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Abstract: In this work, we propose a random mixed graph model Gn(p(n), q(n)) that incorporates
both the classical Erdős-Rényi’s random graph model and the random oriented graph model. We
show that the empirical spectral distribution of Gn(p(n), q(n)) converges to the standard semicircle
law under some mild condition, and the Monte Carlo simulation highly agrees with our result.
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1. Introduction

A mixed graph G = (V, E) is a graph with vertex set V = {v1, v2, . . . , vn} and edge
set E = {e1, e2, . . . , em}, in which some edges may be undirected and some may be directed.
In this paper, the Hermitian adjacency matrix is defined in such a way that the digons (i.e.,
a pair of arcs with the same end vertices but in opposite directions) may be thought of as
undirected edges. From this point of view, digraphs are equivalent to the class of mixed
graphs we consider here. The underlying graph of a mixed graph G, denoted by Γ(G), is
the undirected graph that keeps all vertices and edges of G and change every arc of G to an
undirected edge.

The notion of a mixed graph generalizes the classical approach of orienting either all
edges or none. Undirected graphs, oriented graphs and digraphs are special cases of mixed
graphs. We denote an edge (no matter it is directed or not) joining two vertices u and v in
G by uv. A subgraph of a mixed graph is called mixed walk, mixed path or mixed cycle if its
underlying graph is a walk, path or cycle, respectively. However, by the terms of order, size,
number of components, degree of a vertex, and distance, we mean that they are the same
as in their underlying graphs. Let W be a mixed walk of a mixed graph G, its underlying
graph Γ(W) (the undirected graph spanned by W in G) may contain parallel edges since W
may go through an edge or arcs (no matter in which direction) several of times and thus not
necessarily simple. If we take the edge set of Γ(W) without multiplicities, this edge set can
span a simple undirected graph which we denote it by Γ(W). For undefined terminology
and notation, we refer the reader to [1].

Let Gn(p, q) := Gn(p(n), q(n)) be a random mixed graph on the set of vertices
{v1, v2, . . . , vn} in which independently for each pair of vertices vk, v` (with k 6= `), there is
an undirected edge vkv` with probability p; there is an arc vkv` from vk to v` (and the reverse
arc v`vk does not occur) with probability q; there is an arc v`vk from v` to vk (and the reverse
directed edge does not occur) with probability q; and finally there is no any undirected edge
or arc between vk and v` with probability 1− p− 2q (with p, q, p + 2q ∈ [0, 1]). It is immedi-
ately to see that Gn(p, q) is a mixed graph. Note that if we set q = 0, then the model Gn(p, 0)
is the classical Erdős and Rényi’s random graph model, see [2]; if we set p = 0, then the
model Gn(0, q/2) is the random oriented graph model, see [3]; if we set q =

√
p− p, then

Gn(p,
√

p− p) is the random mixed graph model in [4]. Since the parameter q =
√

p− p,
it is easy to see that the random mixed graph model in [4] is not a generalization of the
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classical Erdős and Rényi’s random graph model. Thus, it is natural for us to build a rather
generalized random mixed graph model Gn(p, q), which incorporates both classical Erdős
and Rényi’s random graph model and the random oriented graph model.

Note that our model is different with the Łuczak and Cohen’s three-parameter random
digraphs model [5], as their parameters are absolute constants, but the parameters in our
model are functions on n, i.e., p = p(n) and q = q(n). What is more, they use their model
for the study of phase transition of a giant strongly connected component. We will use our
model for the study of empirical spectral distribution.

For a digraph G, its classical adjacency matrix is a 0− 1 matrix A(G) with rows and
columns indexed by the vertices of G, such that the uv-entry of A(G) is equal to 1 if there is
an arc from u to v and 0 otherwise. Thus, the classical adjacency matrix of a digraph is not
necessary to be symmetric or Hermitian, and thus we cannot guarantee all its eigenvalues
to be real. This fact makes the study of the spectrum of digraphs or mixed graphs more
difficult than that of undirected graphs. Therefore, Liu and Li [6] and Guo and Mohar [7]
independently introduced the Hermitian adjacency matrices of mixed graphs or digraphs.
In this work, we will make use of this concept to study the spectral distribution of random
mixed graphs.

For brevity, asymptotic notation is used under the assumption that n → ∞. For
functions f and g of parameter n, we use the notation: f = ω(g) if | f |/|g| → ∞ as n→ ∞.

The Hermitian adjacency matrix of Gn(p, q), denoted by H(Gn(p, q)) = (hk`)n×n (or
Hn, for brevity), satisfies that:

• Hn is a Hermitian matrix with hk` = h`k for 1 ≤ k, ` ≤ n and all diagonal entries
hkk = 0, 1 ≤ k ≤ n;

• The upper-triangular entries hk` (1 ≤ k < ` ≤ n) are independently identically
distributed (i.i.d.) copies of a random variable ξ, which takes value 1 with probability
p, i with probability q, −i with probability q, and 0 with probability 1− p− 2q,

where i is the imaginary unit with i =
√
−1. Note that E(ξ) = 1 · p + i · q + (−i)q + 0 ·

(1− p− 2q) = p, and

σ2 : = Var(ξ) = E[(ξ − E(ξ))(ξ − E(ξ))] = E(|ξ|2)− |E(ξ)|2

= 1 · [p + 2q] + 0 · (1− p− 2q)− p2

= p + 2q− p2.

Let {Mn}∞
n=1 be a sequence of n × n random Hermitian matrices. Suppose that

λ1(Mn), λ2(Mn), . . . , λn(Mn) are the eigenvalues of Mn. The empirical spectral distribution
(ESD) of Mn is defined by

FMn(x) =
1
n

#{λk(Mn)|λk(Mn) ≤ x, k = 1, 2, · · · , n},

where #{·} is the cardinality of the set.
The distribution to which the ESD of Mn converges as n → ∞ is called the limiting

spectral distribution (LSD) of {Mn}∞
n=1.

Wigner matrix, denoted by Xn, is an n× n random Hermitian matrix satisfying:

• The upper-triangular entries xk` (1 ≤ k < ` ≤ n) are i.i.d. complex random variables
with zero mean and unit variance;

• The diagonal entries xkk (1 ≤ k ≤ n) are i.i.d. real random variables, independent of
the upper-triangular entries, with zero mean;

• For each positive integer r, max{E(|x11|r), E(|x12|r)} < ∞.
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Let {Xn}∞
n=1 be a sequence of Wigner matrices. Then, Wigner’s Semicircle Law [8]

says that, with probability 1, the ESD of n−1/2Xn converges to the standard semicircle
distribution whose density is given by

ρ(x) =
{ 1

2π

√
4− x2, for |x| ≤ 2,

0, for |x| > 2.

Before we give our main results and their proofs, we need the following results.

Lemma 1 (See [9] Lemma 2.4). The number of closed mixed walks of length 2s, which went
through each of its edge vkv` from vertex vk to vertex v` once and its reverse from vertex v` to vertex
vk once and the underlying graph of the closed mixed walk of a tree is 1

s+1 (
2s
s ).

Lemma 2 (See [9] Lemma 2.1). For a non-negative integer r, we have

∫ 2

−2
xrρ(x)dx =

{
0, for r = 2s + 1,

1
s+1 (

2s
s ), for r = 2s.

Lemma 3 (See [9] Theorem A.43). Let A and B be two n× n Hermitian matrices, then

‖FA − FB‖ ≤ 1
n

rank(A− B),

where ‖ f ‖ := supx| f (x)| for a function f (x), and FA means the ESD of A.

Lemma 4 (Dini’s theorem, see [10] p. 64). Suppose that the sequence of continuous functions
{sn(x)} converges to continuous function s(x) on [a, b] pointwisely. If, for any x ∈ [a, b], the
sequence {sn(x)} is monotone, then {sn(x)} converges to s(x) uniformly.

The following result is from [11] p. 264, and we give a proof of it in Appendix A.

Lemma 5. For any distribution function H, if
∫
|x|kdH < ∞, then

lim
n→∞

(
n(k−s)/2

∫
|x|<
√

n
|x|sdH

)
= 0, ∀s ≥ k + 1.

Lemma 6 (Bernstein’s inequality, see [9] p. 21). If X1, X2, · · · , Xn are independent random
variables with mean zero and uniformly bounded by b, then for any ε > 0,

P(|Sn| ≥ ε) ≤ 2 exp(− ε2

2(B2
n + bε)

),

where Sn = X1 + X2 + · · ·+ Xn and B2
n = E(S2

n).

Lemma 7 (Borel–Cantelli lemma, see [12] Theorem 3.18). Let E1, E2, · · · be a sequence of events
in some probability space. If the sum of the probabilities of the En is finite, that is ∑∞

n=1 P(En) < ∞,
then the probability that infinitely many of them occur is 0, that is,

P(lim sup
n→∞

En) = 0.

Remark 1. As a result of Lemma 7, for any ε > 0 and any sequence {Xn} of random variables,
we have
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1. If ∑∞
n=1 P(|Xn| ≥ ε) < ∞, then Xn → 0 a.s.

2. If ∑∞
n=1 E|Xn − X|k < ∞, k > 0, then Xn → X a.s.

Define
Mn :=

1
σ
[Hn − p(Jn − In)] = (ηk`),

where p := p(n) is the parameter from Gn(p, q), σ =
√

p(1− p) + 2q, Jn is the all-ones
matrix of order n and In is the identity matrix of order n. It is easy to check that

• Mn is Hermitian matrix;
• The diagonal entries ηkk = 0 and the upper-triangular entries ηk`(1 ≤ k < ` ≤ n) are

i.i.d. copies of random variable η which takes value 1−p
σ with probability p, i−p

σ with
probability q, −i−p

σ with probability q, and −p
σ with probability 1− p− 2q.

Note that E(η) = E( ξ−p
σ ) = E(ξ)−p

σ = 0, Var(η) = Var( ξ−p
σ ) = Var(ξ)

σ2 = 1 and the
expectation

E(|η|s) =E(| ξ − p
σ
|s) = E(|ξ − p|s)

σs

=
|1− p|s · p + |i− p|s · q + |−i− p|s · q + |0− p|s · (1− p− 2q)

(p + 2q− p2)s/2

=
p(1− p)s + 2q(1 + p2)s/2 + (1− p− 2q)ps

(p(1− p) + 2q)s/2 .

(1)

On one hand, since 0 ≤ p := p(n), q := q(n), 1− p− 2q ≤ 1, it can easily see from (1)
that if σ2 = p(1− p) + 2q 9 0 as n→ ∞, then E(|η|s) < ∞ for every positive integer s as
n → ∞. Then {Mn}∞

n=1 is a sequence of Wigner matrices and hence LSD of {Mn}∞
n=1 is

immediate by the Wigner’s Semicircle Law. On the other hands, if σ2 → 0 as n→ ∞, then
E(|η|s)→ ∞ for every positive integer s ≥ 3 as n→ ∞. Then, {Mn}∞

n=1 is not a sequence
of Wigner matrices. Thus, if σ2 → 0 as n→ ∞, the LSD of Mn cannot be directly derived
by the Wigner’s Semicircle Law. In fact, if σ2 → 0 as n → ∞, then either p → 0, q → 0 or
p→ 1, q→ 0.

For the case p→ 0, q→ 0, we have

E(|η|s) ≥ p(1− p)s

(p(1− p) + 2q)s/2 ≥
p(1− p)s

ps/2(1− p)s/2 =
(1− p)s/2

ps/2−1 → +∞.

For the case p→ 1, q→ 0, we have

E(|η|s) ≥ (1− p− 2q)ps

(p(1− p) + 2q)s/2 ≥
(1− p)ps

ps/2(1− p)s/2 =
ps/2

(1− p)s/2−1 → +∞.

From the discussion above, we have:

Lemma 8. The sequence of matrices {Mn}∞
n=1 are Wigner’s matrices if and only if σ2 9 0.

Now, we arrive at the main results in the following, which say that even when σ2 → 0,
we still can get the semicircle distribution of LCD of the corresponding sequences of
matrices if nσ2 → ∞ holds.

Theorem 1. Let {Hn}∞
n=1 be a sequence of Hermitian adjacency matrices of random mixed graphs

{Gn(p, q)}∞
n=1 with p := p(n), q := q(n) and σ2 = p(1− p)+ 2q (0 ≤ p, q, 1− (p+ 2q) ≤ 1).

If σ2 = ω( 1
n ), then with probability 1, the ESD of 1

σ
√

n Hn converges to the standard semicircle
distribution with density ρ(x).
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Note that the above result considers an ensemble of random Hermitian matrices, to
which the corresponding random mixed graphs are not necessarily connected. Before we
proceed to the proof, we use the Monte Carlo method to demonstrate Theorem 1, and it is
easy to see from Figure 1 that

1. As nσ2 changes from a small value to relatively large value, the ESD becomes more
and more close to the semicircle distribution.

2. In the first row of the Figure 1, we set p = 0, n = 1000 and changes q increasingly
from 0.001 to 0.1 (from right to left), then nσ2 is getting larger and larger, and the ESD
is getting more and more close to the semicircle distribution.

3. In the second row, the similar things happen as the first line except that we fix q = 0,
n = 1000 and change p increasingly from 0.001 to 0.1 (from right to left).

4. In the third row, we fix n = 1000 and increase the values of p, q (from right to left). At
this time, we find nσ2 increases simultaneously with p, q and the ESD is getting more
and more close to the semicircle distribution.

5. In the fourth row, we fix p = q = 0.01 and change n from 10, 100, 10,000 (from right
to left) and at the meantime corresponding nσ2 increases. Finally, we restore the
semicircle law.

6. In the fifth row we fix q = 0.01, n = 1000 and increase the value of p and we find that
nσ2 changes from 110 to 270 (from right to left). All ESDs fit with the semicircle law
very well.

Figure 1. Simulation for Theorem 1.

Remark 2. The result of the theorem means that if σ2 = ω( 1
n ), then for any bounded continuous

function f , we have ∫
f (x)dF

1
σ
√

n Hn(α)(x)→
∫

f (x)dF(x) a.s.

Clearly,
1
n

n

∑
i=1

f (λi)→
∫

f (x)ρ(x)dx a.s.

Here, λi := λi(
1

σ
√

n Hn(α)) is the eigenvalue of the matrix 1
σ
√

n Hn(α). The proof is exactly the
Theorem 1.15 in [13] and we omit it.

Remark 3. If we set q = 0, then our model Gn(p, 0) is the classical Erdős and Rényi’s random
graph model. Since if p = ω( 1

n ), then σ2 = ω( 1
n ). Thus, we could get the result of Theorem 1.3

in [14] as a corollary. Note that the paper [14] is to deal with a much more difficult situation and
the original proof of Wigner [8] may be extended without difficulty to derive Theorem 1.3.
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Since σ2 = ω( 1
n ) is equivalent to p = ω( 1

n ) or 1− p = ω( 1
n ). We could say more than that.

Corollary 1 ([14]). Let {Hn}∞
n=1 be a sequence of adjacency matrices of random graphs {Gn(p, 0)}∞

n=1
with p := p(n) and σ2 = p(1− p) (0 ≤ p, 1− p ≤ 1). If p = ω( 1

n ) or 1− p = ω( 1
n ), then

with probability 1, the ESD of 1
σ
√

n Hn converges to the standard semicircle distribution with
density ρ(x).

Remark 4. If we set p = 0, then our model Gn(0, q/2) is essentially the random oriented graph
model since the skew-adjacency matrix S(G) = iH(G) for an oriented graph G. Therefore, they
share the same spectral distribution. Since if q = ω( 1

n ), then σ2 = ω( 1
n ). Thus, we could get the

result of Theorem 3.1 in [3] as a corollary.

Corollary 2 ([3]). Let {Hn}∞
n=1 be a sequence of Hermitian adjacency matrices of random oriented

graphs {Gn(0, q/2)}∞
n=1 with q := q(n) and σ2 = q (0 ≤ q ≤ 1). If q = ω( 1

n ), then
with probability 1, the ESD of 1

σ
√

n Hn converges to the standard semicircle distribution with
density ρ(x).

The proof of Theorem 1 will be given in the sequel. We shall first prove the following result.

Theorem 2. If σ2 = ω( 1
n ), then with probability 1, the ESD of Tn := n−1/2Mn converges to the

standard semicircle distribution.

Proof. Denote Tr,n the r-th moment of the ESD of Tn. Since the standard semicirlular
distribution F has finite support, it is uniquely characterized by its sequences of moments.
Thus, to prove the weak convergence of FTn to F, it is equivalent to prove the convergence
of moments by the Moment Convergence Theorem (see, e.g., [9]), that is

Tr,n =
∫

xrdFTn(x)→
∫

xrρ(x)dx a.s. n→ ∞, r = 1, 2, . . . (2)

Since

Tr,n =
∫

xrdFTn(x) =
1
n

n

∑
k=1

λr
k(Tn)

=
1
n

trace(Tr
n) =

1
n

trace[(
1√
n

Mn)
r]

=
1

n1+r/2 trace(Mr
n)

=
1

n1+r/2 ∑
1≤k1,...,kr≤n

ηk1k2 ηk2k3 · · · ηkrk1 ,

(3)

where W := vk1 vk2 · · · vkr−1 vkr vk1 corresponds to a closed mixed walk of length r in the
complete digraph DKn of order n, and DKn is formed by replacing every undirected edge
with a pair of arcs in opposite directions in the complete undirected graph Kn of order n.
For each edge vkv` ∈ E(Γ(W)), let qW

k` be the number of times that the walk W goes from
vertex vk to vertex v`. Let mW

k` := qk` + q`k. If there is no ambiguity, we will omit the upper
symbol for brevity.

Let
η(W) := ∏

vkv`∈E(Γ(W))

η
qk`
k` η

q`k
`k .

Then we rewrite (3) as

Tr,n =
1

n1+r/2 ∑
W

η(W) =
1

n1+r/2 ∑
W

∏
vkv`∈E(Γ(W))

η
qk`
k` η

q`k
`k . (4)
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Here, the summation is taken over all closed mixed walks W of length r. Note that
all different edges (with different pair of end vertices) of a mixed graph are mutually
independent, we have

E(Tr,n) =
1

n1+r/2 ∑
W

E(η(W)) =
1

n1+r/2 ∑
W

∏
vkv`∈E(Γ(W))

E(ηqk`
k` η

q`k
`k ). (5)

Define M̃n = (η′k`), where

η′k` =

{
ηk`, if |ηk`| <

√
n,

0, if |ηk`| ≥
√

n.

Let

T̃n =
1√
n

M̃n = (
η′k`√

n
),

and T′r,n be the r-th moment of the ESD of the matrix T̃n. Similar to (3)–(5), we have

T′r,n =
1

n1+r/2 ∑
W

η′(W) =
1

n1+r/2 ∑
W

∏
vkv`∈E(Γ(W))

η′
qk`
k` η′

q`k
`k , (6)

and
E(T′r,n) =

1
n1+r/2 ∑

W
E(η′(W)) =

1
n1+r/2 ∑

W
∏

vkv`∈E(Γ(W))

E(η′qk`
k` η′

q`k
`k ). (7)

Next, we will prove that

Fact 1. limn→∞ E(T′r,n) =
∫ 2
−2 xrρ(x)dx =

{
0, for r = 2s + 1,

1
s+1 (

2s
s ), for r = 2s.

.

Fact 2. limn→∞ T′r,n = limn→∞ E(T′r,n) a.s.

Fact 3. limn→∞ Tr,n = limn→∞ T′r,n a.s.

Combining the above Facts 1–3, we show (2) and complete the proof.

1.1. Proof of Fact 1

Proof. The second equality is just the Lemma 2. Now, we consider the remaining equality.
We decompose E(T′r,n) into parts Em,r,n, m = 1, 2, . . . , r, containing the m-fold sums,

E(T′r,n) =
r

∑
m=1

Em,r,n, (8)

where

Em,r,n =
1

n1+r/2 ∑
W:|E(Γ(W))|=m

E(η′(W)) :=
1

n1+r/2 ∑
W:|E(Γ(W))|=m

∏
vkv`∈E(Γ(W))

E(η′qk`
k` η

′q`k
`k ), (9)

Here, the summation in (9) is taken over all closed mixed walks W of length r with
|E(Γ(W))| = m. Additionally, |E(Γ(W))| = m means that the cardinality of the edge set of
Γ(W) is m and thus |V(Γ(W))| ≤ m + 1.
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For a closed mixed walk W := vk1 vk2 · · · vkr−1 vkr vk1 . Its underlying graph Γ(W) is
connected since there exists an edge between any two vertices vj and vj+1, j = 1, . . . , r− 1.
Note that Γ(W) is a multigraph and Γ(W) is a simple graph. For a closed mixed walks W
of length r with |E(Γ(W))| = m, if it goes through some edge only once, then E(W) = 0.
Hence, if m > b r

2c, then there must be some edge that appears only once in W and thus
E(W) = 0. In the following, we only consider closed mixed walks W of length r with
m ≤ b r

2c and mk` ≥ 2 for all edges vkv` in Γ(W).
If mk` = 2 for an edge vkv` in Γ(W). Then,

E(η′qk`
k` η

′q`k
`k ) ≤ E(|η′|2) = E(|η|2 I|η|<√n) ≤ E(|η|2) = 1 as n→ ∞

If mk` ≥ 3 for an edge vkv` in Γ(W). Then, by Lemma 5 with k = 2 and E(|η′|2) ≤
E(|η|2) = 1, we have

E(η′qk`
k` η

′q`k
`k ) ≤ E(|η′k`|

qk` |η′`k|
q`k ) = E(|η′k`|

mk`) = o(nmk`/2−1) as n→ ∞

Moreover, we have
E(η′qk`

k` η
′q`k
`k ) ≤ E(|η′k`|

mk`) ≤ nmk`/2−1 (10)

for every edge vkv` in Γ(W) with mk` ≥ 2.
Therefore, if we decompose the edge set of Γ(W) into the following set:

E2(W) := {vkv`|mk` = 2 in Γ(W)},
E3(W) := {vkv`|mk` ≥ 3 in Γ(W)},

then ∑
vkv`∈E2(W)

mk` + ∑
vkv`∈E3(W)

mk` = r and |E2(W)|+ |E3(W)| = m and we have

E(η′(W)) = ∏
vkv`∈Γ(W)

E(η′qk`
k` η

′q`k
`k ) ≤ ∏

vkv`∈Γ(W)

E(|η′k`|
mk`)

= ∏
vkv`∈E2(W)

E(|η′k`|
mk`) ∏

vkv`∈E3(W)

E(|η′k`|
mk`)

≤ ∏
vkv`∈E2(W)

nmk`/2−1 ∏
vkv`∈E3(W)

o
(

nmk`/2−1
)

Thus, if |E3(W)| = 0, we get E(η′(W)) ≤ 1; for otherwise

E(η′(W)) ≤ ∏
vkv`∈E2(W)

nmk`/2−1 · ∏
vkv`∈E3(W)

o(nmk`/2−1)

= n
∑

vkv`∈E2(W)
(mk`/2−1)

· o
(

n
∑

vkv`∈E3(W)
(mk`/2−1))

= o(nr/2−m)

Note that |E(Γ(W))| = m, |V(Γ(W))| ≤ m + 1, and then the number of such closed walks
W of length r is at most nm+1 · (m + 1)r.

Now, we consider the following two cases.
Case 1. The closed walks W of length r with E3(W) 6= ∅.
We have
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Em,r,n =
1

n1+r/2 ∑
W:|E(Γ(W))|=m

∏
vkv`∈Γ(W)

E(η′qk`
k` η′

q`k
`k )

≤ 1
n1+r/2 ∑

W:|E(Γ(W))|=m
∏

vkv`∈Γ(W)

E(|η′k`|
mk`)

=
1

n1+r/2 ∑
W:|E(Γ(W))|=m

∏
vkv`∈E2(W)

E(|η′k`|
mk`) ∏

vkv`∈E3(W)

E(|η′k`|
mk`)

≤ 1
n1+r/2 ∑

W:|E(Γ(W))|=m
∏

vkv`∈E2(W)

(nmk`/2−1) ∏
vkv`∈E3(W)

o(nmk`/2−1)

≤ nm+1(m + 1)r

n1+r/2 · o(nr/2−m)

= (m + 1)r · o(1)→ 0 as n→ ∞.

Case 2. The closed walks W of length r with E3(W) = ∅.
We then have E(η′(W)) ≤ 1 by the above discussion. We divide this case into two

subcases according to the cardinality of V(Γ(W)).
Subcase 2.1. The closed walks W of length r with |V(Γ(W))| ≤ m.
We have that the number of such closed walks W of length r is at most nm ·mr and

1
n1+r/2 ∑

W:|E(Γ(W))|=m,
|V(Γ(W))|≤m

E(η′(W))

≤ 1
n1+r/2 ∑

W:|E(Γ(W))|=m,
|V(Γ(W))|≤m

1

≤ nm ·mr

n1+r/2

=
mr

n1+r/2−m

≤ mr

n
→ 0 as n→ ∞.

Case 2.2. The closed walks W of length r with |V(Γ(W))| = m + 1 and E3(W) = ∅.
We have that mk` = 2 for each edge vkv` ∈ E(Γ(W)). Since Γ(W) is connected, Γ(W)

is a tree with m + 1 vertices and qk` = 1, q`k = 1 for every edge vkv` ∈ Γ(W). Then, r = 2m
and W is a closed mixed walk of length 2m, which satisfies the condition of Lemma 1. By
Lemma 1, the number of such W is 1

m+1 (
2m
m ). The number of ways to choose m + 1 vertices

of W with the natural order of first appearance in W from n vertices is n(n− 1) · · · (n−m).
Note that E(η′(W)) ≤ 1 and E(η′(W))→ 1, as n→ ∞. Thus,

1
n1+m ∑

W:|E(Γ(W))|=m,
|E(Γ(W))|=m+1

E(η′(W))

→ 1
n1+m ∑

W:|E(Γ(W))|=m,
|V(Γ(W))|≤m

1 =
n(n− 1) · · · (n−m)

n1+m
1

m + 1

(
2m
m

)

=
n1+m(1 + O(n−1))

n1+m · 1
m + 1

(
2m
m

)
= (1 + O(n−1)) · 1

m + 1

(
2m
m

)
→ 1

m + 1

(
2m
m

)
as n→ ∞.
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Therefore,

lim
n→∞

Em,2m,n =
1

m + 1

(
2m
m

)
.

From the above discussion, we have

lim
n→∞

E(T′r,n) =

{ 1
m+1 (

2m
m ), for r = 2m.

0, otherwise

which completes the proof.

1.2. Proof of Fact 2

Proof. Note that T′r,n = 1
n1+r/2 ∑W η′(W) and since T′r,n is a real random variable and so is

E(T′r,n), we have

E[|T′r,n − E(T′r,n)|4] = E[(T′r,n − E(T′r,n))
4] =

1
n4+2r ∑

W1,...,W4

E
( 4

∏
k=1

[η′(Wk)− E(η′(Wk)]

)
, (11)

due to the symmetric of Wk (k = 1, 2, 3, 4), where Wk (k = 1, . . . , 4) corresponds to a closed
mixed walk of length r in the complete digraph of order DKn. We aim to show the righthand
side in Equation (11) is O(n−2). Let k0 ∈ {1, 2, 3, 4}. If Γ(Wk0) has no any common edge
with Γ(W \Wk0), where W := W1 ∪W2 ∪W3 ∪W4, then the corresponding expectation of
the summand in Equation (11) is zero. If there is an edge vk0 v`0 whose number of occurrence
in Γ(W) is 1, then the corresponding expectation of the summand in Equation (11) is also
zero. Thus, we only have to consider the case when no edge vk0 v`0 ∈ E(Γ(W)) with
mW

k0`0
= 1 and each Γ(Wk) must share at least one edge with Γ(W \Wk) for k = 1, 2, 3, 4

below. Thus,

E
(
|T′r,n − E(T′r,n)|4

)
=

1
n4+2r ∑

W1,...,W4

E
( 4

∏
k=1

[η′(Wk)− E(η′(Wk))]

)

=
1

n4+2r ∑
W1,...,W4

[
E
( 4

∏
`=1

η′(W`)
)
− 4E

(
η′(W1)

)
E
( 4

∏
`=2

η′(W`)
)

+ 6E
(
η′(W1)η

′(W2)
)
E
(
η′(W3)η

′(W4)
)
− 3

4

∏
`=1

E
(
η′(W`)

)]

≤ 1
n4+2r ∑

W1,...,W4

[
|E
( 4

∏
`=1

η′(W`)
)
|+ 4|E

(
η′(W1)

)
E
( 4

∏
`=2

η′(W`)
)
|

+ 6|E
(
η′(W1)η

′(W2)
)
E
(
η′(W3)η

′(W4)
)
|+ 3|

4

∏
`=1

E
(
η′(W`)

)
|
]

.

For closed mixed walks Wk (k = 1, . . . , 4) of length r, let |E(Γ(W)| = x, |E(Γ(W1))| = x1,
|E(Γ(⋃4

j=2 Wj))| = x2, then x ≤ x1 + x2, x1 ≤ r/2, x2 ≤ 3r/2, x ≤ 2r and

∑
vkv`∈E(Γ(W))

mW
k` = 4r,

which implies

|E(η′(W1))| ≤ nr/2−x1 , |E(
4

∏
j=2

η′(Wj))| ≤ n3r/2−x2 .

Thus,

|E(η′(W1))E(
4

∏
j=2

η′(Wj))| ≤ n4r/2−x1−x2 ≤ n2r−x.
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Similarly, we have

|E(η′(W1))E(η′(W2))E(
4

∏
j=3

η′(Wj))| ≤ n2r−x

and
|E(η′(W1))E(η′(W2))E(η′(W3))E(η′(W4))| ≤ n2r−x

Therefore,

E
(
|T′r,n − E(T′r,n)|4

)
≤ 1

n4+2r ∑
W1,...,W4

14n2r−x =
14
n4 ∑

W1,...,W4

n−x.

Since Wj is a closed mixed walk of length r, Γ(Wj) (j = 1, 2, 3, 4) is connected. Combining
the previous discussions, the connected components of Γ(W) is at most 2. Then, there are at
most x + 2 vertices in Γ(W), which means that the number of such W is at most nx+2c(x, r)
with c(x, r) a constant only depending on x and r. Hence,

14
n4 ∑

W1,...,W4
|E(Γ(W)|=x

n−x ≤ 14
n4

2r

∑
x=1

n2 · c(x, r) = O(n−2).

Thus, for every positive integer r

∞

∑
n=1

E
(
|T′r,n − E(T′r,n)|4

)
=

∞

∑
n=1

O(n−2) < ∞

By Lemma 7, we have limn→∞ T′r,n = limn→∞ E(T′r,n) a.s. This finishes the proof of
Fact 2.

1.3. Proof of Fact 3

Proof. Note that
Tr,n =

∫
xrdFTn(x) =

∫
xrdFn−1/2 Mn(x)

and
T′r,n =

∫
xrdFT̃n(x) =

∫
xrdFn−1/2 M̃n(x).

So we have

‖FTn − FT̃n‖ = ‖Fn−1/2 Mn − Fn−1/2 M̃n‖ ≤ 1
n

rank(n−1/2Mn − n−1/2M̃n) =
1
n

rank(Mn − M̃n).

Notice that rank(Mn − M̃n) ≤ the number of nonzero entries in Mn − M̃n, which is
bounded by ∑1≤j,k≤n I|ηjk |≥

√
n, where

I{|ηjk |≥
√

n} =

{
1, if |ηjk| <

√
n,

0, if |ηjk| ≥
√

n.

Then
‖FTn − FT̃n‖ ≤ 1

n ∑
1≤j 6=k≤n

I|ηjk |≥
√

n.

Note that ηjk = ηkj, we get

‖FTn − FT̃n‖ ≤ 2
n ∑

1≤j<k≤n
I|ηjk |≥

√
n
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Here, the summation occurs among n2−n
2 terms. We can show the convergence to zero in

the righthand side almost surely using Lemma 6. In fact, set βn = P(|η| ≥
√

n), and for
any ε > 0, we consider

P(
1
n ∑

1≤j<k≤n
I|ηjk |≥

√
n ≥ ε) =P( ∑

1≤j<k≤n
(I|ηjk |≥

√
n − βn) ≥ εn− βn ·

n2 − n
2

)

≤2 exp(−
(εn− βn · n2−n

2 )2

2[ n2−n
2 (βn − β2

n) + εn− βn · n2−n
2 ]

)

=2 exp(−
(ε− βn · n−1

2 )2 · n
2(ε− n−1

2 β2
n)

).

Here, we have used E(I|ηjk |≥
√

n − βn) = 0 and Var(I|ηjk |≥
√

n − βn) = βn − β2
n. Note that

(ε− βn · n−1
2 )2

ε− n−1
2 β2

n
≥
(ε− βn · n−1

2 )2

ε− n−1
2 βn

= ε− βn(n− 1)
2

≥ ε− nβn

2

Claim. If σ2 = ω( 1
n ), then βn = ω( 1

n ).

If s be any integer no less than 3, then by the Markov’s inequality

nβn = nP(|η| ≥
√

n) ≤ n
E(|η|s)
(
√

n)s

=n
p(1− p)s + 2q(1 + p2)s/2 + (1− p− 2q)ps

[n(p + 2q− p2)]s/2

=
np(1− p)s + 2nq(1 + p2)s/2 + n(1− p− 2q)ps

[np(1− p) + 2nq]s/2

=
np(1− p)s

[np(1− p) + 2nq]s/2 +
2nq(1 + p2)s/2

[np(1− p) + 2nq]s/2 +
n(1− p− 2q)ps

[np(1− p) + 2nq]s/2 .

(12)

By direct calculation, we get that each of the last three summands in (12) tends to zero
if σ2 = ω( 1

n ).
By the claim above nβn → 0 if σ2 = ω( 1

n ), we can limit it less than ε and then we have

P(
1
n ∑

1≤j<k≤n
I|ηjk |≥

√
n ≥ ε) ≤ 2 exp(− ε

2
n).

Finally we get
∞

∑
n=1

P(
1
n ∑

1≤j<k≤n
I|ηjk |≥

√
n ≥ ε) < ∞,

which completes the proof by Lemma 7.

2. Proof of Theorem 1

Proof. Recall that
Tn = n−1/2Mn =

1
σ
√

n
[(Hn + pIn)− pJn],

and set
T∗n =

1
σ
√

n
(Hn + pIn).

Then
T∗n − Tn =

p
σ
√

n
Jn.
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By Lemma 3, we have

‖FT∗n − FTn‖ ≤ 1
n
· rank(

p
σ
√

n
Jn) =

1
n

.

This implies that T∗n and Tn have the same LSD. By Theorem 2, we have

lim
n→∞

FT∗n (x) = lim
n→∞

FTn(x) = F(x) :=
∫ x

−∞
ρ(x)dx a.s.

Set T∗∗n = 1
σ
√

n Hn. Note that

T∗n − T∗∗n =
p

σ
√

n
In =: ∆n In,

and

lim
n→∞

∆2
n = lim

n→∞

p2

nσ2 = 0 as σ2 = ω(
1
n
).

Since T∗n = T∗∗n + ∆n In, we have that λ is an eigenvalue of T∗∗n if and only if λ + ∆n is an
eigenvalue of T∗n . By the definition of FT∗n , FT∗∗n , we know

FT∗∗n (x) =
1
n

#{λ(T∗∗n )|λ(T∗∗n ) ≤ x, i = 1, 2, . . . , n}

=
1
n

#{λ(T∗∗n )|λ(T∗∗n ) + ∆n ≤ x + ∆n, i = 1, 2, . . . , n}

=
1
n

#{λ(T∗n )|λ(T∗n ) ≤ x + ∆n, i = 1, 2, . . . , n}

=FT∗n (x + ∆n).

Note that by Lemma 4 and the continuity of F(x), we have

lim
n→∞

FT∗n (x + ∆n) = lim
n→∞

[FT∗n (x + ∆n)− F(x + ∆n) + F(x + ∆n)]

= lim
n→∞

[FT∗n (x + ∆n)− F(x + ∆n)] + lim
n→∞

F(x + ∆n)

=F(x) a.s.

Finally we get
lim

n→∞
FT∗∗n (x) = lim

n→∞
FT∗n (x + ∆n) = F(x) a.s.

This completes the proof.

3. Conclusions

In this work, we propose a random mixed graph model Gn(p(n), q(n)). The model
generalizes the classical Erdős-Rényi’s random graph model and the random oriented
graph model. Furthermore, we give a sufficient condition, i.e., if σ2 = ω( 1

n ), then with
probability 1, the ESD of 1

σ
√

n Hn converges to the standard semicircle distribution. The
simulation result not only supports our theorem, but also indicates that the condition may
be necessary. We would like to resolve this problem in future work.
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Appendix A

Lemma A1. For p > 0, if E|X|p < ∞, then limx→∞ xpP(|X| > x) = 0.

Proof.

lim
n→∞

FT∗n (x)P(|X| > x) =
∫

Ω
I|X|>xdP ≤

∫
Ω

|X|p
xp I|X|>xdP

=
1
xp

∫
Ω
|X|p I|X|>xdP,

and |X|p I|X|>x converges to zero almost surely, by the dominated convergence theorem,
we have

∫
Ω|X|

p I|X|>xdP tends to zero.

The following result is from [15] with L(x) ≡ 1.

Lemma A2. Suppose nt+1P(|X| > n1/r)→ 0 as n→ ∞. For α > 0, 0 < γ ≤ 1, if α > r(t+ 1),
then ∫

|x|<nγ/r
|x|αdF(x) = o(nγ(αr−1−t−1)).

Proof of Lemma 5. Suppose that H is the distribution of random variable X. Taking p =
k, x =

√
n by Lemma A1 we have

nk/2P(|X| >
√

n) = o(1).

Taking r = 2, γ = 1, α = s, by Lemma A2, we have that nt+1P(|X| >
√

n) = o(1), which
yields that

∫
|x|<
√

n|x|
sdF(x) = o(ns/2−t−1) if s > 2(t + 1). Here we shall take t = k/2− 1

and then 2(t + 1) = k < s since s ≥ k + 1 > k. Meanwhile, s/2− t− 1 = (s− k)/2, i.e.,∫
|x|<
√

n
|x|sdF(x) = o(n(s−k)/2)

Finally we get

n(k−s)/2
∫
|x|<
√

n
|x|sdF(x) = o(1).
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