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Abstract: Since the beginning of the COVID-19 pandemic, vaccination has been the main strategy to
contain the spread of the coronavirus. However, with the administration of many types of vaccines
and the constant mutation of viruses, the issue of how effective these vaccines are in protecting
the population is raised. This work aimed to present a mathematical model that investigates the
imperfect vaccine and finds the additional measures needed to help reduce the burden of disease. We
determine theR0 threshold of disease spread and use stability analysis to determine the condition
that will result in disease eradication. We also fitted our model to COVID-19 data from Morocco to
estimate the parameters of the model. The sensitivity analysis of the basic reproduction number, with
respect to the parameters of the model, is simulated for the four possible scenarios of the disease
progress. Finally, we investigate the optimal containment measures that could be implemented with
vaccination. To illustrate our results, we perform the numerical simulations of optimal control.

Keywords: COVID-19; vaccination; basic reproduction number; stability; Lyapunov function;
optimal control

1. Introduction

Since the beginning of the ongoing COVID-19 pandemic, the world has been racing
to develop a vaccination that helps protect the populations around the world and bring
human life to a normal status. This race to find a vaccine was not only challenged by the
fast spread of the disease, but also the high rate of mutation of COVID-19. As a result, we
witness many vaccination types with different biotechnological approaches and different
efficacy [1]. These efficacies are based on clinical trials that might have some limitations
as their samples do not necessarily cover a wide population from different parts of the
world. These facts make the question of the efficacy of vaccines legitimate and need to
be investigated.

This problem was investigated using mathematical modeling to study the possible
measure that needed to be implemented to reduce the impact of an imperfect vaccine.

The mathematical model of the imperfect vaccination of infectious disease was started
by the work of Arino et al. [2]. Many papers have followed up on this work, looking into
the various spreads of imperfect vaccination for various diseases. For example, the work
of Abu-Raddad [3] studied the mathematical model of a possible HIV vaccination where
the authors investigated the impact of the defectiveness of vaccination on the progress of
the disease. Liu et al. [4] studied a general SIR with an added vaccination compartment
and imperfect vaccination. This study showed how vaccination reduced the infected
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population but could not eradicate the infection. In fact, the eradication required an
additional necessary condition. If vaccination efficacy improves, this condition may be
alleviated. A mathematical model with the imperfect vaccination of birds in the case of
avian influenza was studied in [5]. This model considered age-since-vaccination structure
and symptomatically infected birds. This study showed that the only way eradicate
the disease was by the full coverage of the bird population or by full efficacy. A time
delay model of imperfect vaccination was studied in [6] with a possible loss of immunity.
The study showed the existence of the critical vaccination coverage needed to eliminate the
infection. In the case of imperfect vaccination, the authors showed that a critical proportion
of the population needed vaccination. Another delay model with distributed delay [7] and
the delay model with a generalized incidence function were studied in [8].

Regarding the ongoing pandemic, there are some studies that have investigated imper-
fect vaccination in the USA ([9,10]) and the UK [11] but without finding optimal measures
that could help contain the pandemic, as the use of an imperfect vaccine cannot achieve the
low endemicity of COVID-19. On the other hand, many studies (see [12–22]) used optimal
control to find the optimal way to allocate vaccination and the best strategy to vaccinate
the population, depending on the age or comorbidity of the population. The goal of this
paper was to investigate a mathematical model of the imperfect vaccination of COVID-19.
The aim was to study the dynamics of this model and present the possible control measures
that need to be implemented in order to reduce the impact of the vaccine’s imperfection.

To our knowledge, our work is the only one to date to have studied the potential
dynamics of imperfect vaccination and the optimal use of other public health measures
that help to reduce the effect of administering imperfect vaccination. The only work that
combined these two problems was used in the case of possible malaria vaccination [23].

The structure of this paper is summarized as follows. In Section 2, the mathematical
model is formed and the existence conditions of the system are verified. Section 3 takes
into account the basic reproduction number. Sections 4 and 5 analyze the local and global
stability at the disease-free equilibrium point, respectively. The optimal control problem of
vaccination and additional measures to reduce the disease spread are presented in Section 6.
In Section 7, we fit our model to data from Morocco to estimate the parameters of the
model. We also discussed four possible scenarios of the dynamic of the model via the
elasticity of the basic reproduction number and we give the illustration of the optimal
solution via numerical simulations. The conclusion and discussion of the results are given
in Section 8.

2. The Mathematical Model

Nine epidemiological compartments were recognized in the population: susceptible
(S); vaccinated (V); exposed (E) (asymptomatic); infected with mild symptoms (I); quaran-
tined in a home with mild symptoms (Q); hospitalized (H); quarantined in a hospital with
complications (C) (i.e., isolated in a hospital with breathing assistance); and mortality due
to disease (D):
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dS
dt

= −β1
SE
N − β2

SI
N − λ1S

dV
dt

= λ1S− β3
VE
N − β4

VI
N − λ2V

dE
dt

= β1
SE
N + β2

SI
N + β3

VE
N + β4

VI
N − θE

dI
dt

= θE− (γ1 + γ2 + γ3)I

dQ
dt

= γ1 I − (σ1 + δ1)Q

dH
dt

= γ2 I + σ1Q− (σ2 + δ2)H

dC
dt

= γ3 I + σ2H − (µ + δ3)C

dR
dt

= δ1Q + δ2H + δ3C + λ2V

dD
dt

= µC

(1)

In this model, we assume that vaccination does not provide complete protection
against COVID-19. As a result, the rate of being vaccinated is λ1, and λ2 is the rate of
vaccinated persons who have recovered and developed immunity. We suppose that each
infectious sub-population (E and I) infected the healthy population at varying densities,
where βi is the infection density per capita with i = 1, 2. In reality, our major assumption
about vaccination’s imperfection is that some vaccinated persons may only receive partial
protection and may become sick if they are exposed to multiple infections. The imperfection
can be due to the mutation of the virus. In fact, when people are vaccinated, they tend to
relax their guard and take fewer protection measures again the virus. θ is the proportion of
infected individuals. Some people show mild symptoms with the per capita rate γ1 and can
stay at home with treatment; whilst others develop hard symptoms and must be monitored
in the hospital with the per capita rate γ2 and another critical condition that requires
penetrating breathing with per capita rate γ3. The parameter δi, with i = 1, 2, 3, represents
the recovery rates of quarantined, hospitalized and critical infected persons (respectively).
Average quarantine and hospitalization times are 1/σ1 and 1/σ2, respectively. Finally, µ
represents the mortality rate due to disease. The flow chart of the model is given in the
Figure 1. When the nine equations in (1) are combined together, the total population size N
remains constant.

2.1. Positivity and Boundedness

This part is dedicated to establishing the positivity and boundedness of the model (1)
solutions under non-negative conditions.

Theorem 1. If S(0) ≥ 0, V(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0 Q(0) ≥ 0, H(0) ≥ 0, C(0) ≥ 0,
R(0) ≥ 0 and D(0) ≥ 0, then the solution S(t), V(t), E(t), I(t) Q(t), H(t), C(t), R(t), D(t) of
system (1) is non-negative and the solutions exist in Ω for all t ≥ 0.

The proof of positivity follows the standard argument, as can be seen, for example,
in [24].

The solution of the model (1) exists in the positively invariant region:

Ω = {(S(t), V(t), E(t), I(t), Q(t), H(t), C(t), R(t), D(t)) ∈ R9
+

: S(t) + V(t) + E(t) + I(t) + Q(t) + C(t) + R(t) + D(t) = N ≤ N(0)}.

Since all the parameters and sub populations of the system are non-negative and N(t)
= constant ∀t ≥ 0.
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Straightforwardly, we obtain S(t) ≤ N(t) ≤ N(0) for all t ≥ 0. The other variables
yielded the same result. As a result, the overall population is finitely upper bounded.
For system (1), the region Ω is positively invariant.

Figure 1. Flow chart of the model.

2.2. Existence and Uniqueness of Solutions

Theorem 2. The system (1) that fulfills a given initial condition (S(0), V(0), E(0), I(0) Q(0),
H(0), C(0), R(0), D(0)) has a unique solution.

Proof. The system (1) may be expressed as follows:

Ẋ = AX + B(X) (2)

where X(t) = [S(t), V(t), E(t), I(t), Q(t), H(t), C(t), R(t), D(t)]>

A =



−λ1 0 0 0 0 0 0 0 0
λ1 −λ2 0 0 0 0 0 0 0
0 0 −θ 0 0 0 0 0 0
0 0 θ −γ1 − γ2 − γ3 0 0 0 0 0
0 0 0 γ1 −σ1 − δ1 0 0 0 0
0 0 0 γ2 σ1 −σ2 − δ2 0 0 0
0 0 0 γ3 0 σ2 −µ− δ3 0 0
0 λ2 0 0 δ1 δ2 δ3 0 0
0 0 0 0 0 0 µ 0 0


, (3)
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B(X) =



−β1
SE
N − β2

SI
N

−β3
VE
N − β4

VI
N

β1
SE
N + β2

SI
N + β3

VE
N + β4

VI
N

0
0
0
0
0
0


.

Equation (2) is a non-linear system that can be written as

Σ(X) = AX + B(X).

We have:

|B(X1)− B(X2)| ≤ 2β1
N |S2E2 − S1E1|+ 2β2

N |S2 I2 − S1 I1|+ 2β3
N |V2E2 −V1E1|+ 2β4

N |V2 I2 −V1 I1|
≤ 2β1

N |S1(E2 − E1) + E2(S2 − S1)|+ 2β2
N |S1(I2 − I1) + I2(S2 − S1)|+

2β3
N |V1(E2 − E1) + E2(V2 −V1)|+ 2β4

N |V1(I2 − I1) + I2(V2 −V1)|
≤ 2β1(|E2 − E1|+ |S2 − S1|) + 2β2(|I2 − I1|+ |S2 − S1|)+

2β3(|E2 − E1|+ |V2 −V1|) + 2β4(|I2 − I1|+ |V2 −V1|)
≤ 2(β1 + β3)|E2 − E1|+ 2(β1 + β2)|S2 − S1|+ 2(β2 + β4)|I2 − I1|+ 2(β3 + β4)|V2 −V1|
≤ 4M(|S2 − S1|+ |V2 −V1|+ |E2 − E1|+ |I2 − I1|), where M = max{β1, β2, β3, β4}
≤ 4M‖X2 − X1‖

then, we obtain |Σ(X1)− Σ(X2)| ≤ M‖X1 − X2‖, where M = max{M, ‖A‖} < ∞. As a
result, the function Σ(t) is uniformly Lipschitz continuous. The restriction on S(t) ≥ 0,
V(t) ≥ 0, E(t) ≥ 0, I(t) ≥ 0, Q(t) ≥ 0, H(t) ≥ 0, C(t) ≥ 0, R(t) ≥ 0, and D(t) ≥ 0. Thus,
a solution to the system (2) exists [25].

3. The Basic Reproduction Number

The basic reproduction numberR0 is the average number of persons in a susceptible
population that one person infected with COVID-19 is expected to infect, and it is calculated
using the next generation matrix approach [26]. The disease compartments are thus E and
I. Therefore, the all-time disease-free equilibrium point E0 = (N0, 0, 0, 0, 0, 0, 0).

F =

(
β1

S∗E∗
N + β2

S∗ I∗
N + β3

V∗E∗
N + β4

V∗ I∗
N

0

)
, V = V− − V+ =

(
θ E

(γ1 + γ2 + γ3)I∗ − θE∗

)
The Jacobian matrices ofF and V computed at E0 are provided by F and V, respectively,

such that:

F =

(
β1 β2
0 0

)
, V =

(
θ 0
−θ (γ1 + γ2 + γ3)

)
The inverse of V is given by

V−1 =

(
1
θ 0
1

(γ1+γ2+γ3)
1

(γ1+γ2+γ3)

)
and FV−1 =

(
β1
θ + β2

γ1+γ2+γ3

β2
γ1+γ2+γ3

0 0

)

Therefore, the domainant eigenvalue of FV−1:

R0 = ρ(FV−1) =
β1

θ
+

β2

(γ1 + γ2 + γ3)
(4)
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4. Local Stability Analysis at Disease-Free Equilibrium (DFE) E0

The DFE’s local stability is investigated as follows.
The Jacobian matrix of the system (1) at E0 = (N, 0, 0, 0, 0, 0, 0) is:

J∗(E0) =



−λ1 0 −β1 −β2 0 0 0
λ1 −λ2 0 0 0 0 0
0 0 β1 − θ β2 0 0 0
0 0 θ −(γ1 + γ2 + γ3) 0 0 0
0 0 0 γ1 −(σ1 + δ1) 0 0
0 0 0 γ2 σ1 −(σ2 + δ2) 0
0 0 0 γ3 0 σ2 −(µ + δ3)


. (5)

The eigenvalues of the Jacobian matrix J∗(E0) are the roots of the following character-
istic equation:

(−λ1 − λ)(−λ2 − λ)(−σ1 − δ1 − λ)(−σ2 − δ2 − λ)(−µ− δ3 − λ)(λ2 + a1λ + a0)= 0 (6)

where:
a0 = (θ − δ1)(γ1 + γ2 + γ3)− θβ2
a1 = (θ − δ1) + (γ1 + γ2 + γ3)

(7)

The roots of (λ2 + a1λ + a0) = 0 are given by

λ1 =
β1−θ−(γ1+γ2+γ3)−

√
(β1−θ+γ1+γ2+γ3)2+4θβ2
2 =

α1−γ−
√

(α1+γ)2+4θβ2
2

λ2 =
β1−θ−(γ1+γ2+γ3)+

√
(β1−θ+γ1+γ2+γ3)2+4θβ2
2 =

α1−γ+
√

(α1+γ)2+4θβ2
2

with α1 = β1 − θ and γ = (γ1 + γ2 + γ3).
It is straightforward that if α1 − γ < 0⇒ R∗ = β1

θ+γ < 1 and λ1 < 0.
In the case for λ2, we write the equation:

1−R0 =
−α1γ− θβ2

γθ
(8)

From the previous Equation (8), ifR0 < 1, then:

α1γ + θβ2 < 0
⇒ 4α1γ + 4θβ2 < 0
⇒ 2α1γ + 4θβ2 < −2α1γ
⇒ α2

1 + 2α1γ + 4θβ2 + γ2 < α2
1−2α1γ + γ2

⇒ (α1 + γ)2 + 4θβ2 < (γ− α1)
2

⇒
√
(α1 + γ)2 + 4θβ2 < γ− α1

⇒ α1 − γ +
√
(α1 + γ)2 + 4θβ2 < 0

⇒ λ2 < 0

Using the same steps as in Equation (8), ifR0 > 1, then:

α1γ + θβ2 > 0
⇒ 4α1γ + 4θβ2 > 0
⇒ 2α1γ + 4θβ2 > −2α1γ
⇒ α2

1 + 2α1γ + 4θβ2 + γ2 > α2
1−2α1γ + γ2

⇒ (α1 + γ)2 + 4θβ2 > (γ− α1)
2

⇒
√
(α1 + γ)2 + 4θβ2 > γ− α1

⇒ α1 − γ +
√
(α1 + γ)2 + 4θβ2 > 0

⇒ λ2 > 0

Notice that the fact that R0 < 1 implies that
β1

θ
< 1 and since R∗ < β1

θ
. Then, we

conclude that it is enough to have R0 < 1 to ensure that the roots of (λ2 + a1λ + a0)= 0
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are negative. On the other hand, ifR∗ > 1, thenR0 > 1. As a result, we have just proven
the following theorem:

Theorem 3. IfR0 < 1, the disease-free equilibrium E0 of the system (1) is locally asymptotically
stable, but unstable ifR∗ > 1, where: R∗ = β1

θ+γ .

5. Global Stability Analysis at Disease-Free Equilibrium

The global stability of the disease-free equilibrium point E0 was found in this part by
creating the Lyapunov function as follows:

Theorem 4. The disease-free equilibrium E0 of the model (1) is globally asymptotically stable
wheneverR0

Total ≤ 1, whereR0
Total = R0 +R0

v.

Proof. Consider the Lyapunov function L in the trivial equilibrium point E0, which has
non-negative coefficients g1 and g2:

L = g1E + g2 I (9)

Differentiating Equation (9) with respect to time t, and substituting both
dE
dt

and
dI
dt

from Equation (1) yields the result:

L̇ = g1Ė + g2 İ
= g1β1

SE
N + g1β2

SI
N + g1β3

VE
N + g1β4

VI
N − g1θE

+g2θE− g2(γ1 + γ2 + γ3)I
(10)

By simplifying Equation (10) by collecting similar terms of E and I, then by solving
for coefficient g1 and g2, this yields:

L̇ ≤ g1β1E + g1β3E + g2θE− g1θE + g1β2 I + g1β4 I − g2(γ1 + γ2 + γ3)I

≤ g1θ

(
β1 + β3

θ
+

g2

g1
− 1
)

E + g1(β2 + β4 − g2(γ1 + γ2 + γ3))I

≤ g1

(
β2 + β4 − g1(1−

β1 + β3

θ
)(γ1 + γ2 + γ3)

)
I

≤ g2
1

(
β2 + β4

g1
− (γ1 + γ2 + γ3) +

β1 + β3

θ
(γ1 + γ2 + γ3)

)
I

≤ g2
1(γ1 + γ2 + γ3)

(
β2

g1(γ1 + γ2 + γ3)
+

β1

θ
− 1 +

β4

g1(γ1 + γ2 + γ3)
+

β3

θ

)
I

≤ (γ1 + γ2 + γ3)(R0 +R0
v − 1)I

(11)

where g1 = 1 ,
g2

g1
= 1− β1 + β3

θ
.

R0
Total =

(
β2

(γ1 + γ2 + γ3)
+

β1

θ
+

β4

(γ1 + γ2 + γ3)
+

β3

θ

)
= R0 +R0

v. (12)

Since
g2

g1
> 0, then

β1 + β3

θ
< 1. Therefore, L̇ is negative ifR0

Total < 1. Furthermore,

L̇ = 0 if and only if I = 0. It can thus be investigated whether singleton E0 is the highest
compact invariant set for the model (1). Thus, by LaSalle’s invariance principle [27], the
DFE is globally asymptotically stable in a region Ω around E0.

Remark 1. The above result shows that R0
Total and R0 can be reduced to less than a unit so

that the disease disappears. Obviously, R0 < R0
Total means that if R0 < 1, then the complete

eradication of disease is guaranteed.
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6. The Optimal Imperfect Vaccination

When imperfect vaccination is administered to a population, there is a need to find the
optimal approach to use it in order to reduce the burden of the disease in the population.
The goal of this section is to implement the best control strategy possible in the situation of
an imperfect vaccination. Three types of control are used for this purpose. First, the control
u1 represents the awareness of taking the vaccine via media, as well as creating knowledge
of the positive effects of vaccination to gain herd immunity in the population. The second
control u2 is the movement restrictions for susceptible and vaccinated individuals by
adhering to a preventative protocol, avoiding the exposure of the vaccinated people to
the coronavirus via non-pharmaceutical measures. The third one u3 seeks to improve the
efficacy of the vaccine.

Therefore, the model with control strategies is given by

dS
dt

= − S
N (1− u2)(β1E + β2 I)− (λ1 + u1)S

dV
dt

= (λ1 + u1)S− V
N (1− u2)(β3E + β4 I)− (λ2 + u3)V

dE
dt

= S
N (1− u2)(β1E + β2 I) + V

N (1− u2)(β3E + β4 I)− θE

dI
dt

= θE− (γ1 + γ2 + γ3)I

dQ
dt

= γ1 I − (σ1 + δ1)Q

dH
dt

= γ2 I + σ1Q− (σ2 + δ2)H

dC
dt

= γ3 I + σ2H − (µ + δ3)C

dR
dt

= δ1Q + δ2H + δ3C + (λ2 + u3)V

dD
dt

= µC

(13)

With:
(u1(t), u2(t), u3(t)) ∈ UT

ad (14)

and UT
ad is a set of admissible controls defined by

UT
ad =

{
u |(u1(t), u2(t), u3(t)) are measurable, 0 ≤ u1(t) ≤ 1− λ1, 0 ≤ u2(t) ≤ 1,

0 ≤ u3(t) ≤ 1− λ2, t ∈ [0, T]

}
(15)

The objective function to minimize is:

J(u1(t), u2(t), u3(t)) =
∫ T

0
[−A1V(t) + A2 I(t)− A3R(t) +

1
2

τ1u2
1(t) +

1
2

τ2u2
2(t) +

1
2

τ3u2
3(t)]dt (16)

The positive weight constants A1, A2 and A3, respectively, keep the sizes of V(t), I(t),
and R(t) in balance. Positive weight parameters: τ1, τ2, and τ3 are related with the controls
u1(t), u2(t), and u3(t) in the objective functional.

To solve the problem, we first compute the Lagrangian and Hamiltonian. Equation (16)
in order to identify an optimal solution. The optimal problem’s Lagrangian is:

L = −A1V(t) + A2 I(t)− A3R(t) +
1
2

τ1u2
1(t) +

1
2

τ2u2
2(t) +

1
2

τ3u2
3(t). (17)

For the control problem, we may define the Hamiltonian H as follows:
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H = L + ζ1(t)
dS
dt

+ ζ2(t)
dV
dt

+ ζ3(t)
dE
dt

+ ζ4(t)
dI
dt

+ ζ5(t)
dQ
dt

+ ζ6(t)
dH
dt

+ ζ7(t)
dC
dt

+ζ8(t)
dR
dt

+ ζ9(t)
dD
dt

(18)

where ζ1, . . . , ζ9 are the adjoint functions to be found.
We have the existence result:

Theorem 5. The optimal control problem, defined by Equations (13)–(16), has a solution (u∗1 , u∗2 , u∗3)
that satisfies

J(u∗1 , u∗2 , u∗3) = min
(u1,u2,u3)∈UT

ad

J(u1, u2, u3)

Proof. We use the result [28] to show that an optimal control exists. The control and the
state variables are both non-negative. This minimization problem satisfies the convexity
requirement of the objective functional.

The control space previously defined as (15) is both convex and closed by definition.
In order for the optimal control to exist, it is necessary for the optimal system to be compact.
The boundedness of the optimal system determines the compactness needed. Additionally,
an integrand throughout the functional (16) is convex on the control (u1(t), u2(t), u3(t)). It
can be concluded that the constant ρ > 1 exists, as do positive integers w1, w2 and w3 such
that J(u1, u2, u3) ≥ −w2 + w1(‖(u1, u2, u3)‖2)

ρ
2 . This leads us to conclude that optimal

control exists.

Characterization of the Optimal Control

We then investigate the necessary optimal control conditions. For this purpose,
the maximum principle of Pontryagin to Hamiltonian [29] can be applied.

Theorem 6. Let S∗(t), V∗(t), E∗(t), I∗(t), Q∗(t), H∗(t), C∗(t), R∗(t) and D∗(t) represent
optimal state solutions with optimal control variables (u∗1(t), u∗2(t), u∗3(t)) for the optimal control
problem (16). ζ1, . . . , ζ9 are thus adjoint variables that satisfy:

ζ̇1(t) = (1− u2)(β1
E(t)

N + β2
I(t)
N )(ζ1(t)− ζ3(t)) + (λ1 + u1)(ζ1(t)− ζ2(t))

ζ̇2(t) = A1 + (1− u2)(β3
E(t)

N + β4
I(t)
N )(ζ2(t)− ζ3(t)) + (λ2 + u3)(ζ2(t)− ζ8(t))

ζ̇3(t) = (1− u2)β1
S(t)
N (ζ1(t)− ζ3(t)) + (1− u2)β3

V(t)
N (ζ2(t)− ζ3(t)) + θ(ζ3(t)− ζ4(t))

ζ̇4(t) = −A2 + (1− u2)β2
S(t)
N (ζ1(t)− ζ3(t)) + (1− u2)β4

V(t)
N (ζ2(t)− ζ3(t))

+γ1(ζ4(t)− ζ5(t)) + γ2(ζ4(t)− ζ6(t)) + γ3(ζ4(t)− ζ7(t))

ζ̇5(t) = σ1(ζ5(t)− ζ6(t)) + δ1(ζ5(t)− ζ8(t))

ζ̇6(t) = σ1(ζ6(t)− ζ7(t)) + δ2(ζ6(t)− ζ8(t))

ζ̇7(t) = µ(ζ7(t)− ζ9(t)) + δ3(ζ7(t)− ζ8(t))

ζ̇8(t) = A3

ζ̇9(t) = 0

(19)

Conditions of transversality.

ζ1(T) = ζ3(T) = ζ5(T) = ζ6(T) = ζ7(T) = ζ9(T) = 0,
ζ2(T) = −A1, ζ4(T) = A2, ζ8(T) = −A3,

(20)

Moreover, the optimal control (u∗1 , u∗2 , u∗3) is provided by



Axioms 2022, 11, 124 10 of 19

u∗1(t) = max{min{ S(t)
τ1

(ζ1(t)− ζ2(t)), 1− λ1}, 0}.
u∗2(t) = max{min{ S(t)

τ2 N (β1E(t) + β2 I(t))(ζ3(t)− ζ1(t)) +
V(t)
τ2 N (β3E(t) + β4 I(t))(ζ3(t)− ζ2(t)), 1}, 0}.

u∗3(t) = max{min{V(t)
τ3

(ζ2(t)− ζ8(t)), 1− λ2}, 0}
(21)

Proof. By using Hamiltonian (18), Pontryagin’s maximum principle and setting S(t) =
S∗(t), V(t) = V∗(t), E(t) = E∗(t), I(t) = I∗(t), Q(t) = Q∗(t), H(t) = H∗(t), C(t) = C∗(t),
R(t) = R∗(t) and D(t) = D∗(t) to obtain the following:

dζ1

dt
= (1− u2)(β1

E(t)
N + β2

I(t)
N )(ζ1(t)− ζ3(t)) + (λ1 + u1)(ζ1(t)− ζ2(t))

dζ2

dt
= A1 + (1− u2)(β3

E(t)
N + β4

I(t)
N )(ζ2(t)− ζ3(t)) + (λ2 + u3)(ζ2(t)− ζ8(t))

dζ3

dt
= (1− u2)β1

S(t)
N (ζ1(t)− ζ3(t)) + (1− u2)β3

V(t)
N (ζ2(t)− ζ3(t)) + θ(ζ3(t)− ζ4(t))

dζ4

dt
= −A2 + (1− u2)β2

S(t)
N (ζ1(t)− ζ3(t)) + (1− u2)β4

V(t)
N (ζ2(t)− ζ3(t)) + γ1(ζ4(t)− ζ5(t))

+ γ2(ζ4(t)− ζ6(t)) + γ3(ζ4(t)− ζ7(t))

dζ5

dt
= σ1(ζ5(t)− ζ6(t)) + δ1(ζ5(t)− ζ8(t))

dζ6

dt
= σ1(ζ6(t)− ζ7(t)) + δ2(ζ6(t)− ζ8(t))

dζ7

dt
= µ(ζ7(t)− ζ9(t)) + δ3(ζ7(t)− ζ8(t))

dζ8

dt
= A3

dζ9

dt
= 0

Using optimality conditions, we conclude that:
dH(t)
du1(t)

= τ1u∗1(t) + S(t)(ζ2(t)− ζ1(t))

dH(t)
du2(t)

= τ2u∗2(t) +
S(t)
N (β1E(t) + β2 I(t))(ζ1(t)− ζ3(t)) +

V(t)
N (β3E(t) + β4 I(t))(ζ2(t)− ζ3(t))

dH(t)
du3(t)

= τ3u∗3(t) + V(t)(ζ8(t)− ζ2(t)).

Hence:

dH(t)
du1(t)

= 0 ⇒ u∗1(t) =
S(t)
τ1

(ζ1(t)− ζ2(t)),

dH(t)
du2(t)

= 0 ⇒ u∗2(t) =
S(t)
τ2 N (β1E(t) + β2 I(t))(ζ3(t)− ζ1(t)) +

V(t)
τ2 N (β3E(t) + β4 I(t))(ζ3(t)− ζ2(t))

dH(t)
du3(t)

= 0 ⇒ u∗3(t) =
V(t)

τ3
(ζ2(t)− ζ8(t)).

By applying the control space property, we obtain that:
u∗1 = 0 if S(t)

τ1
(ζ1(t)− ζ2(t)) ≤ 0

u∗1 = S(t)
τ1

(ζ1(t)− ζ2(t)) if 0 < S(t)
τ1

(ζ1(t)− ζ2(t)) < 1

u∗1 = 1 if S(t)
τ1

(ζ1(t)− ζ2(t)) ≥ 1− λ1.

which means that:
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u∗2 = 0 if S(t)

τ2 N (β1E(t) + β2 I(t))(ζ3(t)− ζ1(t)) +
V(t)
τ2 N (β3E(t) + β4 I(t))(ζ3(t)− ζ2(t)) ≤ 0

u∗2 = ω∗ if 0 < S(t)
τ2 N (β1E(t) + β2 I(t))(ζ3(t)− ζ1(t)) +

V(t)
τ2 N (β3E(t) + β4 I(t))(ζ3(t)− ζ2(t)) < 1

u∗2 = 1 if S(t)
τ2 N (β1E(t) + β2 I(t))(ζ3(t)− ζ1(t)) +

V(t)
τ2 N (β3E(t) + β4 I(t))(ζ3(t)− ζ2(t)) ≥ 1.

Since:

ω∗ =
S(t)
τ2N

(β1E(t) + β2 I(t))(ζ3(t)− ζ1(t)) +
V(t)
τ2N

(β3E(t) + β4 I(t))(ζ3(t)− ζ2(t)).

We have:
u∗3 = 0 if V(t)

τ3
(ζ2(t)− ζ8(t)) ≤ 0

u∗3 = V(t)
τ3

(ζ2(t)− ζ8(t)) if 0 < V(t)
τ3

(ζ2(t)− ζ8(t)) < 1

u∗3 = 1 if V(t)
τ3

(ζ2(t)− ζ8(t)) ≥ 1− λ2.

Thus, optimal control is defined as

u∗1 = max{min{ S(t)
τ1

(ζ1(t)− ζ2(t)), 1− λ1}, 0},
u∗2 = max{min{ S(t)

τ2 N (β1E(t) + β2 I(t))(ζ3(t)− ζ1(t)) +
V(t)
τ2 N (β3E(t) + β4 I(t))(ζ3(t)− ζ2(t)), 1}, 0}.

u∗3 = max{min{V(t)
τ3

(ζ2(t)− ζ8(t)), 1− λ2}, 0}

7. Numerical Simulation

The goal of this section is to show how the control strategies can be used to im-
prove outcomes in vaccination campaigns in Morocco. After fitting the model to the data,
the estimated parameters are taken to perform sensitivity analysis and determine the
optimal control.

7.1. Parameter Estimation

We used data from a vaccination campaign in Morocco between 1 February 2021
and 25 March 2021 to validate our findings. We consider the data from the COVID-19
data [30] and the initial conditions within the values of available data on 1 February 2021
are (S0, V0, E0, I0, Q0, H0, C0, R0, D0) = (36,202,000, 200,081, 25,543, 13,099, 9824, 1572, 131,
450,052, 8287). These initial values were estimated from the data, apart from E0 and Q0,
which were assumed. To obtain the best fitting curve for actual data, we applied the least-
squares fitting technique [31]. The parameter values of the model are estimated based on
this fitting and are given as follows: λ1 = 3.23× 10−3, λ2 = 1.5× 10−4, θ = 7.4385× 10−2,
σ1 = 3.9601× 10−2, σ2 = 5.1954× 10−2, δ1 = 2.04× 10−2, δ2 = 1.01× 10−2, δ3 = 0.00203,
β1 = 9.813× 10−3, β2 = 2.4× 10−3, β3 = 0.21, β4 = 0.21, γ1 = 9.81× 10−2, γ2 = 1.2× 10−2,
γ3 = 1.02× 10−4 and µ = 1.501× 10−3. The value of the basic reproduction number in this
case isR0 = 0.1536999. The fit of the number of individuals infected with COVID-19 in
Morocco is described in Figure 2.



Axioms 2022, 11, 124 12 of 19

0 10 20 30 40 50 60

Time (days) (February 1st-March 25th,2021)

2,000

4,000

6,000

8,000

10,000

12,000

14,000

N
u

m
b

e
r 

o
f 

In
fe

c
e
d

 I
(t

)

Fitting the model to COVID-19 data in Morocco

Cases of active infection declared

Estimated cases of infection

Figure 2. Fitting the infected population with real data from 1 February 2021 to 25 March 2021.

7.2. Sensitivity Analysis

In this part, we aimed to study the sensitivity of the model parameters with respect to
R0

Total . The goal is to determine the impact of these parameters on the endemicity of the
disease. The sensitivity analysis for this outbreak threshold demonstrates the importance
of each parameter in the spread of COVID-19, allowing us to determine which parameter
to make more sensitive onR0

Total with respect to a specific parameter, ρ, via the sensitivity
index define by

ζR0
Total

ρ =
∂R0

Total

∂ρ

ρ

R0
Total . (22)

Using the previous definition:

ζR0
Total

β1
= 1

θ
β1

R0
Total , ζR0

Total

β2
= 1

(γ1+γ2+γ3)
β2

R0
Total

ζR0
Total

β3
= 1

θ
β3

R0
Total , ζR0

Total

β4
= 1

(γ1+γ2+γ3)
β4

R0
Total

ζR0
Total

γ1 = −(β2+β4)
(γ1+γ2+γ3)2

γ1
R0

Total , ζR0
Total

γ2 = −(β2+β4)
(γ1+γ2+γ3)2

γ2
R0

Total

ζR0
Total

γ3 = −(β2+β4)
(γ1+γ2+γ3)2

γ3
R0

Total , ζR0
Total

θ = −(β1+β3)
θ2

θ
R0

Total .

(23)

Each parameter’s sensitivity index, corresponding to the basic reproductive numbers
R0

Total , was computed and displayed in Table 1, and the graphical bar-graph findings were
generated in Figure 3. The sensitivity indices indicate the importance of each parameter in

disease transmission and prevalence. These are some examples: if ζR0
Total

β1
= 0.931, it means

that if β1 went up (or decreased) by 93.1%,R0
Total is also likely to increase or decrease by

93.1%. Similarly, for ζR0
Total

θ = −0.8202, the decrease in the parameter θ by 82.02% will fall
(or increase )R0

Total by a similar proportion.
Our goal is to simulate the elasticity of R0

Total with respect to model parameters in
four scenarios that represent the different scenarios of the dynamics of the model as follows:

• Scenario 1: There is no disease persistence (R0 < 1,R0
v < 1 andR0

Total < 1).
• Scenario 2: Persistence of diseases with low threshold values (R0 < 1,R0

v < 1 and
R0

Total > 1).
• Scenario 3: The disease persists, with a high endemicity among vaccinated people and

a low endemicity among non-vaccinated people (R0 < 1,R0
v > 1 andR0

Total > 1).
• Scenario 4: The disease persists, with low endemicity among the vaccinated and high

endemicity among the unvaccinated (R0 > 1,R0
v < 1 andR0

Total > 1).
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Figure 3. Scenarios ofR0
Total sensitivity respecting the parameters.
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Table 1. Sensitivity index for each parameter that has a direct correlation toR0
Total .

Scenarios Scenario 1 Scenario 2 Scenario 3 Secnario 4

Parameters Values S. Index Values S. Index Values S. Index Values S. Index

β1 6.71 × 10−3 2.55 × 10−1 9.81 × 10−3 1.28 × 10−1 9.81 × 10−3 2.70 × 10−2 9.81 × 10−2 6.56 × 10−1

β2 2.70 × 10−3 6.93 × 10−2 2.40 × 10−3 2.11 × 10−2 2.40 × 10−3 4.46 × 10−3 2.40 × 10−2 1.08 × 10−1

β3 1.10 × 10−2 4.18 × 10−1 5.10 × 10−2 6.66 × 10−1 2.10 × 10−1 5.78 × 10−1 2.10 × 10−2 1.40 × 10−1

β4 1.00 × 10−2 2.57 × 10−1 2.10 × 10−2 1.85 × 10−1 2.10 × 10−1 3.90 × 10−1 2.10 × 10−2 9.48 × 10−2

γ1 9.81 × 10−2 −2.90 × 10−1 9.81 × 10−2 −1.84 × 10−1 9.81 × 10−2 −3.51 × 10−1 9.81 × 10−2 −1.81 × 10−1

γ2 1.20 × 10−2 3.08 × 10−1 1.20 × 10−2 1.06 × 10−1 1.20 × 10−2 2.23 × 10−2 1.20 × 10−2 5.42 × 10−2

γ3 2.00 × 10−6 2.62 × 10−3 1.02 × 10−4 8.99 × 10−4 1.02 × 10−4 1.90 × 10−4 1.02 × 10−4 4.61 × 10−4

θ 7.44 × 10−2 −2.20 × 10−1 7.44 × 10−2 −1.39 × 10−1 7.44 × 10−2 −2.66 × 10−1 7.44 × 10−2 −1.37 × 10−1

All of the sensitivity scenarios described above demonstrate that the basic reproductive
numberR0

Total is more sensitive to some parameters than others—particularly in the cases
of β1, β3, γ1 and θ. Scenario 1 has no persistent disease, but Scenario 3 has persistent disease
with significant endemicity among the vaccinated, as can be seen from the sensitivity indices
of γ1 (rate of infected getting isolated) and θ (incubation period). The same observation
applies to the scenarios of the persistence of disease with low endemicity in Scenario 2
and the persistence of disease with high endemicity among the vaccinated in Scenario 4.
The level of sensitivity of these parameters is higher when endemicity is low among the
non-vaccinated population. Our simulations revealed that the value of the sensitivity
index changes depending on the Scenarios (1, 2, 3, 4), with β3 being the highest value for
Scenarios 1 and 2. However, in β1, we can see more domination for the index in Scenario 4.

7.3. Simulation of Optimal Control

The time series of variables in the model without and with optimal control are shown
in the figures below. The goal is to compare the effect of control on the different variables of
the model.

The three variables are shown in Figure 4: susceptible, infected and recovered without
and with optimal control effect. These simulations show that optimal control increases
the number of susceptible and recovered people while decreasing the number of infected
individuals. The effect of control on the susceptible and recovered populations is obviously
more significant since the susceptible and recovered populations rose four-fold in 50 days
while the infected population declined by one fold during the same period. This means
that the control is very effective for all of these three compartments.

The simulation of the time series of the variables representing the vaccinated, exposed
and deceased individuals is shown in Figure 5. Clearly, the vaccinated population benefits
more from the optimal control than the exposed population since the control aims to
improve vaccination effectiveness. The control strategy, on the other hand, has no obvious
effect on the number of deaths.

Similarly, as seen in Figure 6, the control strategy reduces the number of isolated
populations (at home or in hospital). However, there is more benefit to controlling the
population with mild symptoms compared to people in the hospital with severe or critical
symptoms. When applying the control to all three categories of quarantined, hospitalized,
and critical cases of COVID-19, it is clear that the control is obvious.

The three types of optimal controls are given in Figures 7–9. Those figures show the
intensity of each measure needed to be implemented in the case of imperfect vaccination.
The awareness campaign should stay as long as 7 weeks with maximum intensity. At the
same time, non-pharmaceutical measures must take place, including mobility restrictions
or lockdown for at least 24 days. With regard to the third control measure, the improvement
of the vaccine population should increase to reach possible efficacy during the first week of
vaccination and stay above 30% within the first 50 days of vaccination. The outcome of this
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control approach shows that these three measures must be simultaneously implemented to
deal with imperfect vaccination.
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Figure 4. Time series of the states S, I and R without and with control.
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Figure 5. The time series of states V, E and D without and with control.
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Figure 6. Time series of the states Q, H and C with and without control.
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Figure 8. Evolutionary dynamics of the control u2(t).
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Figure 9. Evolutionary dynamics of the control u3(t).

8. Conclusions

COVID-19 is still taking a toll on people’s lives all over the world. Countries are
rushing to implement the vaccination to gain herd immunity, to contain the spread of the
disease, and to bring the fatality rate of the disease to the lowest possible level. However,
the administered vaccines have different levels of efficacy among the same population,
which means the idea of relying on vaccination alone to control the pandemic would not
provide total protection for the population against further waves of COVID-19. In this work,
we aimed to present a mathematical model of the imperfect vaccination of COVID-19 and
to study the dynamics of this model. One further element of this model is that susceptible
and vaccinated people have different infection rates and the fatality rate of the disease
(rate of death due to the infection) is related to the percentage of the isolated population
that is in critical condition. We derive a threshold R0 which is the basic reproduction
number of disease transmission among the population. We showed that this threshold
does not give us sharp epidemiological properties of the model. In fact, we prove, via the
Lyapunov method, that the disease is globally asymptotically stable if R0

Total ≤ 1 with
R0

Total is the sum of R0 and R0
v, which is the threshold of transmission of the disease
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among the vaccinated population. This finding shows that the increase in the efficacy of
the vaccination should lead to protecting the population from infection (low β3 and β4)
which will help control the pandemic.

To make our analysis more realistic, we estimated the parameters of our model using
data from Morocco between 1 February 2021 and 25 March 2021. Within the range of
the estimated parameters, we performed a sensitivity analysis of R0

Total with respect to
the parameters of the model to find the elasticity index with respect to each parameter.
Depending on the disease status, our simulation (3) produced four outcomes. Scenario 1:
There is no disease persistence. Scenario 2: Persistence of diseases with low threshold
values. Scenario 3: The disease persists with a high endemicity among vaccinated people
and a low endemicity among non-vaccinated people. Scenario 4: The disease persists,
with low endemicity among the vaccinated and high endemicity among the unvaccinated.

To further investigate the possible additional measures that help with vaccination.
We introduce an optimal control problem with the goal of increasing the awareness of
vaccination, limiting the probability of infection by adhering to a preventative protocol
and increasing the efficacy of the vaccine. The public health authorities can easily imple-
ment these measures. In fact, as the virus mutates, many governments are pushing their
populations to get vaccinated and asking people to reduce their contact and wear masks.
Moreover, there is a constant effort to increase the efficacy of the vaccine by producing new
ones or by boosters.

Our solution of optimal control showed that, to reduce the impact of imperfect vacci-
nation, we needed a longer awareness campaign to engage the population in vaccination.
On the other hand, the restriction on population mobility should not be long, since our
simulation showed a drop of u2 from 1 (full restriction) after 24 days. To ensure the full
protection of the health population, vaccination efficacy must increase by 30% in the first
50 days.

In conclusion, our work showed that facing the imperfection of the vaccination of
COVID-19, we mainly have to focus on two measures. The first one is to increase awareness
of the importance of vaccination, which will increase the number of people vaccinated.
The second is to work on developing vaccines with high efficacy that give more protection
to the population instead of making the symptoms of viruses less severe. With these two
measures, our study showed that population mobility restrictions have the lowest impact
on controlling the virus spread.
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