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Abstract: We consider a variational–hemivariational inequality in a real Hilbert space, which depends
on two parameters. We prove that the inequality is governed by a maximal monotone operator, then
we deduce various existence, uniqueness and equivalence results. The proofs are based on the theory
of maximal monotone operators, fixed point arguments and the properties of the subdifferential, both
in the sense of Clarke and in the sense of convex analysis. These results lay the background in the
study of various classes of inequalities. We use them to prove existence, uniqueness and continuous
dependence results for the solution of elliptic and history-dependent variational–hemivariational
inequalities. We also present some iterative methods in solving these inequalities, together with
various convergence results.

Keywords: variational–hemivariational inequalities; Clarke subdifferential; convex subdifferential;
maximal monotone operator; resolvent; fixed point problem; iterative method

MSC: 47H20; 47H05; 47H09; 49H52; 49J53

1. Introduction

Variational–hemivariational inequalities represent a powerful mathematical tool in
the study of nonlinear boundary value problems. Their study is motivated by various
applications in Physics, Mechanics and Engineering Sciences, among others. In contrast
with variational inequalities (which are governed by convex functions) and hemivariational
inequalities (which are governed by nonsmooth locally Lipschitz functions which could
be nonconvex), variational–hemivariational inequalities are governed by both convex and
locally Lipschitz functions. As a consequence, they have both a convex and nonconvex
structure and, therefore, their study is carried out by using arguments on both convex and
nonsmooth analysis.

Introduced in the pioneering work of Panagiotopoulos [1], the theory of variational–
hemivariational inequalities grew up rapidly, as shown in [2–5] and the references therein. It
includes existence, uniqueness and numerical approximation results, obtained in the study
of different classes of inequalities, by using various methods and functional arguments.
Reference in the field include [6–11]. Among the inequalities studied in these papers we
distinguish the class of elliptic, the class of time-dependent and the class of evolutionary
variational–hemivariational inequalities. A variational–hemivariational inequality is said
to be elliptic if it does not involve the time variable; it is said to be time-dependent if both
the data and the solution depend on time but no time-derivatives of the solution appear in
its statement; finally, a variational–hemivariational inequality is said to be evolutionary if it
is formulated in terms of the derivative of the unknown function.

A first example of elliptic variational-hemivariational inequality is the following: find
u such that

u ∈ K, (Au, v− u)H + ψ(v)− ψ(u) + g0(u; v− u) ≥ ( f , v− u)H ∀ v ∈ K. (1)

Axioms 2022, 11, 136. https://doi.org/10.3390/axioms11030136 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11030136
https://doi.org/10.3390/axioms11030136
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-6110-1433
https://doi.org/10.3390/axioms11030136
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11030136?type=check_update&version=1


Axioms 2022, 11, 136 2 of 18

Here and below, H represents a real Hilbert space endowed with the inner product (·, ·)H
and the associated norm ‖ · ‖H , K is a nonempty subset of H, A : H → H is a nonlinear
operator, ψ : H → R and g : H → R are given functions and, finally, f ∈ H. The function ψ
is assumed to be convex while the function g is assumed to be locally Lipschitz. Moreover,
notation g0(u; v) represents the Clarke directional derivative of g at the point u, in the
direction v.

A second example of elliptic variational-hemivariational inequality is the following:
find u such that

u ∈ K, (Au, v− u)H + ϕ(u, v)− ϕ(u, u) + j0(u, u; v− u) (2)

≥ ( f , v− u)H ∀v ∈ K.

Note that, in contrast with (1), here the functions ϕ and j are defined on the product space
H× H, that is, ϕ : H× H → R and j : H× H → R. The function ϕ is assumed to be convex
with respect to the second variable, j is assumed to be locally Lipschitz with respect to the
second argument and notation j0(w, u; v) represents the Clarke directional derivative of
j(w, ·) at the point u, in the direction v.

A special case of time-dependent variational-hemivariational inequalities is given by
the so-called history-dependent variational-hemivariational inequalities. A typical example
is the following: find a function u : R+ → H such that

u(t) ∈ K, (Au(t), v− u(t))H + ϕ(Su(t), v)− ϕ(Su(t), u(t)) (3)

+j0(Ru(t), u(t); v− u(t)) ≥ ( f (t), v− u(t))H ∀v ∈ K, t ∈ R+.

Note that in (3) and below in this paper S and R are operators defined on the space of
continuous functions defined on R+ = [0,+∞) with values H, denoted in what follows by
C(R+; H). Moreover, for any function w ∈ C(R+; H) we use the shorthand notation Sw(t)
andRw(t), to represent the value of the functions Sw andRw at the point t ∈ R+, that is,
Sw(t) := (Sw)(t) andRw(t) := (Rw)(t).

Inequality problems of the form (1), (2), arise in the study of mathematical models
which describe the equilibrium of elastic body in frictionless and frictional contact with a
foundation, respectively. Moreover, inequality problems of the form (3) arise in the study
of mathematical models of contact with elastic or viscoelastic materials, in which memory
effects are taken into consideration, either in the constitutive law or in the contact conditions.
References in the field are the books [4,5] as well as the survey article [2]. Moreover, it is
worth noting that variational–hemivariational inequalities arise in the study of complex
fluids and history-dependent viscoelastic and elasto-viscoplastic models. A comprehensive
reference in the field is the book [12]. There, an introduction to the modeling of complex
fluids is provided, up-to-date mathematical and numerical analysis of the corresponding
equations can be found, together with several numerical algorithms for the approximation
of the solutions. Furthermore, subdifferential operators have been used in [13] in the study
of various magnetorheological mixtures composed of a fluid and a solid continuum.

Existence and uniqueness results in the study of elliptic variational–hemivariational
inequality have been obtained in many papers, under different assumptions on the data.
For instance, a surjectivity result for pseudomonotone multivalued operators was used
in [14] in order to obtain the unique solvability of inequality (1). There, the operator A
was assumed to be pseudomonotone and strongly monotone and the Clarke subdiffer-
ential of the function j was assumed to satisfy a growth condition. The method used
in [14] can be used in the study of inequality (2), as shown in [5], for instance. Recently,
problem (1) was considered in [15], under the assumption that A a strongly monotone
Lipschitz continuous operator and ϕ is a continuous convex function. The unique solv-
ability of the problem was obtained by using a minimization principle which avoids any
pseudomonotonicity argument.
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Motivated by the importance of the topic in both pure and applied mathematics, in
this paper we introduce a new approach which allows us to prove existence, uniqueness
and convergence results for variational–hemivariational inequalities in Hilbert spaces. The
novelty of the results we present here arises in the fact that the approach we use is based
on arguments of multivalued maximal operators in Hilbert spaces and fixed point. It can
be used for various classes of elliptic or history-dependent variational–hemivariational
inequalities. Nevertheless, for simplicity, we restrict ourselves to the study of inequal-
ities (1)–(3), which represent three relevant examples. Our results are obtained under
assumptions which are slightly different from those used in [5,14,15] and, therefore, they
complete the results obtained in these references. For instance, here j is a bifunction, no
growth assumption on its subdifferential is assumed and the smallness assumptions in-
volving the constants mA, αϕ, α1

j , α2
j (related to the data A, ϕ, j) are relaxed. Relaxing

this assumption was possible by using the Browder–Godhe–Kirk fixed point argument
instead of the classical Banach fixed point principle. For all these reasons we believe that
our results contribute to a better knowledge of the structure of variational–hemivariational
inequalities and, in addition, they open the way to the approach of the solution by using
various iterative methods.

The rest of the manuscript is organized as follows. In Section 2 we recall some
preliminary material. In Section 3 we consider a variational–hemivariational inequality
which depends on two parameters. We use arguments of convex and nonsmooth analysis in
order to prove that this inequality is governed by a maximal monotone operator. This allows
us to obtain various properties for the resolvent of this operator, which have interest in their
own. We use these properties in Sections 4–6 in order to deduce existence and uniqueness
results for elliptic and history-dependent variational–hemivariational inequalities of the
form (1), (2) and (3), respectively. In addition to the properties of the resolvent operator,
our proofs are based on equivalence and fixed point arguments. We also introduce several
iterative methods in solving these inequalities and deduce various convergence results.
Finally, in Section 7 we present some concluding remarks.

2. Preliminaries

The results we present in this section can be found in many books and surveys,
including [5,16–19]. For this reason we present them without proofs. Everywhere below H
represents a real Hilbert space endowed with the inner product (·, ·)H and the associated
norm ‖ · ‖H . We use the symbols “→” and “⇀” to denote the strong and the weak
convergence in the space H and employ the notation Hw for the space H equipped with the
weak topology. The limits, lower limits and upper limits are considered as n→ ∞, even if
we do not mention it explicitly. Moreover, we use int M for the interior of the set M ⊂ H,
in the strong topology of H. Finally, we denote by JH the identity map of H, by 0H the zero
element of H and by 2H the set of parts of H. We start with the following definitions for
single-valued operators.

Definition 1. The operator A : H → H is said to be:

(a) demicontinuous if un → u in H implies Aun ⇀ Au in H;
(b) strongly monotone if there exists constant mA > 0 such that

(Au− Av, u− v)H ≥ mA‖u− v‖2
H ∀ u, v ∈ H;

(c) Lipschitz continuous if there exists constant LA > 0 such that

‖Au− Av‖H ≤ LA‖u− v‖H ∀ u, v ∈ H.

Definition 2. Let K ⊂ H. The operator A : K ⊂ H → H is said to be:
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(a) nonexpansive on K if there exists a constant kA ∈ [0, 1] such that

‖Au− Av‖H ≤ kA‖u− v‖H ∀ u, v ∈ K;

(b) a contraction if it is nenexpansive on K with constant kA ∈ [0, 1).

In this paper, in addition to the well-known Banach contraction principle we shall use
the following Browder–Godhe–Kirk fixed point Theorem, proved in [20], (p. 55).

Theorem 1. Let K be a nonempty closed bounded convex subset of the Hilbert space H and let
A : K → K be a nonexpansive operator. Then A has at least one fixed point.

We now proceed with some results concerning multivalued operators defined on the
space H. To this end we recall that, given a multivalued operator T : H → 2H , its domain
D(T), range R(T) and graph Gr(T) are the sets defined by

D(T) = { v ∈ H | Tv 6= ∅ },

R(T) = { f ∈ H | ∃ v ∈ D(T) s.t. f ∈ Tv },

Gr(T) = { (v, v∗) ∈ H × H | v∗ ∈ Tv }.

Definition 3. The operator T : H → 2H is said to be:

(a) monotone if

(u∗1 − u∗2 , u1 − u2)H ≥ 0 ∀ (u1, u∗1), (u2, u∗2) ∈ Gr(T);

(b) relaxed monotone if there exists constant αT > 0 such that

(u∗1 − u∗2 , u1 − u2)H ≥ −αT‖u1 − u2‖2
H ∀ (u1, u∗1), (u2, u∗2) ∈ Gr(T); (4)

(c) maximal monotone if it is monotone and, for any v, v∗ ∈ H, the following implication holds:

(u∗ − v∗, u− v)H ≥ 0 ∀ u ∈ D(T), u∗ ∈ Tu =⇒ v ∈ D(T) and v∗ ∈ Tv.

There is a close connection between the property of maximal monotonicity of T and
the surjectivity property of the operator JH + λT with λ > 0. The fundamental result in
this direction is the celebrated theorem of Minty that we recall below.

Theorem 2. Let T : H → 2H be a maximal monotone operator and let λ > 0. Then R(JH + λT) = H.
Moreover, for any f ∈ H there exists a unique element u ∈ D(T) such that u + λTu 3 f .

Theorem 2 allows us to consider the resolvent operator Tλ : H → D(T) defined by

Tλ f = u ⇐⇒ u ∈ D(T) and u + λTu 3 f (5)

for any f ∈ H. In other words, Tλ is the inverse of the operator JH + λT, i.e., Tλ = (JH + λT)−1.
Note that the resolvent operator exists for each λ > 0 and is a single valued operator.

Next, we recall two sufficient conditions which guarantee the maximal monotonicity
of a multivalued operator.

Proposition 1. Assume that T : H → 2H is a monotone operator such that for every v ∈ H,
the set Tv is nonempty convex and weakly closed. Moreover, assume that for all u, v ∈ H, the
graph of the mapping λ 7→ T(λu + (1− λ)v) is closed in [0, 1]× Hw. Then the operator T is
maximal monotone.



Axioms 2022, 11, 136 5 of 18

Proposition 2. Let T1, T2 : H → 2H be two maximal monotone operators such that int D(T1) ∩
D(T2) 6= ∅. Then T1 + T2 : H → 2H is a maximal monotone operator, too.

We now proceed with the definition and the properties of the Clarke subdifferential of
locally Lipschitz functions.

Definition 4. The Clarke directional derivative of the locally Lipschitz function j : H → R at the
point u ∈ H in the direction v ∈ H is defined by

j0(u; v) = lim sup
w→u,λ↓0

j(w + λv)− j(w)

λ
.

The Clarke subdifferential of j is the multivalued operator ∂j : H → 2H defined by

∂j(u) = { ξ ∈ H|j0(u; v) ≥ (ξ, v)H ∀ v ∈ H } for any u ∈ H.

For the Clarke subdifferential and directional derivative we have the following properties.

Proposition 3. Let j : H → R be a locally Lipschitz function. Then:

(a) ∂j(u) is a nonempty convex and weakly compact subset of H, for all u ∈ H;
(b) the graph of the Clarke subdifferential ∂j is closed in H × Hw topology;
(c) for all u, v ∈ H, one has

j0(u; v) = max{ (ξ, v)H | ξ ∈ ∂j(u) }.

We now move to the properties of the subdifferential in the sense of convex analysis.

Definition 5. The subdifferential of a convex function ψ : H → R ∪ {+∞} is the multivalued
operator ∂cψ : H → 2H defined by

∂cψ(u) = { η ∈ H|ψ(v)− ψ(u) ≥ (η, v− u)H ∀ v ∈ H } for any u ∈ H.

The following result represents an important property of the subdifferential of a
convex function.

Proposition 4. Assume that ψ : H → R is a convex lower semicontinuous function. Then the
subdifferential operator ∂cψ : H → 2H is maximal monotone and D(∂cψ) = H.

A relevant example of function defined on H with values on R∪ {+∞} is the indicator
function defined by

IK(u) =
{

0 if u ∈ K,
+∞ if u /∈ K

where K ⊂ H. It is well known that if the subset K is nonempty closed and convex, then the
indicator function IK is proper, convex and lower semicontinuous. Moreover, D(∂c IK) = K.
In the rest of this paper we shall use notation ∂c(ψ+ IK) for the subdifferential of the convex
function ψ + IK. Moreover, using Propositions 4 and 2 we deduce the following result.

Proposition 5. Assume that ψ : H → R is a proper convex lower semicontinuous function and
K is a nonempty closed convex subset of H. Then the operator ∂c(ψ + IK) : H → 2H is maximal
monotone and, moreover, D(∂c(ψ + IK)) = K.

We now recall the following result proved in [21].
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Proposition 6. Let K be a nonempty closed convex subset of H, u ∈ K, K∗ a nonempty closed
convex bounded subset of H and ψ : H → R ∪ {+∞} a proper convex lower semicontinuous
function. Assume that for each v ∈ K there exists u∗(v) ∈ K∗ such that

(u∗(v), v− u)H ≥ ψ(u)− ψ(v).

Then, there exists u∗ ∈ K∗ such that

(u∗, v− u)H ≥ ψ(u)− ψ(v) ∀ v ∈ K.

We end this section by recalling the notion of history-dependent operator. To this end,
throughout this paper, for a normed space (W, ‖ · ‖W) we use the notation C(R+; W) for
the space of continuous functions on R+ with values in W. Recall that C(R+; X) can be
organized in a canonical way as a complete metric space. The convergence of a sequence
{vn} to an element v, in the space C(R+; X), can be described as follows:

vn → v in C(R+; X) as n→ ∞ if and only if

max
t∈U
‖vn(t)− v(t)‖X → 0 as n→ ∞,

for any nonempty compact set U ⊂ R+.

The next definition introduces two important classes of operators defined on spaces of
continuous functions.

Definition 6. Let (W1, ‖ · ‖W1) and (W2, ‖ · ‖W2) be two normed spaces. An operator
S : C(R+; W1)→ C(R+; W2) is said to be almost history-dependent if for any nonempty compact
set U ⊂ R+ there exist lSU ∈ [0, 1) and LSU > 0 such that

‖Su1(t)− Su2(t)‖W2 ≤ lSU ‖u1(t)− u2(t)‖W1 + LSU
∫ t

0
‖u1(s)− u2(s)‖W1 ds

for all u1, u2 ∈ C(R+; W1) and all t ∈ U . If, in particular, lSU = 0 for any nonempty compact set
U ⊂ R+, then S is said to be a history-dependent operator.

History-dependent and almost history-dependent operators arise in Functional Analy-
sis, Solid Mechanics and Contact Mechanics, as well. General properties, examples and
mechanical interpretations can be found in [5]. In particular, the following fixed point
property was proved in [5], (p. 41).

Theorem 3. Let W be a Banach space and let Λ : C(R+; W)→ C(R+; W) be an almost history-
dependent operator. Then Λ has a unique fixed point, i.e., there exists a unique element η∗ ∈ C(R+; W)
such that Λη∗ = η∗.

We shall use Theorem 3 in Section 2 in the study of the history-dependent variational
hemivariational inequality (3).

3. A Parametric Variational–Hemivariational Inequality

In this section, in addition to the Hilbert space H, we assume that Y and Z are normed
spaces endowed with the norms ‖ · ‖Y and ‖ · ‖Z, respectively. We also denote by X = Y×Z
the product of the spaces Y and Z. A typical point of X will be denoted by w = (η, θ) where
θ ∈ Y and η ∈ Z.
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We now consider the following elliptic variational–hemivariational inequality: given
the parameter w = (η, θ) ∈ X, find u such that

u ∈ K, (Au, v− u)H + ϕ(η, v)− ϕ(η, u) + j0(θ, u; v− u) (6)

≥ ( f , v− u)H ∀ v ∈ K.

In the study of this problem we consider the following assumptions.

K is a nonempty closed convex subset of H. (7){
A : H → H is demicontinuous and strongly monotone
with constant mA > 0.

(8)



ϕ : Y× H → R is such that:

(a) ϕ(η, ·) : H → R is convex and lower semicontinuous,
for any η ∈ Y.

(b) There exists αϕ > 0 such that

ϕ(η1, v2)− ϕ(η1, v1) + ϕ(η2, v1)− ϕ(η2, v2)

≤ αϕ‖η1 − η2‖Y‖u1 − u2‖H

for all η1, η2 ∈ Y, v1, v2 ∈ H.

(9)



j : Z× H → R is such that:

(a) j(θ, ·) is locally Lipschitz continuous, for any θ ∈ Z.

(b) There exist α1
j > 0, α2

j > 0 such that

j0(θ1, v1; v2 − v1) + j0(θ2, v2; v1 − v2)

≤ α1
j ‖v1 − v2‖2

H + α2
j ‖θ1 − θ2‖Z‖v1 − v2‖H

for all θ1, θ2 ∈ Z, v1, v2 ∈ H.

(10)

mA ≥ α1
j . (11)

f ∈ H. (12)

Next, for any w = (η, θ) ∈ X we use the notation ϕη : H → R and jθ : H → R for the
functions defined by

ϕη(v) = ϕ(η, v) ∀ v ∈ H, (13)

jθ(v) = j(θ, v) ∀ v ∈ H. (14)

Moreover, we introduce the operator Sw : H → 2H given by

Swu = Au + ∂jθ(u) + ∂c(ϕη + IK)(u) ∀ u ∈ H (15)

and we recall that Propositions 3(a) and 5 guarantee that D(Sw) = K. In addition, we have
the following comment.

Remark 1. Assumption (10)(b) implies that

j0θ(v1; v2 − v1) + j0θ(v2; v1 − v2) ≤ α1
j ‖v1 − v2‖2

H ∀ v1, v2 ∈ H,
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for any θ ∈ Z. Then, using Lemma 7 of [5] we deduce that the Clarke subdifferential of the function
jθ satisfies the relaxed monotonicity condition (4) with constant α1

j .

We now state and prove various results related to the parametric variational-
hemivariational inequality (6).

Proposition 7. Assume (7)–(10) and let u ∈ X, w = (η, θ) ∈ X, z ∈ H. Then u satisfies
the inequality

u ∈ K, (Au, v− u)H + ϕη(v)− ϕη(u) + j0θ(u; v− u) ≥ (z, v− u)H ∀ v ∈ K (16)

if and only if
z ∈ Swu. (17)

Proof. Assume that u satisfies the inequality (16). We deduce from Proposition 3(c) that for
each v ∈ K there exists ξ(v) ∈ ∂jθ(u) such that jθ(u, v− u) = (ξ(v), v− u)H and, therefore,

(Au + ξ(v)− z, v− u)H + ϕη(v)− ϕη(u) ≥ 0.

Moreover, from Proposition 3(a), we obtain that the set

K∗ = { Au + ξ(v)− z | v ∈ K, ξ(v) ∈ ∂jθ(u) }

is a nonempty closed convex weakly compact subset of H which implies that it is bounded,
too. Hence, using Proposition 6 with u∗(v) = Au + ξ(v) − z we see that there exists
ξ ∈ ∂jθ(u) which does not depend on v, such that

(Au + ξ − z, v− u)H + ϕη(v)− ϕη(u) ≥ 0 ∀ v ∈ K.

So,
ϕη(v)− ϕη(u) + IK(v)− IK(u) ≥ (z− Au− ξ, v− u)H ∀ v ∈ H.

Next, by the definition of the subdifferential of convex functions and inclusion ξ ∈ ∂jθ(u)
we have

z ∈ Au + ∂jθ(u) + ∂c(ϕη + IK)(u).

This implies that z ∈ Swu which shows that (17) holds.
Conversely, assume that (17) holds. Then, the definition (15) of the operator Sw yields

z ∈ Au + ∂jθ(u) + ∂c(ϕη + IK)(u).

Therefore, there exist ξ ∈ ∂jθ(u) and η ∈ ∂c(ϕη + IK)(u) such that

z = Au + ξ + η. (18)

Moreover, the definitions of the Clarke subdifferential and the subdifferential of a convex
function imply that (ξ, v− u)H ≤ j0θ(u, v− u), (η, v− u)H ≤ ϕη(v)− ϕη(u) for all v ∈ K.
Combining these inequalities with equality (18) we deduce that

u ∈ K, (Au, v− u)H + ϕη(v)− ϕη(u) + j0θ(u; v− u) ≥ (z, v− u)H ∀ v ∈ K,

which shows that (16) holds and concludes the proof.

We now focus on the main property of the operator Sw.

Proposition 8. Assume (7)–(11). Then, for any w = (η, θ) ∈ X the operator Sw : H → 2H is
maximal monotone and, moreover, D(Sw) = K.
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Proof. Let w = (η, θ) ∈ X be fixed. The proof is structured in several steps, as follows.

Step (i) The operator A + ∂jθ : H → 2H is monotone. Indeed, assume that (u1, u∗1),
(u2, u∗2) ∈ Gr(A + ∂jθ). Then, there exist ξ1 ∈ ∂jθ(u1) and ξ2 ∈ ∂jθ(u2) such that

u∗1 = Au1 + ξ1, u∗2 = Au2 + ξ2

and, therefore,

(u∗1 − u∗2 , u1 − u2)H = (Au1 − Au2, u1 − u2)H + (ξ1 − ξ2, u1 − u2)H .

We now use the inequalities

(Au1 − Au2, u1 − u2)H ≥ mA‖u1 − u2‖2
H ,

(ξ1 − ξ2, u1 − u2)H ≥ −α1
j ‖u1 − u2‖2

H ,

guaranteed by assumption (8) and Remark 1, respectively, to see that

(u∗1 − u∗2 , u1 − u2)H ≥ (mA − α1
j )‖u1 − u2‖2

H .

Therefore, assumption (11) implies that the multivalued operator A + ∂jθ : H → 2H

is monotone.

Step (ii) The operator A + ∂jθ : H → 2H is maximal monotone. We start by proving that
the mapping λ 7→ (A + ∂jθ)(λu + (1− λ)v) has a closed graph in [0, 1]× Hw. To this end
let u, v ∈ H and assume that λn → λ in [0, 1], xn ⇀ x in H as n→ ∞ and

xn ∈ (A + ∂jθ)(λnu + (1− λn)v),

for each n ∈ N. Then,

xn − A(λnu + (1− λn)v) ∈ ∂jθ(λnu + (1− λn)v)

and, since λn → λ, it is obvious to see that

λnu + (1− λn)v→ λu + (1− λ)v in H. (19)

Therefore, using (19), assumption (8) and the convergence xn ⇀ x in H, we deduce that

xn − A(λnu + (1− λn)v) ⇀ x− A(λu + (1− λ)v) in H.

We now use the closedness of the graph of ∂jθ in the product space H × Hw to see that

x− A(λu + (1− λ)v) ∈ ∂jθ(λu + (1− λ)v),

i.e., x ∈ (A + ∂jθ)(λu + (1− λ)v).
We conclude from above that the mapping λ 7→ (A + ∂jθ)(λu + (1− λ)v) has a closed

graph in [0, 1]× Hw. Moreover, we use Proposition 3(a) to see that for any v ∈ H the set
Av + ∂jθ(v) is a nonempty convex and weakly closed subset in H. The maximality of the
monotone operator A + ∂jθ : H → 2H is now a consequence of Proposition 1.

Step (iii) The operator Sw = A + ∂jθ + ∂c(ϕ + IK) : H → 2H is maximal monotone. Indeed,
Step (ii) and Proposition 3(a) show that the operator T1 = A + ∂jθ : H → 2H is maximal
monotone and D(T1) = D(A + ∂jθ) = H. Moreover, using (7), (9) and Proposition 5 we
deduce that the operator T2 = ∂c(ϕη + IK) is maximal monotone and D(T2) = K. This
implies that int(D(T1)) ∩ D(T2) = K 6= ∅. We now use Proposition 2 in order to deduce
that the operator T1 + T2 = A + ∂jθ + ∂c(ϕη + IK) : H → 2H is maximal monotone. Now,
since (15) shows that Sw = T1 + T2, it follows that Sw is a maximal monotone operator.
Moreover, D(Sw) = D(T1) ∩ D(T2) = K, which concludes the proof.



Axioms 2022, 11, 136 10 of 18

Proposition 8 guarantees that, under assumptions (7)–(12), the operator S f
w : H → 2H

given by
S f

wu = Swu− f = Au + ∂jθ(u) + ∂c(ϕη + IK)(u)− f ∀ u ∈ H (20)

is maximal monotone, too. Moreover, D(S f
w) = K. Therefore, for any λ > 0 we are in a

position to define its resolvent, denoted in what follows by J f
λ,w. We use (5) to see that

J f
λ,w : H → K and

J f
λ,wσ = u ⇐⇒ u ∈ K and u + λS f

w 3 σ, (21)

for each σ ∈ H, w ∈ X and λ > 0. We proceed with the following result.

Proposition 9. Assume (7)–(12), let u ∈ X, w = (η, θ) ∈ X, σ ∈ H, and let λ > 0. Then

u = J f
λ,w(σ)

if and only if

u ∈ K, (Au, v− u)H + ϕη(v)− ϕη(u) + j0θ(u; v− u)

≥ ( f +
σ− u

λ
, v− u)H ∀ v ∈ K.

Proof. We use (21), (20) and (15) to see that the following equivalences hold:

u = J f
λ,w(σ) ⇐⇒

u + λ
(

Au + ∂jθ(u) + ∂c(ϕη + IK)(u)− f
)
3 σ ⇐⇒

Au + ∂jθ(u) + ∂c(ϕη + IK)(u) 3 f +
σ− u

λ
⇐⇒

Swu 3 f +
σ− u

λ
.

Proposition 9 is now a direct consequence of Proposition 7, used with the choice
z = f + σ−u

λ .

We now take σ = u and obtain the following consequence of Proposition 9.

Corollary 1. Assume (7)–(12), let u ∈ K, w = (η, θ) ∈ X and λ > 0. Then u is a solution of
the variational–hemivariational inequality (6) if and only if u is a fixed point of the operator J f

λ,w,

i.e., J f
λ,w(u) = u.

The following result represents a Lipschitz continuity result for the resolvent opera-
tor J f

λ,w.

Proposition 10. Assume (7)–(11), let w1 = (η1, θ1), w2 = (η2, θ2) ∈ X, f1, f2 ∈ H, σ1, σ2 ∈
H, λ > 0 and, for i = 1, 2, let ui = J fi

λ,wi
σi ∈ K. Then, the following inequality holds:

(mA − α1
j +

1
λ
)‖u1 − u2‖H (22)

≤ αϕ‖η1 − η2‖Y + α2
j ‖θ1 − θ2‖Z + ‖ f1 − f2‖H +

1
λ
‖σ1 − σ2‖H .
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Proof. We use Proposition 9 to see that

(Au1, v− u1)H + ϕη1(v)− ϕη1(u1) + j0θ1
(u1; v− u1) (23)

≥ ( f1 +
σ1 − u1

λ
, v− u1)H ∀ v ∈ K,

(Au2, v− u2)H + ϕη2(v)− ϕη2(u2) + j0θ2
(u2; v− u2) (24)

≥ ( f2 +
σ2 − u2

λ
, v− u2)H ∀ v ∈ K.

Then, we take v = u2 in (23), v = u1 in (24) and add the resulting inequalities to find that

1
λ
‖u1 − u2‖2

H + (Au1 − Au2, u1 − u2)H

≤ ϕη1(u2)− ϕη1(u1) + ϕη2(u1)− ϕη2(u2) + j0θ1
(u1; u2 − u1) + j0θ1

(u2; u1 − u2)

+( f1 − f2, u1 − u2)H +
1
λ
(σ1 − σ2, u1 − u2)H .

Next, we use the strong monotonicity of the operator A, notation (13) and (14) and
assumptions (9)(b), (10)(b) on the functions ϕ and j, respectively. In this way we deduce that

1
λ
‖u1 − u2‖2

H + mA‖u1 − u2‖2
H

≤ αϕ‖η1 − η2‖Y‖u1 − u2‖X + α1
j ‖u1 − u2‖2

X + α2
j ‖θ1 − θ2‖Z‖u1 − u2‖X

+‖ f1 − f2‖H‖u1 − u2‖H +
1
λ
‖σ1 − σ2‖H‖u1 − u2‖H .

This inequality implies the bound (22), which concludes the proof.

We now consider the following additional assumptions.

K is a bounded set of H. (25)

mA = α1
j . (26)

mA > α1
j . (27)

We end this section with the following result concerning the parametric variational–
hemivariational inequality (6).

Theorem 4. Assume (7)–(10), (12). Then, the following statements hold.

(a) Under assumptions (25) and (26) the variational–hemivariational inequality (6) has at
least one solution.

(b) Under assumption (27) the variational–hemivariational inequality (1) has a unique
solution which depends Lipschitz continuously on f .

Proof. Let λ > 0, w = (η, θ) ∈ K, σ1, σ2 ∈ K and let u1 = J f
λ,w(σ1), u2 = J f

λ,w(σ2). Note
that if (26) or (27) hold, than (11) holds, too. Therefore, Proposition 10 implies that

(mA − α1
j +

1
λ
)‖u1 − u2‖X ≤

1
λ
‖σ1 − σ2‖H . (28)

(a) Assume that (25), and (26) hold. Then, using inequality (28) we deduce that the
operator J f

λ,w : K → K is non expansive. Therefore, we are in a position to use Theorem 1 to
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see that J f
λ,w has at least one fixed point. We now use Corollary 1 to deduce the solvability

of the variational–hemivariational inequality (1).

(b) Assume now (27). Then, it follows from inequality (28) that that the operator
J f
λ,w : K → K is a contraction. Therefore, using the Banach fixed point principle we deduce

that J f
λ,w has a unique fixed point. The unique solvability of the variational–hemivariational

inequality (1) is, again, a direct consequence of Corollary 1.
Finally, let f1, f2 ∈ H and let u1, u2 denote the solution of inequality (1) for f1, f2 ∈ H,

respectively. Then u1 = J f1
λ,w(u1), u2 = J f2

λ,w(u2) and, using Proposition 10, we deduce that

(mA − α1
j )‖u1 − u2‖X ≤ ‖ f1 − f2‖H . (29)

We now combine inequality (29) with the smallness condition (27) to deduce that the
operator f 7→ u = u( f ) : H → H is Lipschitz continuous, which concludes the proof.

4. An First Elliptic Variational–Hemivariational Inequaliy

In this section, we study the solvability of the elliptic variational–hemivariational
inequality (1). To this end, in addition to assumptions (7), (8) and (12), we consider the
following assumptions on the functions ψ and g:

ψ : Y× H → R is convex and lower semicontinuous. (30)

g : H → R is such that:

(a) g is locally Lipschitz continuous.

(b) There exist αg > 0 such that

g0(v1; v2 − v1) + g0(v2; v1 − v2) ≤ αg ‖v1 − v2‖2
H for all v1, v2 ∈ H.

(31)

mA = αg. (32)

mA > αg. (33)

Our main result in this section is the following

Theorem 5. Assume (7), (8), (12), (30) and (31). Then:

(a) Under assumptions (25) and (32) the variational–hemivariational inequality (1) has at
least one solution.

(b) Under assumption (33) the variational–hemivariational inequality (1) has a unique
solution which depends Lipschitz continuously on f .

Proof. Let Y and Z be arbitrary normed spaces and let X = Y× Z. For any w = (η, θ) ∈ X
let ϕ : Y× H → R and j : Z× H → R be the functions defined by

ϕ(η, u) = ψ(u), j(θ, u) = g(u) ∀w = (η, θ) ∈ X, u ∈ H. (34)

First, we see that the functions ϕ and j satisfy assumption (9) and (10) with αϕ = 0, α1
j = αg

and α2
j = 0. Moreover, (13), (14) show that

ϕη(u) = ψ(u), jθ(u) = g(u) ∀w = (η, θ) ∈ X, u ∈ H (35)

and, therefore, with the notation above, inequality (1) can be written in the equivalent
form (6). Based on this remark, we use in what follows the results in Section 3.

(a) Assume that (25) and (32) hold and note that this implies that (26) hold, too.
Theorem 5(a) is now a direct consequence of Theorem 4(a).
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(b) Assume now that (33) and note that this implies that (27) hold, too. Theorem 5(b)
is now a direct consequence of Theorem 4(b).

The proof of Theorem 5 shows that the solution of inequality (1) is a fixed point for
the resolvent operator J f

λ,w, defined for any λ > 0 and w ∈ X. This suggests us to consider
several iterative methods in the solution of this inequality. Details on iterative methods
for nonexpansive and contractions operators can be found in [20,22]. Here, we restrict
ourselves to present only two examples. Note that, since in the particular case of Theorem 5
the operator J f

λ,w does not depend on w, we shall denote it in what follows by J f
λ.

Example 1. (Picard iterations.) Under assumptions of Theorem 5 (b), let u0 ∈ K be arbitrary
given and define the sequence {un} by equality

un = J f
λun−1 ∀ n ≥ 1. (36)

Using Proposition 9 and notation (34), (35), it is easy to see that equality (36) can be written,
equivalently, as follows:

un ∈ K, (
1
λ

un + Aun, v− un)H + ψ(v)− ψ(un) + g0(un; v− un)

≥ ( f +
un−1

λ
, v− un)H ∀ v ∈ K, ∀ n ≥ 1.

We conclude that at each step of this iterative scheme we have to solve an elliptic variational-
hemivariational inequality. Now, since the operator J f

λ : K → K is a contraction, the sequence
{un} converges strongly in H to the fixed point of this operator and, therefore, to the solution u of
inequality (1).

Example 2. (Krasnoselski iterations) Under assumptions of Theorem 5 (a), let ω ∈ (0, 1), u0 ∈ K
be arbitrary given and define the sequence {un} by equality

un = (1−ω)un−1 + ω J f
λun−1 ∀ n ≥ 1. (37)

Then, since the operator J f
λ : K → K is nonexpansive, it is well known that the sequence {un}

converge weakly in H to a fixed point of this operator. A proof of this result can be found in
([20], p. 61). Therefore, un → u in H, where u is a solution of inequality (1).

Consider now the particular case when ω = 1
2 . Then equality (37) becomes

2un − un−1 = J f
λun−1 ∀ n ≥ 1 (38)

and, therefore, using notation xn = 2un − un−1, Proposition 9 implies that equality (38) leads to
the following iterative scheme: given u0 ∈ K, the sequence {un} is determined, recursively, by
solving the system

xn ∈ K, (
1
λ

xn + Axn, v− xn)H + ψ(v)− ψ(xn) + g0(xn; v− xn)

≥ ( f +
un−1

λ
, v− xn)H ∀ v ∈ K,

un =
xn + un−1

2
,

for all n ≥ 1.
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5. An Second Elliptic Variational–Hemivariational Inequaliy

In this section, we use the results in Section 3 in the study the solvability of the elliptic
variatioanal-hemivariational inequality (2). To this end, in addition to assumptions (7), (8)
and (12) we consider the following assumptions.

ϕ : H × H → R is such that:

(a) ϕ(η, ·) : H → R is convex and lower semicontinuous,
for any η ∈ H.

(b) There exists αϕ > 0 such that

ϕ(η1, v2)− ϕ(η1, v1) + ϕ(η2, v1)− ϕ(η2, v2)

≤ αϕ‖η1 − η2‖H‖u1 − u2‖H for all η1, η2 v1, v2 ∈ H.

(39)



j : H × H → R is such that:

(a) j(θ, ·) is locally Lipschitz continuous, for any θ ∈ H.

(b) There exist α1
j > 0, α2

j > 0 such that

j0(θ1, v1; v2 − v1) + j0(θ2, v2; v1 − v2)

≤ α1
j ‖v1 − v2‖2

H + α2
j ‖θ1 − θ2‖H‖v1 − v2‖H

for all θ1, θ2, v1, v2 ∈ H.

(40)

mA = αϕ + α1
j + α2

j . (41)

mA > αϕ + α1
j + α2

j . (42)

Note that assumptions (39) and (40) represent a particular case of assumptions (9)
and (10), respectively, obtained when Y = Z = H. Therefore, the preliminary results in
Section 3 can be used in the study of inequality (2).

Our main result in this section is the following.

Theorem 6. Assume (7), (8), (12), (39), (40). Then:

(a) Under assumptions (25) and (41) the variational–hemivariational inequality (2) has at
least one solution.

(b) Under assumption (42) the variational–hemivariational inequality (2) has a unique
solution which depends Lipschitz continuously on f .

Proof. (a) Assume that (25) and (41) hold and recall the equivalence (21). Let λ > 0 and
consider the operator P f

λ : K → K defined by

P f
λ (z) = J f

λ,w(z)(z) ∀ z ∈ K,

where w(z) = (z, z) ∈ H×H, for all z ∈ H. Let z1, z2 ∈ K and let u1 = P f
λ (z1), u2 = P f

λ (z2).
Then, using Proposition 10 with X = H × H, ηi = θi = zi = σi, fi = f for i = 1, 2, we
deduce that

(mA − α1
j +

1
λ
)‖u1 − u2‖H ≤ (αϕ + α2

j +
1
λ
)‖z1 − z2‖H . (43)

We now use assumption (41) and inequality (43) to see that the operator P f
λ : K → K

is nonexpansive. Therefore, we are in a position to use Theorem 1 to see that P f
λ has at

least one fixed point. We now use Corollary 1 to deduce the solvability of the variational–
hemivariational inequality (2).
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(b) Assume now that (42) hold. Then, inequality (43) shows that the operator
P f

λ : K → K is a contraction and, using the Banach principle we deduce that J f
λ has a

unique fixed point. The unique solvability of the variational–hemivariational inequality
(2) is, again, a direct consequence of Corollary 1. Finally, the Lipschitz continuity of the
mapping f 7→ u : H → H follows from arguments similar to those used in the proof of
Theorem 4(b).

The proof of Theorem 6 shows that the solution of inequality (2) is a fixed point for the
resolvent operator P f

λ : K → K, for any λ > 0. This allows us to consider several iterative
methods in the solution of this inequality. In order to avoid repetitions we restrct here to
the Picard iterations.

Example 3. Under assumptions of Theorem 6(b), let u0 ∈ K be arbitrary given and define the
sequence {un} by equality

un = P f
λ un−1 = J f

λ,w(un−1)
(un−1) ∀ n ≥ 1 (44)

where, recall, w(un−1) represents a short hand notation for the pair (un−1, un−1) ∈ H × H. Then,
using Proposition 9, it is easy to see that equality (44) can be written, equivalently, as follows:

un ∈ K, (
1
λ

un + Aun, v− un)H + ϕ(un−1, v)− ϕ(un−1, un) (45)

+j0(un−1, un; v− un) ≥ ( f +
un−1

λ
, v− un)H ∀ v ∈ K, ∀ n ≥ 1.

Now, since the operator P f
λ : K → K is a contraction, it follows that the sequence {un} converge

strongly in H to the solution u of inequality (2).

6. A History-Dependent Variational–Hemivariational Inequaliy

In this section, we use the results in Section 3 in the study the solvability of the history-
dependent variatioanal-hemivariational inequality (3). To this end, as usual, we assume
that Y and Z are normed spaces endowed with the norms ‖ · ‖Y and ‖ · ‖Z, respectively.
We also denote by X = Y × Z the product of the spaces Y and Z and we consider the
following assumptions.

S : C(R+, H)→ C(R+; Y) is a history-dependent operator. (46)

R : C(R+, H)→ C(R+; Z) is a history-dependent operator. (47)

f ∈ C(R+; H). (48)

Our main result in this section is the following.

Theorem 7. Assume (7)–(10), (27), (46)–(48). Then, the variational-hemivariational inequal-
ity (3) has a unique solution u ∈ C(R+; H). Moreover, the solution depends continuously on f .

Proof. Let w = (η, θ) ∈ C(R+; X), λ > 0. Then, the arguments in Section 3 allows us to
consider the operator J f

λ,w defined as follows:

J f
λ,wσ(t) = J f (t)

λ,w(t)σ(t) ∀ σ ∈ C(R+; H), t ∈ R+.

We claim that J f
λ,w takes values on the space C(R+; H), that is J f

λ,w : C(R+; H) →
C(R+; H). Indeed, let σ ∈ C(R+; H) and let u : R+ → H be the function defined by

u(t) = J f (t)
λ,w(t)σ(t) ∀ t ∈ R+.
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Then, using inequality (22) we see that that

(mA − α1
j +

1
λ
)‖u(t1)− u(t2)‖H ≤ αϕ‖η(t1)− η(t2)‖Y

+α2
j ‖θ(t1)− θ(t2)‖Z + ‖ f (t1)− f (t2)‖H +

1
λ
‖σ(t1)− σ(t2)‖H

for all t1, t2 ∈ R+. Next, using the continuity of the functions t 7→ η(t) : R+ → Y,
t 7→ θ(t) : R+ → Z, t 7→ f (t) : R+ → H and t 7→ σ(t) : R+ → H, combined with the
smallness assumption (27), we deduce that the function t 7→ u(t) : R+ → H is continuous,
too, which proves the claim.

We now consider the operator T f
λ : C(R+; H)→ C(R+; H) defined by

T f
λ(z) = J

f
λ,w(z)(z) ∀ z ∈ C(R+; H)

where, here, w(z) represent a short hand notation for the pair (Sz,Rz) ∈ C(R+; X). We
now prove that this operator has a unique fixed point. To this end, consider z1, z2 ∈ C(R+; H)

and let u1 = T f
λ(z1), u2 = T f

λ(z2). Moreover, let U be a nonempty compact subset of R+

and t ∈ U . Then, using Proposition 10 with ηi = θi = zi, i = 1, 2, we deduce that

(mA − α1
j +

1
λ
)‖u1(t)− u2(t)‖H

≤ αϕ‖Sz1(t)− Sz2(t)‖Y + α2
j ‖Rz1(t)−Rz2(t)‖Z +

1
λ
‖z1(t)− z2(t)‖H .

We now use assumptions (46) and (47) to deduce that

(mA − α1
j +

1
λ
)‖u1(t)− u2(t)‖H

≤
(
αϕLSU + α2

j LRU
) ∫ t

0
‖z1(s)− z2(s)‖H ds +

1
λ
‖z1(t)− z2(t)‖H

where, here and below, LSU > 0 and LRU > 0 are the constants which appear in Definition 6
of the history-dependence of the operators S andR, respectively. Therefore,

‖T f
λ(z1)(t)− T

f
λ(z2)(t)‖H

≤
αϕLSU + α2

j LRU
mA − α1

j +
1
λ

∫ t

0
‖z1(s)− z2(s)‖H ds +

1
λ

mA − α1
j +

1
λ

‖z1(t)− z2(t)‖H .

We now use the smallness assumption (27) to see that the operator T f
λ : C(R+; H) →

C(R+; H) is an almost-history-dependent operator. Then, Theorem 3 shows that T f
λ has

a unique fixed point and, using Corollary 1, we deduce the solvability of the history-
dependent variational–hemivariational inequality (3).

Finally, let fn, f ∈ C(R+; H) and let un, u ∈ C(R+; H) denote the solution of inequal-
ity (3) for fn and f , respectively. Then

un = T fn
λ (un) = J fn

λ,w(un)
(un), u = T f

λ(u) = J
f
λ,w(u)(u)

and, therefore,

un(t) = J fn(t)
λ,w(un(t))

(un(t)), u(t) = J f (t)
λ,w(u(t))(u(t))
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for any t ∈ R+. Let U be a nonempty compact subset of R+ and let t ∈ U . Then, using
Proposition 10 combined with assumptions (46), (47) and (27) we deduce that

‖un(t)− u(t)‖H

≤
αϕlSU + α2

j lRU
mA − α1

j

∫ t

0
‖un(s)− u(s)‖H ds +

1
mA − α1

j
‖ fn(t)− f (t)‖H .

We now apply the Gronwall argument to see that there exists two positive constants cU and
dU which do not depend on n such that

‖un(t)− u(t)‖X ≤ cU
∫ t

0
‖ fn(s)− f (s)‖H ds + dU‖ fn(t)− f (t)‖H . (49)

Assume now that fn → f in C(R+; H). Then

max
s∈U
‖ fn(s)− f (s)‖H → 0 as n→ ∞

and, therefore, (49) implies that

max
s∈U
‖un(s)− u(s)‖H → 0 as n→ ∞. (50)

Recall that U is an arbitrary nonempty compact subset of R+. Therefore, the conver-
gence (50) implies that un → u in C(R+; H) as n → ∞. This shows that the solution of
inequality (3) depends continuously on f , which concludes the proof.

The poof of Theorem 6 shows that the solution of inequality (3) is a fixed point for the
resolvent operator T f

λ, for any λ > 0. Therefore, several iterative methods in the solution
of this inequality can be considered.

7. Conclusions

In this paper we considered an elliptic variational–hemivariational inequality de-
pending on two parameters. We proved that this inequality is governed by a maximal
monotone operator and its solvability is equivalent with the problem of finding a fixed
point of the corresponding resolvent operator. Based on this equivalence we deduced an
existence, uniqueness and continuous dependence result for the solution of the parametric
variational–hemivariational inequality (Theorem 4). Then, with a conveniend choice of
the parameters, we extended these results in the study of elliptic and history-dependent
variational–hemivariational inequalities (Theorems 5–7). Moreover, using the above fixed
point characterization, we constracted the corresponding Picard and Krasnoselski iterative
schemes (Examples 1–3).

The present work shows that, in addition to the classical arguments based on the
surjectivity of multivalued pseudomonotone operators, the fixed point methods can be
used in the analysis of various classes of variational–hemivariational inequalities. It also
gives rise to several open problems that we describe in what follows. First, it would be
interesting to extend the results presented in this paper to inequality problems in the
framework of reflexive Banach spaces. Second, the use of similar fixed point arguments in
the study of evolutionary variational–hemivariational inequalities represents a challenging
topic which fully deserves to be considered. Finally, error estimates for the corresponding
iterative schemes with applications in the numerical analysis of mathematical models of
contact could be investigated in the future. Any progress in the three directions mentioned
above will complete our work and will open the way for new advances and ideas.
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