − µ0,i(θ))ai(θ) +

I

∑
i=1

I

∑
j=i

w2ijρ
′(σij − σ0,ij(θ))bij(θ) = 0 , (5)

where ai(θ) =
∂µ0,i
∂θ and bij(θ) =

∂σ0,ij
∂θ . A parameter estimate θ is obtained by computing

the root of H in Equation (5). Note that θ is a function of the mean vector µ and the stacked
covariance matrix σ.

Assume that there is a true parameter θ0 if all model deviations γi and δij would be
zero. That is, we assume

H(µ0(θ0),σ0(θ0),θ0) = 0 . (6)

Now, use the notation γ = µ− µ0(θ0) and δ = σ− σ0(θ0). A first-order Taylor
expansion of H using (6) provides

H(µ0(θ0) + γ,σ0(θ0) + δ,θ) ' Hµ(µ0(θ0))γ+ Hσ(σ0(θ0))δ+ Hθ(θ0)(θ− θ0) = 0 , (7)

where Hµ(µ0(θ0)) =
(

∂H
∂µ

)∣∣∣
µ=µ0(θ0)

, Hσ(σ0(θ0)) =
(

∂H
∂σ

)∣∣∣
σ=σ0(θ0)

and

Hθ(θ0) =
(

∂H
∂θ

)∣∣∣
θ=θ0

. Note that we suppress arguments in Hµ, Hσ and Hθ in our abbre-

viated notation. Using the approximation (7), we obtain

θ = θ0 − H−1
θ (θ0){Hµ(µ0(θ0))γ+Hσ(σ0(θ0))δ} . (8)

Model deviations γ and δ enter the computation according to

Hµ(µ0(θ0))γ+Hσ(σ0(θ0))δ =
I

∑
i=1

w1iρ
′′(γi)ai(θ0)γi +

I

∑
i=1

I

∑
j=i

w2ijρ
′′(δij)bij(θ0)δij . (9)

When using the square loss function ρ(x) = x2 in ULS estimation, ρ′′(x) = 2 and
all model deviations contribute equally in the adapted parameter estimate θ. In contrast,
when using a robust loss function ρ(x) = |x|p for p ≤ 1, model deviations γi and δij are
differentially weighted according to ρ′′(γi) and ρ′′(δij) in Equation (9), respectively [21].

The result in Equation (8) highlights that model deviations γ and δ enter the computation
of the model parameter θ. With suitable loss function ρ, the influence of model deviations can
be reduced if the second derivative ρ′′ is sufficiently small for gross model misspecifications.

3. Group Comparisons in the Tau-Equivalent Model with Noninvariant Item Intercepts

Suppose that there are a fixed number of G groups. In each of the G groups, there
exists a mean vector µg = (µ1g, . . . ,µIg) and a covariance matrix Σg = (σijg)ij for items
Xg = (X1g, . . . , XIg). A latent variable Fg in a one-dimensional factor model summarizes
the distribution of items in each group g = 1, . . . , G. Define αg = E(Fg) and ψg = Var(Fg).
In the sequel, we discuss the identification of αg and ψg for various fitting functions (i.e.,
estimation methods).

We now model the mean structure µg and the covariance structure Σg with the tau-
equivalent one-dimensional factor model in each group g. By assuming the identification
constraint E(Fg) = 0 and estimating ψg = Var(Fg), this poses restrictions

µg = νg and Σg = ψg11> +φgI . (10)

It can be seen from (10) that the mean structure is estimated without constraints, while
severe constraints on the covariance structure are imposed.

If the mean αg and the variance ψg of the factor variable Fg should also be determined
in each group for enabling a comparison of the factor variable Fg across groups, additional
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identification constraints have to be posed. This can be seen by including these parameters
in Equation (10)

µg = αg1 + νg and Σg = ψg11> +φgI . (11)

A popular identification constraint is to assume invariant item intercepts ν0 across
groups. In this case of MI, (11) simplifies to

µg = αg1 + ν0 and Σg = ψg11> +φgI . (12)

The group means and group variances can be identified by assuming α1 = 0. The
condition (12) can be characterized as scalar invariance [7]. The MI assumption (12) can
be statistically tested [7]. If the MI hypothesis (12) is not rejected, αg and ψg can be
uniquely determined. In the violation of MI (i.e., measurement noninvariance; MNI), there
is indeterminacy in defining group means and group variances. Identification constraints
are implicitly posed by assuming particular fitting functions. We discuss several alternative
fitting functions and draw relations among the different approaches below. In the following
treatment, we allow group-specific item intercepts in the data-generating model:

µg = αg1 + ν0 + ν∗g and Σg = ψg11> +φgI . (13)

The group-specific item intercepts ν∗g are residuals that describe differences from
the common item intercepts ν0. Hence, violation of MI (i.e., MNI) is represented in ν∗g.
Condition (13) is also characterized as metric invariance [7].

3.1. Joint Estimation

In joint estimation, group means, group variances and common item parameters are
estimated. However, MNI effects are not explicitly modeled as additional parameters.
Group-specific means µg and covariances Σg are used for determining the vector of model
parameters θ = (ν0,α2, . . . ,αG,ψ1, . . . ,ψG,φ1, . . . ,φG). In Section 2.3, it was argued that
many estimation methods like ML estimation could be (approximately) characterized as
DWLS estimation. DWLS uses the square loss function, but one can stick to the more
general case of a loss function ρ (see Equation (4)). Using a set of known weights w1ig and
w2ijg for i, j = 1, . . . , I and g = 1, . . . , G, the following fitting function is minimized:

F(θ) =
G

∑
g=1

I

∑
i=1

w1igρ(µig − µ0,ig(θ)) +
G

∑
g=1

I

∑
i=1

I

∑
j=i

w2ijgρ(σijg − σ0,ijg(θ)) . (14)

Note that the order in the summation in (14) across groups (index g) and items (indices
i and j) can be swapped. The model assumption (13) for µ0,ig(θ) and σ0,ijg(θ) can be
included in (14), and we obtain

F(θ) =
G

∑
g=1

I

∑
i=1

w1igρ(µig − αg − ν0i) +
G

∑
g=1

I

∑
i=1

I

∑
j=i

w2ijgρ(σijg −ψg −φg1{i=j}) , (15)

where 1A denotes the indicator function for a set A. Because of the invariance assumption
for item loadings in (13), the second term in (15) will be exactly zero and ψ1 . . . ,ψG ,
φ1, . . . ,φG can be uniquely determined by data. One can choose ψg = σijg for any i 6= j.
Then, φg = σiig −ψg for any i. The group means αg and common item intercepts ν0,i can
be estimated by minimizing

F1(θ) =
G

∑
g=1

I

∑
i=1

w1igρ(µig − αg − νi0) . (16)
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It can be seen that (16) corresponds to an analysis of variance model in which the
two-way data µig for items i = 1, . . . , I and groups g = 1, . . . , G is represented by two sets
of main effects αg and ν0i [23]. For item intercepts νi0, we obtain estimating equations

∂F1

∂νi0
= −

G

∑
g=1

w1igρ
′(µig − αg − νi0) = 0 for i = 1, . . . , I . (17)

For group means αg, we similarly obtain

∂F1

∂αg
= −

I

∑
i=1

w1igρ
′(µig − αg − νi0) = 0 for g = 2, . . . , G . (18)

Due to the assumption (13), we have µig − αg − νi0 = ν∗ig for the group-specific item
intercepts. Hence, it follows from (18) that

I

∑
i=1

w1igρ
′(ν∗ig) = 0 for all g = 2, . . . , G . (19)

From (17), we get
G

∑
g=1

I

∑
i=1

w1igρ
′(µig − αg − νi0) = 0 . (20)

From (19) and (20), we finally obtain

I

∑
i=1

w1igρ
′(ν∗ig) = 0 for all g = 1, . . . , G . (21)

The finding in Equation (21) demonstrates that there is an assumption of group-specific
residual item intercepts ν∗ig when fitting a multiple group factor model under violation of
MI. Hence, group means ψg depend on choosing sets of weights w1ig and a loss function ρ.

When choosing w1ig ≡ 1, the condition of partial invariance (PI; [24]) is received for
the loss function ρ(x) = |x|p for p → 0 which takes the value of 0 iff x = 0 and 1 for
x 6= 0. In PI, it is typically assumed there is a subset of items for which ν∗ig0 6= 0 (i.e.,
ρ(ν∗ig0) = 1). For the majority of items, it holds that ν∗ig0 = 0 (i.e., ρ(ν∗ig0) = 0). The loss
function in (16) then minimizes the number of group-specific residual item intercepts that
differ from zero [25].

3.2. Linking

In linking methods [26], the one-dimensional factor model is firstly estimated in each
of the groups. In the tau-equivalent model, the group variance ψg can be identified, but
the group-specific estimation only provides identified item intercepts νig that are given as
(see (13))

νig = αg + νi0 + ν
∗
ig .

Note that item intercepts νig coincide with group-specific item means µig = E(Xig).
In a second step in the linking approach, the intercepts are used to determine group

means αg and common item intercepts νi0 [21]. By defining θ = (α2, . . . ,αG,ν10, . . . ,νI0),
a linking function H defined by

H(θ) =
G

∑
g=1

I

∑
i=1

w1igρ(νig − αg − νi0) (22)

using some set of weights w1ig that are chosen equal to one in many applications. Again,
the order in the summation in (22) across groups (index g) and items (indices i and j)
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can be swapped. The linking function in (22) can be considered as Haberman linking
(HL; [21,27,28]). In [28], the loss function ρ(x) = x2 was used while [21] treated the
robust loss function ρ(x) = |x|p for p ∈ [0, 2]. Note that for the tau-equivalent model,
the minimization problem (22) is exactly the same as the minimization problem (16) in
joint estimation. This is trivial because the item intercepts coincide with the observed
group-specific item means and if the covariance structure is correctly specified. Hence, the
same condition as in (21) for group-specific residual item intercepts ν∗ig.

An alternative linking approach has been proposed that avoids estimating common
item intercepts νi0. In invariance alignment (IA; [29]), the following function G is minimized
for determining θ = (α2, . . . ,αG) while setting α1 = 0:

G(θ) =
G

∑
g=1

H

∑
h=1

I

∑
i=1

w1igw1ihρ(νig − νih − αg + αh) , (23)

where the loss function ρ(x) = |x|p for p ≥ 0 is utilized [21,30]. The power p = 0.5 is
most frequently chosen because it is the default in the software package Mplus [30]. It
was empirically found that the IA minimization in (23) provides very similar group mean
estimates as the minimization in (22) that also involves the estimation of common item
intercepts [21]. Indeed, the loss function ρ(x) = |x|p is a subadditive function for p ≤ 1 [31]
which means that

ρ(x + y) ≤ ρ(x) + ρ(y) for all x, y ∈ R . (24)

By defining x = νig − αg − νi0 and y = −(νih − αh − νi0), we get from (23) by
using (24)

G(θ) ≤
G

∑
g=1

I

∑
i=1

w̃1igρ(νig − αg − νi0) = H̃(θ) , (25)

where the weights w̃1ig are defined as

w̃1ig = 2w1ig

G

∑
h=1

w1ih . (26)

Hence, the majorizing function H̃ in (25) is exactly given by the minimization function
H in (22) when using properly defined weights w̃1ig but the same loss function ρ. As a
conclusion, joint estimation and linking methods can be regarded as exchangeable in the
tau-equivalent model. They pose the same identification constraints on group-specific
residual item intercepts.

Note that the two-step linking approach can be rewritten as a one-step estimation ap-
proach with overidentified parameters. Identification is ensured by posing side constraints
implied by the linking function [32]. A joint optimization problem can be formulated by
using Lagrange multipliers. Assume that there are associated weights w∗1ig with group-
wise ML estimation and different weights wig in the linking method. Suppose that we
parametrize νig = νi0 +αg + ν̃ig. The reformulated one-step fitting function FLagrange using
Lagrange multipliers `1g and `2i of the two-step linking approaches is given by (see [32])

FLagrange(θ) =
G

∑
g=1

I

∑
i=1

w∗1ig(µig − αg − νi0 − ν̃ig)
2 +

G

∑
g=2

`1g

I

∑
i=1

w1igρ
′(ν̃ig) +

I

∑
i=1

`2i

G

∑
g=1

w1igρ
′(ν̃ig) , (27)

where θ now also includes the G− 1 + I Lagrange multipliers `1g and `2i. Note that the
second and third term in (27) corresponds to estimating equations obtained from the linking
method by determining group means αg and common item intercepts νi0.
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3.3. Regularization

MNI has also been tackled by regularization methods [33–35]. The main idea is to intro-
duce nonidentified group-specific residual item intercepts ν̃ig in ML estimation. The estima-
tion problem becomes identifiable by adding a penalty function P to the negative likelihood
function [36]. Again, the covariance structure is assumed to be correctly specified. The esti-
mated model parameters are collected in the vector θ = (ν10, . . . ,ν1I ,α2, . . . ,αG, . . . , ν̃ig, . . .).
Using the result (3), the fitting function can be approximately written

Freg(θ) =
G

∑
g=1

I

∑
i=1

w1ig(µig − αg − νi0 − ν̃ig)
2 +

G

∑
g=1

I

∑
i=1
P(κ, ν̃ig) , (28)

where κ > 0 is a tuning parameter. A popular penalty function is the lasso penalty
P(κ, x) = κ|x|, but alternative lasso-type penalty functions with similar behavior to the
former one around x = 0 but more desirable statistical properties have been proposed [36].
Alternatively, the ridge penalty P(κ, x) = κx2 can be used that controls the variability of
effects od MNI.

When using lasso-type penalty functions, the residual intercepts ν̃ig can be interpreted
as outliers. Indeed, for the lasso penalty, it has been shown that the minimization of Freg in
(28) using regularization is equivalent to robust regression with outlier detection [37,38]. By
defining θ̃ = (ν10, . . . ,ν1I ,α2, . . . ,αG) and an appropriate loss function ρ̃, the minimization
problem (28) can be rewritten as

Frob(θ̃) =
G

∑
g=1

I

∑
i=1

w1igρ̃(µig − αg − νi0) ,

Hence, regularized ML estimation can be equivalently recognized as joint estimation
using a particular loss function that enables the efficient detection of outliers.

We now characterize the solution of (28) in more detail. From the behavior of the
lasso penalty it is reasonable to assume that estimated residual item intercepts ν̃ig = 0
equal zero iff |ν∗ig| < κ holds for true residual item intercepts ν∗ig. On the other hand, we
can assume that ν̃ig = ν∗ig iff |ν∗ig| > κ. For determining the group mean αg, we get the
estimating equation

∂Freg

∂αg
= −2

I

∑
i=1

w1ig(µig − αg − νi0 − ν̃ig) = 0 . (29)

By relying on the just mentioned properties for estimated residual item intercepts ν̃ig,
we obtain the condition

I

∑
i=1

w1igν
∗
ig1{|ν∗ig |<κ} = 0 for all g = 1, . . . , G . (30)

The result in (30) indicates the MNI cancels out on average for small effects ν∗ig that
fulfill |ν∗ig| < κ. Note that this set of effects is implicitly estimated in regularized ML.

In the case of a general penalty function P , define P1 = ∂P
∂x . Note that we replace

a nondifferentiable penalty function with a differentiable approximation P [33,39]. For
determining the group mean αg, the condition (29) does not change. For determining ν̃ig,
we get the estimating equation

−w1ig(µig − αg − νi0 − ν̃ig) + P1(κ, ν̃ig) = −w1ig(ν
∗
ig − ν̃ig) + P1(κ, ν̃ig) = 0 . (31)
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By using (31), there exists a functionQ such that ν̃ig = Q(ν∗ig). Moreover, by summing
(31) across items i = 1, . . . , I, we receive

I

∑
i=1

{
−w1ig(ν

∗
ig − ν̃ig) + P1(κ, ν̃ig)

}
= 0 .

Because (29) holds, we get

I

∑
i=1

w1ig(ν
∗
ig − ν̃ig) = 0 and

I

∑
i=1
P1(κ, ν̃ig) = 0 .

This means that estimated effects ν̃ig = Q(ν∗ig) somehow vanish on average according
to their contribution in P1.

Instead of introducing group-specific residual item intercepts ν∗ig in regularized ML es-
timation, one can employ fused regularized ML estimation [40] that relies on overidentified
group-specific item intercepts ν̆ig. The fitting function is fused regularized ML is defined as

Ffusedreg(θ) =
G

∑
g=1

I

∑
i=1

w1ig(µig − αg − ν̆ig)
2 +

G−1

∑
g=1

G

∑
h=g+1

I

∑
i=1
P(κ, ν̆ig − ν̆ih) . (32)

In this case, the parameter vector θ does not include common item intercepts ν0. The
nonidentification issue of ML estimation is solved by defining a penalty function P on
deviations ν̆ig− ν̆ih. By using lasso-type penalty functions in (32), clusters of ν̆ig coefficients
will be obtained. If there are only a few outlying parameters for each item, estimated group
means αg from fused regularized ML using the fitting function in (32) will often be similar
to those in regularized ML estimation using the fitting function in (28).

Another popular approach to handling MNI is the Bayesian approximate measure-
ment invariance model (BAMI; [41–43]). The tau-equivalent model is estimated with an
overidentified parameter vector that includes all item intercepts νig. To ensure the iden-
tification of the model, a normal prior with known variance on all pairwise deviations
νig − νih is posed. The normal prior distribution on νig − νih can be regarded as a ridge
penalty function of the form κ̃(νig − νih)

2 (see, e.g., [44]). Hence, BAMI can be recognized
as fused regularized ML estimation with a particular penalty function in (32).

Interestingly, Battauz [39] showed for regularized estimation in the four-parameter
item response model that the ridge penalty on differences νig − νih can be rewritten as a
penalty for residual item intercepts ν̃ig = νig − νi0:

κ̃
G

∑
g=1

H

∑
h=1

I

∑
i=1

(νig − νih)
2 = κ

G

∑
g=1

I

∑
i=1
ν̃2

ig

using an appropriate tuning parameter κ. By replacing the Markov chain Monte Carlo
estimation method of the BAMI model with regularized ML estimation, we obtain the
fitting function

FBAMI(θ) =
G

∑
g=1

I

∑
i=1

w1ig(µig − αg − νi0 − ν̃ig)
2 + κ

G

∑
g=1

I

∑
i=1
ν̃2

ig ,

which is regularized ML estimation using a ridge penalty function. For determining group
means αg, we get the estimating equation

I

∑
i=1

w1ig(µig − αg − νi0 − ν̃ig) = 0 . (33)
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For determining ν̃ig, we get

−w1ig(µig − αg − νi0 − ν̃ig) + κν̃ig = 0

Hence, the estimated group-specific residual item intercepts are shrunken estimates of ν∗ig

ν̃ig =
w1ig

w1ig + κ
(µig − αg − νi0) =

w1ig

w1ig + κ
ν∗ig (34)

that fulfill ∑I
i=1 ν̃ig = 0. By using (34), we get from (33)

I

∑
i=1

w1ig(ν
∗
ig − ν̃ig) =

I

∑
i=1

κw1ig

w1ig + κ
ν∗ig = 0 .

With equal weights w1ig for all items within a group g, this shows that BAMI and ML
pose the same identification constraints on ν∗ig; that is, ∑I

i=1 ν
∗
ig = 0.

A variant of IA has been proposed that uses the output of BAMI for determining
the alignment solution [45–47]. BAMI produces adjusted group-specific item means
µ̃ig = αg + νi0 + ν̃ig, which are subsequently used as input data for Bayesian IA.
Note that

µ̃ig = αg + νi0 + ν̃ig = µig + ν̃ig − ν∗ig = µig −
κ

w1ig + κ
ν∗ig . (35)

We now substitute the quantity µ̃ig obtained in (35) in the IA fitting function (see (25)
and weights w̃1ig defined in (26)):

H̃(θ) =
G

∑
g=1

I

∑
i=1

w̃1igρ(µ̃ig − αg − νi0) =
G

∑
g=1

I

∑
i=1

w̃1igρ

(
µig −

κ

w1ig + κ
ν∗ig − αg − νi0

)
.

The estimating equation for αg is then given by

I

∑
i=1

w̃1igρ
′
(
µig −

κ

w1ig + κ
ν∗ig − αg − νi0

)
= 0 .

Using the definition µig = αg + νi0 + ν
∗
ig, we get the identification constraint

I

∑
i=1

w̃1igρ
′
(

w1ig

w1ig + κ
ν∗ig

)
=

I

∑
i=1

w̃1igρ
′(ν̃ig) = 0 . (36)

When equal weights w1ig (and w̃1ig) are used in (36), the identification constraints
∑I

i=1 ρ
′(ων∗ig) = 0 with a scaling factor ω > 0 are obtained. For ρ(x) = x2, it holds that

ρ′(x) = 2x, and we receive the same identification constraints as those obtained with ULS
estimation or DWLS estimation with equal weights.

4. Group Comparisons in the Tau-Congeneric Model with Noninvariant Item Intercepts

In the following, we discuss group comparisons in the tau-congeneric model. We
investigate the consequences of MNI in item intercepts but assume MI in item loadings;
that is, item loadings are invariant, and metric invariance holds [6,7]. It will be shown that
the derivations of the tau-equivalent model only have slightly to be modified.

For the following examinations, we assume common loadings λ0 where the first
loading λ10 is fixed to 1 for reasons of identification in the data-generating model

µg = αgλ0 + ν0 + ν∗g and Σg = ψgλ0λ
>
0 +Φg ,

where Φg is a diagonal matrix of group-specific residual variances. Violation of MI only per-
tains to the mean structure due to the presence of group-specific residual item intercepts ν∗g.
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4.1. Joint Estimation

In the joint estimation of the tau-congeneric measurement model, the parameter of
interest is given as θ = (ν0,λ0,α2, . . . ,αG,ψ1, . . . ,ψG,φ1, . . . ,φG), where φg include the
diagonal entries of Φg. The general fitting function is defined by

F(θ) =
G

∑
g=1

I

∑
i=1

w1igρ(µig − αgλi0 − ν0i) +
G

∑
g=1

I

∑
i=1

I

∑
j=i

w2ijgρ(σijg −ψgλi0λj0 −φig1{i=j}) . (37)

Because the covariance structure is correctly specified, common item loadings λ0 and
group-specific residual variance matrices Φg can be uniquely determined by minimizing
the second term in (37). Hence, for determining group means αg, only the first term in (37)
must be considered, which results in a fitting function

F1(θ) =
G

∑
g=1

I

∑
i=1

w1igρ(µig − αgλi0 − ν0i) . (38)

Similar to Equation (21) in Section 3.1, we get the identification constraints by taking
the same steps as in Section 3.1

I

∑
i=1

w1igλi0ρ
′(ν∗ig) = 0 for all g = 1, . . . , G . (39)

Comparing (39) with (21), it is vital that the common item loadings λi0 now also enter
the identification constraint (see also [48]).

4.2. Linking

We now investigate HL in the tau-equivalent model [21] (see [48] for a similar ap-
proach). Again, identified parameters (i.e., item intercepts νig and item loadings λig) are
firstly obtained in group-wise estimations

νig = αgλi0 + νi0 + ν
∗
ig and λig = ψ1/2

g λi0 . (40)

From (40) and assuming λ10 = 1 for the first item for reasons of identification, it
can be seen that all group variances ψg can be uniquely identified. Obviously, we get
ψg = λ2

1g. For determining group means αg, we define a linking function H for the parame-
ter θ = (νi1, . . . ,νI0,ψ2, . . . ,ψG) of interest:

H(θ) =
G

∑
g=1

I

∑
i=1

w1igρ(νig − αgλi0 − νi0) (41)

Like in Section 3.2, it can be seen that the minimization problem in (41) corresponds to
the problem in (38). Hence, the same identification constraints as in (39) are obtained.

As also discussed in Section 3.2, one can also argue that IA appears very similar to the
linking problem in (41) and therefore resembles joint estimation by using an appropriate
loss function ρ.

4.3. Regularization

The fitting function for the mean structure of regularized ML estimation for the tau-
congeneric model with invariant item loadings can be written as

Freg(θ) =
G

∑
g=1

I

∑
i=1

w1ig(µig − αgλi0 − νi0 − ν̃ig)
2 +

G

∑
g=1

I

∑
i=1
P(κ, ν̃ig) . (42)
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Similar arguments like in Section 3.3 can be made for demonstrating the equivalence
of regularized ML estimation using (42) and joint estimation using a robust loss function ρ
(see (38)).

Similar findings as in Section 3.3 regarding the equivalence of fused regularized ML
estimation and BAMI can be made. The similarity of linking methods and regularized ML
estimation was also pointed out by [48] in item response models for dichotomous items.

5. Group Comparisons in the Tau-Congeneric Model with Noninvariant Item Intercepts
and Noninvariant Item Loadings

Finally, we consider the estimation of the tau-congeneric measurement model. The data-
generating model allows for noninvariant item intercepts and noninvariant item loadings.

Let x ◦ y be the Hadamard product (i.e., element-wise multiplication of vectors x and y).
We assume

µg = αgλ0 ◦ λ∗g + ν0 + ν∗g and Σg = ψg(λ0 ◦ λ∗g)(λ0 ◦ λ∗g)> +Φg . (43)

For entries in µg and Σg, we get from (43)

µig = αgλi0λ
∗
ig + νi0 + ν

∗
ig and σijg = ψgλi0λj0λ

∗
igλ
∗
jg +φig1{i=j} . (44)

Then, MNI is represented in λ∗g and ν∗g. Note that values of λ∗ig equal to 1 indicate MI
of a particular item parameter, while MNI is represented by values different from 1.

It is important to emphasize that deviations from MI in item loadings are modeled as
multiplicative effects. This assumption means that there is an additive representation for
logarithmized identified group-specific item loadings lig = log λig

lig = fg + li0 + l∗ig ,

where li0 = log λi0, l∗ig = log λ∗ig, and fg = 1
2 logψg. Instead of treating deviations

as multiplicative errors, one could also assume additive errors of deviations ([49], see
also [50]) such that λig = ψ1/2

g (λi0 + λ
∗
ig). In this case, the group-specific mean and covari-

ances can be written as

µig = αg(λi0 + λ
∗
ig) + νi0 + ν

∗
ig and σijg = ψg(λi0 + λ

∗
ig)(λj0 + λ

∗
jg) +φig1{i=j} . (45)

Note the difference to the parameterization in (44).
We now study the effects of MNI in intercepts and loadings in different estimation

approaches for determining group means and group variances in the tau-congeneric model.

5.1. Joint Estimation

In joint estimation, the parameter of interest is given by
θ = (ν0,λ0,α2, . . . ,αG,ψ2, . . . ,ψG,φ1, . . . ,φG), while we set α1 = 0 and ψ1 = 1 in the
estimation. We consider the general fitting function

F(θ) =
G

∑
g=1

I

∑
i=1

w1igρ(µig − αgλi0 − ν0i) +
G

∑
g=1

I

∑
i=1

I

∑
j=i

w2ijgρ(σijg −ψgλi0λj0 −φig1{i=j}) .

We first investigate the determination of group variances ψg. Assume that common
item loadings λ0 have already been determined. Then, we get the estimating equation by
taking ∂F

∂ψg

I−1

∑
i=1

I

∑
j=i+1

w2ijgλi0λj0ρ
′(σijg −ψgλi0λj0) = 0 .
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Note that φig can be uniquely determined and there is a vanishing contribution of
terms for i = j. Using (44), this implies the identification constraint

I−1

∑
i=1

I

∑
j=i+1

w2ijgλi0λj0ρ
′
(
ψgλi0λj0(λ

∗
igλ
∗
jg − 1)

)
= 0 . (46)

For the loss function ρ(x) = |x|p, we get due to ρ′(λx) = ρ′(λ)ρ′(x) for any λ ≥ 0
from (46)

I−1

∑
i=1

I

∑
j=i+1

w2ijgλi0λj0ρ
′(ψgλi0λj0

)
ρ′
(
λ∗igλ

∗
jg − 1

)
= 0 . (47)

Group-specific residual item loadings λ∗ig vanish on average according to the identifi-
cation constraint (47). We can further specialize (47) for DWLS estimation (which can also
approximate ML estimation), which employs the square loss function ρ(x) = x2:

I−1

∑
i=1

I

∑
j=i+1

w2ijgλ
2
i0λ

2
j0ψg(λ

∗
igλ
∗
jg − 1) = 0

Now, we determine group means αg. Assume that common item loadings λ0 and ν0

have already been determined. By taking ∂F
∂αg

, we get the identification constraints

I

∑
i=1

w1igλi0ρ
′
(
αgλi0(λ

∗
ig − 1) + ν∗ig

)
= 0 . (48)

For DWLS estimation, we get the identification constraint

I

∑
i=1

w1igλi0(αgλi0(λ
∗
ig − 1) + ν∗ig) = 0 . (49)

It can be seen that MNI in loadings due to λ∗ig as well as MNI in intercepts due to ν∗ig
determine the group mean αg.

For additive deviations from MI that follow (45), the condition (46) is replaced by

I−1

∑
i=1

I

∑
j=i+1

w2ijgλi0λj0ρ
′
(
ψg(λi0λ

∗
jg + λ

∗
igλj0 + λ

∗
igλ
∗
jg)
)
= 0 .

The condition (49) is replaced by

I

∑
i=1

w1igλi0ρ
′(αgλ

∗
ig + ν

∗
ig) = 0 .

Due to the arbitrariness of using either the multiplicative or additive representation of
MNI effects λ∗ig, the different obtained identification conditions should not be interpreted as
conflicting findings but rather as different ways of representing the same identification condition.

5.2. Linking

This subsection discusses the estimation of group means and group variances for linking
approaches. We assume that item loadings follow the multiplicative representation of MNI
in (44). This corresponds to an additivity assumption for logarithmized item loadings.

At first, the tau-congeneric measurement model is estimated separately in each group.
By assuming E(Fg) = 0 and Var(Fg) = 1, identified group-specific item intercepts νig and
group-specific item loadings λig are given as

νig = αgλi0λ
∗
ig + νi0 + ν

∗
ig and λig = ψ1/2

g λi0λ
∗
ig . (50)
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Note that (50) can be equivalently written as

νig = αgλi0λ
∗
ig + νi0 + ν

∗
ig and log λig =

1
2

logψg + log λi0 + log λ∗ig . (51)

In HL [21,28], common logarithmized item loadings l0 = (l10, . . . , lI0) = logλ0 and
logarithmized group variances fg = 1

2ψg are computed in the first step. Note that
ψg = exp(2 fg). The linking function H2 using θ = ( f2, . . . , fG, l0) using the identification
constraint f1 = 0 (i.e., ψ1 = 1) is defined as

H2(θ) =
G

∑
g=1

I

∑
i=1

w2igρ(lig − fg − li0) ,

where lig = log λig. For determining fg (and, hence, the group variance ψg), applying ∂H2
∂ fg

and considering (51) provides the identification constraint

I

∑
i=1

w2igρ
′(log λ∗ig) = 0 .

In the second step in HL, group means αg are determined based on identified item
intercepts νig and identified item loadings λig (see Equation (50)) and group variances ψg
that are determined in a first step. We discuss a variant of HL (see Equation (25) in [21])

H1(θ) =
G

∑
g=1

I

∑
i=1

w1igρ
(
νig − νi0 −ψ−1/2

g λigαg

)
(52)

for θ = (α2, . . . ,αG,ν0) and employing the identification constraint α1 = 0. For determin-
ing group means αg, we consider ∂H1

∂αg
and get from (52) the identification constraints

I

∑
i=1

w1igψ
−1/2
g λigρ

′
(
νig − νi0 −ψ−1/2

g λigαg

)
=

I

∑
i=1

w1igλi0λ
∗
igρ
′
(
ν∗ig

)
= 0 .

Another popular linking approach is IA [29]. Originally it was discussed as a simul-
taneous linking method for determining group means and group variances, it has been
shown in [21] that alignment is equivalent to a two-step linking approach.

In the first step of IA, group standard deviations pg defined asψg = p2
g are determined

by minimizing the linking function

G2(θ) =
G

∑
g=1

H

∑
h=1

I

∑
i=1

w2ighρ
(

p−1
g λig − p−1

h λih

)
where θ = (p2, . . . , pG) using the identification constraint p1 = 1 (and, hence, ψ1 = 1). For
determining pg (and subsequently ψg), we receive the following identification condition by
taking ∂G2

∂pg
H

∑
h=1

I

∑
i=1

w2ighλi0λ
∗
igρ
′
(
λi0(λ

∗
ig − λ∗ih)

)
= 0 .

In the second step of IA, group means αg using the identification constraint α1 = 0
are obtained by minimizing the linking function using θ = (α2, . . . ,αG)

G1(θ) =
G

∑
g=1

H

∑
h=1

I

∑
i=1

w1ighρ
(
νig − νih −ψ−1/2

g λigαg +ψ
−1/2
h λihαh

)
. (53)
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Then, we get the following identification condition by taking ∂G1
∂αg

H

∑
h=1

I

∑
i=1

w1ighψ
−1/2
g λigρ

′
(
νig − νih −ψ−1/2

g λigαg +ψ
−1/2
h λihαh

)
=

H

∑
h=1

I

∑
i=1

w1ighλi0λ
∗
igρ
′
(
ν∗ig − ν∗ih

)
= 0 .

It has been shown in [21] that HL and IA provide very similar results for the tau-
congeneric model if the same loss function ρ(x) = |x|p for p ∈ [0, 1] is utilized. We can rely
on the subadditivity property (24) for finding a majorizing function H̃1 in (53)

G1(θ) ≤
G

∑
g=1

I

∑
i=1

w̃1igρ
(
νig − νi0 −ψ−1/2

g λigαg

)
= H̃1(θ̃) ,

where θ̃ now also includes common item intercepts ν0 and w̃1ig are appropriately de-
fined weights. By minimizing H̃1 for determining the group mean αg, we receive the
identification constraint

I

∑
i=1

w̃1igλi0λ
∗
igρ
(
ν∗ig

)
= 0 .

5.3. Regularization

We now discuss identification constraints in regularized ML estimation of the multiple-
group tau-congeneric measurement model. Deviations of MI in item loadings can be either
modeled in a multiplicative (see (44)) or an additive (see (45)) form. In the following, we assume
additive effects because this specification appears more frequently in practical applications.

In regularized ML estimation, we collect in the parameter vector θ the parameters αg,
νi0, ν̃ig, ψg, λi0, and λ̃ig. Moreover, we set α1 = 0 and ψ1 = 1 for reason of identification
and define the fitting function

Freg(θ) =
G

∑
g=1

I

∑
i=1

w1ig

(
µig − αg(λi0 + λ̃ig)− νi0 − ν̃ig

)2

+
G

∑
g=1

I

∑
i=1

I

∑
j=i

w2ig

(
σijg −ψg(λi0 + λ̃ig)(λj0 + λ̃jg)−φig1{i=j}

)2

+
G

∑
g=1

I

∑
i=1
P(κ1, ν̃ig) +

G

∑
g=1

I

∑
i=1
P(κ2, λ̃ig) ,

(54)

where κ1 and κ2 are regularization parameters for group-specific residual intercepts ν̃ig

and residual loadings λ̃ig, respectively. Using the additive representation of MNI (45), we
get the following identification constraint for determining the group mean αg

G

∑
g=1

I

∑
i=1

w1ig

(
ν∗ig − ν̃ig + αg(λ

∗
ig − λ̃ig)

)
= 0 . (55)

The condition (55) means that MNI effects ν∗ig and λ∗ig cancel out on average, where
the average is computed mainly on those effects that are set to zero in regularized ML.

As an alternative approach, fused regularized ML estimation can be employed. In this
approach, all item intercepts and item loadings are estimated group-wise, and identification
is ensured using a fused penalty function. The fitting function is defined as
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Ffusedreg(θ) =
G

∑
g=1

I

∑
i=1

w1ig
(
µig − αgλ̆ig − ν̆ig

)2

+
G

∑
g=1

I

∑
i=1

I

∑
j=i

w2ig

(
σijg −ψgλ̆igλ̆jg −φig1{i=j}

)2

+
G

∑
g=1

G

∑
h=g+1

I

∑
i=1
P(κ1, ν̆ig − ν̆ih) +

G

∑
g=1

G

∑
h=g+1

I

∑
i=1
P(κ2, λ̆ig − λ̆ih) .

With additive MNI effects (see (45)), the identification constraint for the group mean
is given by

I

∑
i=1

w1ig

(
αg(λi0 + λ

∗
ig − λ̆ig) + νi0 + ν

∗
ig − ν̆ig

)
= 0 .

In the tau-congeneric measurement model, BAMI [41,47] uses normal prior distribu-
tions for intercept differences νig − νih and loading differences λig − λih [51]. Therefore,
BAMI can be viewed as fused regularized ML estimation with a ridge penalty. Using the
finding of Battauz [39] and the same reasoning as in Section 3.3, it is evident that BAMI as
fused regularization with a ridge penalty function is equivalent to regularized ML estima-
tion in (54) that involves the estimation of common item intercepts ν0 and common item
loadings λ0. As argued in Section 3.3, regularized ML estimation with a ridge penalty can
be quite close to DWLS with appropriate weights (and, hence, ML) in terms of estimated
group means and estimated variances because only shrinkage for otherwise nonidentified
residual MNI effects for intercepts and loadings is introduced. Consequently, BAMI will
provide similar results compared to ML estimation.

As also discussed in Section 3.3 for the tau-equivalent model, the output of BAMI can
be used in a subsequent IA estimation [45]. Using the same steps as in Section 3.3 for the
derivations, an identification constraint similar to (36) can be obtained.

6. Discussion

In this article, we have argued that joint estimation, linking, and regularized ML
estimation in the tau-equivalent and the tau-congeneric model can provide similar if
not identical estimates in the violation of MI if an appropriate loss function ρ in joint
estimation or linking is used. In the violation of MI, it is important to emphasize that
researchers can use arbitrary identification constraints to determine group means. Resulting
estimates depend on the chosen weights and loss function or the used penalty functions in
regularized ML estimation. Therefore, researchers use implicit definitions for identification
constraints on effects that quantify MNI by choosing a particular fitting function. The
wisdom under applied researchers that partial invariance is necessary for determining
group-mean comparisons [24] is unsound because it would imply that a particular loss
function should always be preferred in practice.

It is important to emphasize that choosing of a particular loss function weighs dis-
crepancies between sample input data (i.e., means and covariances in factor analysis) and
assumed population parameters. Two error types must be distinguished: sampling error
and model error. The former sampling error can be reduced in large samples while the
latter model error (i.e., MNI in multiple-group factor analysis) does not vanish in large
samples. Certain types of misspecifications can be downweighted by utilizing a model-
robust loss function ρ. Consequently, estimated model parameters are not influenced by
some misspecifications. We think that the preference of ML estimation factor analysis
(and in structural equation modeling in general) is misguided because ML can only be the
most efficient estimation method in (very) large samples and if the model of interest is
correctly specified. Because MI is rare as unicorns in applications of multiple-group factor
analysis, we cannot imagine many situations in which a robust loss function should not be
preferred. Note that we are discussing robustness in the sense of model misspecification in
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modelled means and covariances. In contrast, robust factor analysis is mainly devoted to
the misspecification of the multivariate normal distribution [52].

Joint estimation in the case of measurement invariance still seems to be the most
frequent approach. In contrast to regularization approaches, joint estimation does not
include additional parameters for model deviations. Hence, joint estimation is less compu-
tationally demanding than regularization. Linking approaches are typically implemented
in a two-step method. Because the one-dimensional factor model is estimated separately for
each group in a first step, the linking approach might be less prone to convergence issues or
ill-defined parameter estimates. However, group-wise estimation of the one-dimensional
factor model might require a sufficiently large sample size. Hence, linking methods could
result in less stable estimates than joint estimation or regularization.

Our arguments in this paper are based on fitting vectors of means and covariances that
are computed for factor analysis of continuous items (i.e., assuming a multivariate normal
distribution). The arguments likely generalize to the fitting of vectors of thresholds and
polychoric correlation matrices for factor analysis of ordinal data [53]. Future research could
investigate violations of measurement invariance in the one-dimensional factor model for a
continuous covariate instead of a finite number of groups g = 1, . . . , G [54].

We limited our discussion to the most popular estimation methods of the multiple-
group one-dimensional factor model (i.e., joint estimation, linking, and regularized estima-
tion) in the violation of MI. More flexible handling of MNI has recently been proposed using
deep learning methods [55]. These fitting functions also imply identification constraints
for MNI effects. Because it is our conviction that all fitted models are grossly misspecified
(and not only misspecified to a certain degree), there is no reason to believe that more
complex models will provide more valid estimates for group comparisons. In contrast,
researchers purposely choose fitting function that describe a complex dataset and define a
pseudo-true parameter through the choice of this fitting function. It is likely not reasonable
to talk about true parameters (i.e., true group means and true group variances) without
explicitly mentioning identification constraints.

7. Conclusions

This article presented a formal analysis of different estimation methods in the violation
of measurement invariance. We have shown how different fitting functions result in im-
plied identification constraints on parameters that characterize the extent of measurement
invariance. In our view, the choice of fitting functions should be mainly made regarding
the weighing of model deviations because it is unlikely in practical applications that the
doctrine of measurement invariance exactly holds.
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