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Abstract: Here, in this article, we introduce and systematically investigate the ideas of deferred
weighted statistical Riemann integrability and statistical deferred weighted Riemann summability for
sequences of functions. We begin by proving an inclusion theorem that establishes a relation between
these two potentially useful concepts. We also state and prove two Korovkin-type approximation
theorems involving algebraic test functions by using our proposed concepts and methodologies.
Furthermore, in order to demonstrate the usefulness of our findings, we consider an illustrative
example involving a sequence of positive linear operators in conjunction with the familiar Bernstein
polynomials. Finally, in the concluding section, we propose some directions for future research
on this topic, which are based upon the core concept of statistical Lebesgue-measurable sequences
of functions.
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1. Introduction and Motivation

The relatively more familiar theory of ordinary convergence is one of the most im-
portant topics of study of sequence spaces. It has indeed gradually progressed to a very
high level of development. Two prominent researchers, Fast [1] and Steinhaus [2], indepen-
dently created a new idea in the theory of sequence spaces, which is known as statistical
convergence. This fruitful concept is extremely valuable for studies in various areas of pure
and applied mathematical sciences. It is remarkably more powerful than the traditional
convergence and has provided a vital area of research in recent years. Furthermore, such a
concept is closely related to the study of Real Analysis, Analytic Probability theory and
Number theory, and so on. For some recent related developments on this subject, the reader
can see, for example, the works in [3–18].

Suppose that E ⊆ N. Moreover, let

Ek = {η : η 5 k and η ∈ E}.
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Then, the natural (or asymptotic) density d(E) of E is

d(E) = lim
k→∞

|Ek|
k

= τ,

where τ is a real and finite number, and |Ek| is the cardinality of Ek.
A sequence (un) is said to be statistically convergent to α if, for each ε > 0,

Eε = {η : η ∈ N and |uη − α| = ε}

has zero natural density (see [1,2]). Thus, for every ε > 0,

d(Eε) = lim
k→∞

|Eε|
k

= 0.

We write
stat lim

k→∞
uk = α.

For a closed and bounded interval I := [a, b] ⊂ R, we define the partition of [a, b] as
an ordered set that is finite and we denote it as follows:

P := {(r0, r1, · · · , rk) : a = r0 < r1 < · · · < rk = b}.

We now divide the interval [a, b] into the following non-overlapping subintervals:

I1 := [r0, r1], I2 := [r1, r2], · · · , Ik := [rk−1, rk].

The resulting partition P is then given by

P := {[ri−1, ri] : i = 1, 2, 3, · · · , k}.

Next, in order to find the norm of the partition P, we have

‖P‖ := max{r1 − r0, r2 − r1, r3 − r2, · · · , rk − rk−1}.

Let γi (i = 1, 2, 3, · · · , k) be a point that is chosen arbitrarily from each of the
subintervals (I)k

i=1. We refer to these points as the tags of the subintervals. We also call the
subintervals associated with the tags the tagged partitions of I . We denote it as follows:

P := {([ri−1, ri]; γi) : i = 1, 2, 3, · · · , k}.

Let [a, b] ⊂ R. Suppose that, for each i ∈ N, there is a function hi : [a, b]→ R. We thus
construct the sequence (hi)i∈N of functions over the closed interval [a, b].

We now define a subsequence (hi)
k
i of functions with respect to the Riemann sum

associated with a tagged partition P as follows:

δ(hi;P) :=
k

∑
i=1

h(γi)(ri − ri−1).

We next recall the definition of the Riemann integrability.
A sequence (hk)k∈N of functions is Riemann-integrable to h on [a, b] if, for each ε > 0,

there exists σε > 0 such that, for any tagged partition P of [a, b] with ‖P‖ < σε, we have

|δ(hk;P)− h| < ε.

The definition of statistically Riemann-integrable functions is given as follows.
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Definition 1. A sequence (hk)k∈N of functions is statistically Riemann-integrable to h on [a, b] if,
for every ε > 0 and for each x ∈ [a, b], there exists σε > 0, and for any tagged partition P of [a, b]
with ‖P‖ < σε, the set

Eε = {η : η ∈ N and |δ(hη ;P)− h| = ε}

has zero natural density. That is, for every ε > 0,

d(Eε) = lim
k→∞

|Eε|
k

= 0.

We write
statRie lim

k→∞
δ(hk;P) = h.

By making use of Definition 1, we first establish an inclusion theorem as Theorem 1 below.

Theorem 1. If a sequence of functions (hk) is Riemann-integrable to h over [a, b], then (hk) is
statistically Riemann-integrable to the same function h over [a, b].

Proof. Given ε > 0, there exists σε > 0. Suppose that P is any tagged partition of [a, b]
such that ‖P‖ < σε. Then

|δ(hk;P)− h| < ε.

Since, for each ε > 0, P is any tagged partition of [a, b] such that ‖P‖ < σε, so we have

lim
k→∞

1
k
|{η : η ∈ N and |δ(hk;P)− h| = ε}| 5 lim

k→∞
|δ(hk;P)− h| < ε.

Consequently, by Definition 1, we get

statRie lim
k→∞

δ(hk;P) = h,

which completes the proof of Theorem 1.

Remark 1. In order to demonstrate that the converse of Theorem 1 is not true, we consider
Example 1 below.

Example 1. Let hk : [0, 1]→ R be a sequence of functions defined by

hk(x) =


1
2

(x ∈ Q∩ [0, 1]; k = j2, j ∈ N)

1
n

(otherwise).

(1)

It is easily seen that the sequence (hk) of functions is statistically Riemann-integrable to 0 over
the closed interval [0, 1], but it is not Riemann-integrable (in the usual sense) over [0, 1].

Motivated mainly by the above-mentioned investigations and developments, we in-
troduce and study the ideas of deferred weighted statistical Riemann integrability and
statistical deferred weighted Riemann summability of sequences of real-valued functions.
We first prove an inclusion theorem connecting these two potentially useful concepts. We
then state and prove two Korovkin-type approximation theorems with algebraic test func-
tions based on the methodologies and techniques that we have adopted here. Furthermore,
we consider an illustrative example involving a positive linear operator in conjunction with
the familiar Bernstein polynomials, which shows the effectiveness of our findings. Finally,
based upon the core concept of statistical Lebesgue-measurable sequences of functions, we
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suggest some possible directions for future research on this topic in the concluding section
of our study.

2. Deferred Weighted Statistical Riemann Integrability

Let (φk) and (ϕk) be sequences of non-negative integers with the regularity condi-
tions given

φk < ϕk and lim
k→∞

ϕk = +∞.

Moreover, let (pi) be a sequence of non-negative real numbers with

Pk =
ϕk

∑
i=φk+1

pi.

We then define the deferred weighted summability mean for ◦(hk;P) associated with
tagged partition P as follows:

W(δ(hk;P)) = 1
Pk

ϕk

∑
$=φk+1

p$δ(h$;P). (2)

We now present the following definitions for our proposed study.

Definition 2. A sequence (hk)k∈N of functions is said to be deferred weighted statistically Riemann-
integrable to h on [a, b] if, for all ε > 0, there exists σε > 0, and for any tagged partition P of [a, b]
with ‖P‖ < σε, the following set

{η : η 5 Pk and pη |δ(hη ;P)− h| = ε}

has zero natural density. Thus, for every ε > 0, we have

lim
k→∞

|{η : η 5 Pk and pη |δ(hη ;P)− k| = ε}|
Pk

= 0.

We write
DWRstat lim

k→∞
δ(hk;P) = h.

Definition 3. A sequence (hk)k∈N of functions is said to statistically deferred weighted Riemann
summable to h on [a, b] if, for all ε > 0 ∃ σε > 0 and for any tagged partition P of [a, b] with
‖P‖ < σε, the set

{η : η 5 k and |W(δ(hη ;P))− h| = ε}

has zero natural density. Thus, for all ε > 0, we have

lim
k→∞

|{η : η 5 k and |W(δ(hη ;P))− h| = ε}|
k

= 0.

We write
statDWR lim

k→∞
δ(hk;P) = h.

An inclusion theorem between the two new potentially useful notions in Definitions 2 and 3
is now given by Theorem 2 below.

Theorem 2. If the sequence (hk)k∈N of functions is deferred weighted statistically Riemann-
integrable to a function h over [a, b], then it is statistically deferred weighted Riemann summable to
the same function h over [a, b], but not conversely.
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Proof. Suppose that the sequence (hk)k∈N is deferred weighted statistically Riemann-
integrable to a function h on [a, b]. Then, by Definition 2, we have

lim
k→∞

|{η : η 5 Pk and pη |δ(hη ;P)− h| = ε}|
Pk

= 0.

Now, if we choose the two sets as follows,

Oε = {η : η 5 Pk and pη |δ(hη ;P)− h| = ε}

and
Oc

ε = {η : η 5 Pk and pη |δ(hη ;P)− h| < ε},

then we have

|W(δ(hk;P))− h| =
∣∣∣∣∣ 1
Pk

ϕk

∑
$=φk+1

p$δ(h$;P)− h

∣∣∣∣∣
5

∣∣∣∣∣ 1
Pk

ϕk

∑
$=φk+1

p$

[
δ(h$;P)− h

]∣∣∣∣∣+
∣∣∣∣∣ 1
Pk

ϕk

∑
$=φk+1

p$h− h

∣∣∣∣∣
5

1
Pk

ϕk

∑
$=φk+1
(η∈Oε)

p$

∣∣δ(h$;P)− h
∣∣+ 1

Pk

ϕk

∑
$=φk+1
(η∈Oc

ε)

p$

∣∣δ(h$;P)− h
∣∣

+ |h|
∣∣∣∣∣ 1
Pk

ϕk

∑
$=φk+1

p$ − 1

∣∣∣∣∣
5

1
Pk
|Oε|+

1
Pk
|Oc

ε|.

We thus obtain
|W(δ(hk;P))− h| < ε.

Hence, clearly, the sequence of functions (hk) is statistically deferred weighted Riemann-
summable to h over [a, b].

The following example shows that the converse statement of Theorem 2 is not true.

Example 2. Let hk : [0, 1]→ R be a sequence of functions of the form given by

hk(x) =


0 (x ∈ Q∩ [0, 1]; k is even)

1 (x ∈ R−Q∩ [0, 1]; k is odd),

(3)

where
φk = 2k ϕk = 4k and pk = 1.

The above-specified sequence (hk) of functions trivially indicates that it is neither Riemann-
integrable nor deferred weighted statistically Riemann-integrable. However, as per our proposed
mean (2), it is easy to see that

W(δ(hk;P)) = 1
ϕk − φk

ϕk

∑
$=φk+1

δ(h$;P)

=
1
2k

4k

∑
m=2k+1

δ(h$;P) = 1
2

.



Axioms 2022, 11, 128 6 of 11

Thus, clearly, the sequence (hk) of functions has deferred weighted Riemann sum 1
2 under

the tagged partition P . Therefore, the sequence (hk) of functions is statistically deferred weighted
Riemann-summable to 1

2 over [0, 1], but it is not deferred weighted statistically Riemann-integrable
over [0, 1].

3. Korovkin-Type Approximation Theorems via the W(δ(hk;P))-Mean

Many researchers have worked toward extending (or generalizing) the approximation-
theoretic aspects of the Korovkin-type approximation theorems in several different areas of
mathematics, such as (for example) probability space, measurable space, sequence spaces,
and so on. In Real Analysis, Harmonic Analysis and other related fields, this notion is
immensely useful. In this regard, we have chosen to refer the interested reader to the recent
works (see, for example, [19–28]).

Let C[0, 1] be the space of all continuous real-valued functions defined on [0, 1]. Sup-
pose also that it is a Banach space with the norm ‖.‖∞. Then, for h ∈ C[0, 1], the norm of h
is given by

‖h‖∞ = sup{|h(ρ)| : 0 5 ρ 5 1}.

We say that Gj : C[0, 1]→ C[0, 1] is a sequence of positive linear operators, if

Gj(h; ρ) = 0 as h = 0.

Now, in view of our above-proposed definitions, we state and prove the following
Korovkin-type approximation theorems.

Theorem 3. Let Gj : C[0, 1] → C[0, 1] be a sequence of positive linear operators. Then, for
h ∈ C[0, 1],

DWRstat lim
j→∞
‖Gj(h; ρ)− h(ρ)‖∞ = 0 (4)

if and only if

DWRstat lim
j→∞
‖Gj(1; ρ)− 1‖∞ = 0, (5)

DWRstat lim
j→∞
‖Gj(ρ; ρ)− ρ‖∞ = 0 (6)

and

DWRstat lim
j→∞
‖Gj(ρ

2; ρ)− ρ2‖∞ = 0. (7)

Proof. Since each of the following functions

h0(ρ) = 1, h1(ρ) = 2ρ and h2(ρ) = 3ρ2

belongs to C[0, 1] and is continuous on [0, 1], the implication given by (4) obviously im-
plies (5) to (7).

In order to complete the proof of Theorem 3, we first assume that the conditions (5) to
(7) hold true. If h ∈ C[0, 1], then there exists a constant L > 0 such that

|h(ρ)| 5 L (∀ ρ ∈ [0, 1]).

We thus find that

|h(r)− h(ρ)| 5 2L (r, ρ ∈ [0, 1]). (8)
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Clearly, for given ε > 0, there exists δ > 0 such that

| f (r)− f (ρ)| < ε (9)

whenever
|r− ρ| < δ for all r, ρ ∈ [0, 1].

If we now choose
µ1 = µ1(r, ρ) = (2r− 2ρ)2.

If
|r− ρ| = δ,

then we obtain

|h(r)− h(ρ)| < 2L
θ2 µ1(r, ρ). (10)

Thus, from Equations (9) and (10), we get

|h(r)− h(ρ)| < ε +
2L
θ2 µ1(r, ρ),

which implies that

−ε− 2L
θ2 µ1(r, ρ) 5 h(r)− h(ρ) 5 ε +

2L
θ2 µ1(r, ρ). (11)

Now, since Gm(1; ρ) is monotone and linear, by applying the operator Gm(1; ρ) to the
inequality (11), we get

Gm(1; ρ)

(
−ε− 2L

θ2 µ1(r, ρ)

)
5 Gm(1; ρ)

(
h(r)− h(ρ)

)
5 Gm(1; ρ)

(
ε +

2L
θ2 µ1(r, ρ)

)
.

We note that ρ is fixed, and so h(ρ) is a constant number. Therefore, we have

−εGm(1; ρ)− 2L
θ2 Gm(µ1; ρ) 5 Gm(h; ρ)− h(ρ)Gm(1; ρ)

5 εGm(1; ρ) +
2L
θ2 Gm(µ1; ρ). (12)

We also know that

Gm(h; ρ)− h(ρ) = [Gm(h; ρ)− h(ρ)Gm(1; ρ)] + h(ρ)[Gm(1; ρ)− 1]. (13)

Thus, by using (12) and (13), we obtain

Gm(h; ρ)− h(ρ) < εGm(1; ρ) +
2L
θ2 Gm(µ1; ρ) + h(ρ)[Gm(1; ρ)− 1]. (14)

We now estimate Gm(µ1; ρ) as follows:

Gm(µ1; ρ) = Gm((2r− 2ρ)2; ρ) = Gm(2r2 − 8ρr + 4ρ2; ρ)

= Gm(4r2; ρ)− 8tGm(r; ρ) + 4ρ2Gm(1; ρ)

= 4[Gm(r2; ρ)− ρ2]− 8t[Gm(r; ρ)− ρ]

+ 4ρ2[Gm(1; ρ)− 1],
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so that, in view of (14), we obtain

Gm(h; ρ)− h(ρ) < εGm(1; ρ) +
2L
θ2 {4[Gm(r2; ρ)− ρ2]

− 8ρ[Gm(r; ρ)− ρ] + 4ρ2[Gm(1; ρ)− 1]}
+ h(ρ)[Gm(1; ρ)− 1].

= ε[Gm(1; ρ)− 1] + ε +
2L
θ2 {4[Gm(r2; ρ)− ρ2]

− 8ρ[Gm(r; ρ)− ρ] + 4ρ2[Gm(1; ρ)− 1]}
+ h(ρ)[Gm(1; ρ)− 1].

Furthermore, since ε > 0 is arbitrary, we can write

|Gm(h; ρ)− h(ρ)| 5 ε +

(
ε +

8L
θ2 + L

)
|Gm(1; ρ)− 1|

+
16L
θ2 |Gm(r; ρ)− ρ|+ 8L

θ2 |Gm(r2; ρ)− ρ2|

5 A(|Gm(1; ρ)− 1|+ |Gm(r; ρ)− ρ|
+ |Gm(r2; ρ)− ρ2|), (15)

where

A = max
(

ε +
8L
θ2 + L,

16L
θ2 ,

8L
θ2

)
.

Now, for a given ω > 0, there exists ε > 0 (ε < ω) such that

Tm(ρ; ω) = {m : m 5 Pk and pm|Gm(h; ρ)− h(ρ)| = ω}.

Furthermore, for ν = 0, 1, 2, we have

Tν,m(ρ; ω) =

{
m : m 5 Pk and pm|Gm(h; ρ)− hν(ρ)| =

ω− ε

3A

}
,

so that

Tm(ρ; ω) 5
2

∑
ν=0

Tν,m(ρ; ω).

Clearly, we obtain

‖Tm(ρ; ω)‖C[0,1]

Pk
5

2

∑
ν=0

‖Tν,m(ρ; ω)‖C[0,1]

Pk
. (16)

Now, using the above assumption about the implications in (5) to (7) and by Definition 2,
the right-hand side of (16) tends to zero as n→ ∞. Consequently, we get

lim
k→∞

‖Tm(ρ; ω)‖C[0,1]

Pk
= 0 (δ, ω > 0).

Therefore, the implication (4) holds true.

Theorem 4. Let Gj : C[0, 1] → C[0, 1] be a sequence of positive linear operators. Then, for
h ∈ C[0, 1],

statDWR lim
j→∞
‖Gj(h; ρ)− h(ρ)‖∞ = 0 (17)
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if and only if

statDWR lim
j→∞
‖Gj(1; ρ)− 1‖∞ = 0, (18)

statDWR lim
j→∞
‖Gj(ρ; ρ)− ρ‖∞ = 0 (19)

and

statDWR lim
j→∞
‖Gj(ρ

2; ρ)− ρ2‖∞ = 0. (20)

Proof. The proof of Theorem 4 is similar to the proof of Theorem 3. Therefore, we choose
to skip the details involved.

In view of Theorem 4, here, we consider an illustrative example. In this connection,
we now recall the following operator:

ρ(1 + ρD)

(
D =

d
dρ

)
, (21)

which was used by Al-Salam [29] and, more recently, by Viskov and Srivastava [30].

Example 3. Consider the Bernstein polynomials Bn(h; β) on C[0, 1] given by

Bk(h; β) =
k

∑
$=0

f
($

k

)(k
$

)
β$(1− β)k−$ (β ∈ [0, 1]; k = 0, 1, · · ·). (22)

Here, in this example, we introduce the positive linear operators on C[0, 1] under the composi-
tion of the Bernstein polynomials and the operators given by (21) as follows:

G$(h; β) = [1 + h$]β(1 + βD)B$(h; β) (∀ h ∈ C[0, 1]), (23)

where (h$) is the same as mentioned in Example 2.
We now estimate the values of each of the testing functions 1, β and β2 by using our proposed

operators (23) as follows:

G$(1; β) = [1 + h$]β(1 + βD)1 = [1 + h$]β,

G$(t; β) = [1 + h$]β(1 + βD)β = [1 + h$]β(1 + β)

and

G$(t2; β) = [1 + h$]β(1 + βD)

{
β2 +

β(1− β)

$

}
= [1 + h$]

{
β2
(

2− 3β

$

)}
.

Consequently, we have

statDWR lim
$→∞
‖G$(1; β)− 1‖∞ = 0, (24)

statDWR lim
$→∞
‖G$(β; β)− β‖∞ = 0 (25)

and

statDWR lim
$→∞
‖G$(β2; β)− β2‖∞ = 0, (26)
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that is, the sequence G$(h; β) satisfies the conditions (18) to (20). Therefore, by Theorem 4, we have

statDWR lim
$→∞
‖G$(h; β)− h‖∞ = 0.

Hence, the given sequence (hk) of functions mentioned in Example 2 is statistically deferred
weighted Riemann-summable, but not deferred weighted statistically Riemann-integrable. Therefore,
our above-proposed operators defined by (23) satisfy Theorem 4. However, they do not satisfy for
statistical versions of deferred weighted Riemann-integrable sequence of functions (see Theorem 3).

4. Concluding Remarks and Directions for Further Research

In this concluding section of our present investigation, we further observe the potential
usefulness of our Theorem 4 over Theorem 3 as well as over the classical versions of the
Korovkin-type approximation theorems.

Remark 2. Let us consider the sequence (h$)$∈N of functions in Example 2. Suppose also that
(h$) is statistically deferred weighted Riemann-summable, so that

statDWR lim
$→∞

δ(h$;P) = 1
2

on [0, 1].

We then find that

statDWR lim
k→∞
‖Gk(hν; ρ)− fν(ρ)‖∞ = 0 (ν = 0, 1, 2). (27)

Thus, by Theorem 4, we immediately get

statDWR lim
j→∞
‖Gk(h; ρ)− h(ρ)‖∞ = 0, (28)

where
h0(ρ) = 1, h1(ρ) = ρ and h2(ρ) = ρ2.

Now, the given sequence (hk) of functions is statistically deferred weighted Riemann-summable,
but neither deferred weighted statistically Riemann-integrable nor classically Riemann-integrable.
Therefore, our Korovkin-type approximation Theorem 4 properly works under the operators defined
in the Equation (23), but the classical as well as statistical versions of the deferred weighted Riemann-
integrable sequence of functions do not work for the same operators. Clearly, this observation leads
us to the fact that our Theorem 4 is a non-trivial extension of Theorem 3 as well as the classical
Korovkin-type approximation theorem [31].

Remark 3. Motivated by some recently published results by Jena et al. [32] and Srivastava et al. [33],
we choose to draw the attention of the interested readers toward the potential for further research
associated with the analogous notion of statistical Lebesgue-measurable sequences of functions.
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