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Abstract: We give a deterministic drawing algorithm to draw a graph onto a torus, which is based on
the usual spectral drawing algorithm. For most of the well-known toroidal vertex-transitive graphs,
the result drawings give an embedding of the graphs onto the torus.
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1. Introduction

Graph drawing is a representation of graphs on Euclidean space such that vertices of
the graph are points in Euclidean space and edges are lines or curves between vertices. Ac-
cording to the way of getting the coordinates of vertices, graph drawing algorithms can be
divided into two categories: dynamic drawings and deterministic drawings. For dynamic
drawings, the coordinates of vertices are usually given by the process of optimizing some
potential energy function. For deterministic drawings, the coordinates of the vertices are
given by an explicit formula directly.

The spectral drawing algorithm [1,2] is one of most well-known deterministic draw-
ings based on the spectra of graphs. It is also the optimizing drawing respect to the certain
potential energy function. Roughly speaking, the spectral drawing is the shortest length
drawing among all orthogonal projections drawing. (See Section 1 for details).

In general, the spectral drawing can draw the highly symmetric planar graph well.
For example, Figure 1 shows spectral drawings of the underlying graph of the skeletons of
the Platonic solids.

Figure 1. The spectral drawings of the skeletons of Platonic solids.

In these examples, the spectral drawing naturally induces an embedding of the graph
into the unit sphere in three-dimensional Euclidean space as shown in Figure 2.

Figure 2. The embeddings of the skeletons of Platonic solids on the unit sphere.
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However, the spectral drawing does not work well for highly symmetric non-planar
graphs. For a non-planer graph, it can be embedded on a closed surface of some genus.
When it can be embedded on a surface of genus one, namely a torus, it is called a toroidal
graph. For example, the complete graphs K5, K6, and K7 are toroidal graphs. In addition,
the Heawood graph and the Peterson graph are also toroidal graphs. Furthermore, there
are several infinite families of toroidal Cayley graphs [3]. For those well-known toroidal
graphs, their embedding onto a torus can be found in many literature, e.g., [4]. However,
there is no systemic way to obtain these embeddings.

There are several studies of drawing graphs on a torus [5–7]. However, these ap-
proaches do not give explicit drawings directly and they also require the extra structure of
graphs, namely the choice of the set of “faces” (or so-called rotation systems).

The main contribution of the paper is to give a deterministic drawing algorithm for
highly symmetric toroidal graphs without using any extra structure. The main idea is that
for a highly symmetric toroidal graph, we expect that it admits a “shortest-length” drawing
on a torus, which can be canonically induced from the usual spectral drawing. We will use
vertex-transitive toroidal graphs as our examples, including K5, K6, K7, K3,3, the Heawood
graph, some generalized Petersen graphs, and toroidal fullerence graph. For these toroidal
graphs, our algorithm gives each of them an embedding on a torus except for generalized
Petersen graphs.

2. Spectral Drawing Revisited

In this section, we recall the spectral drawing algorithm and explain why it works well
for highly symmetric planar graphs like the skeletons of the platonic solids. Let X = (V , E)
be a connected undirected graph with n vertices.

2.1. Symmetric Drawings

A straight-line drawing ρ of X onto the inner product space (W, 〈·, ·〉) is a map from
V to W such that

1. the vertex v is represented by the point ρ(v).
2. the edge (v, v′) is represented by the straight line segment between ρ(v) and ρ(v′).

We say ρ is a symmetric drawing if for any graph automorphism σ of X , there exists a
linear isometry σ̃ of W such that for all v ∈ V ,

ρ ◦ σ(v) = σ̃ ◦ ρ(v).

In other words, a symmetric drawing preserves all symmetries of the graph.

2.2. Regular Drawings

Let R[V ] be a real inner product space with an orthonormal basis {~ev|v ∈ V}. The
regular drawing ρreg of X is a straight-line drawing onto R[V ] which maps v to~ev. For an
automorphism σ of X , let ρσ be a linear transformation on R[V ] characterized by

ρσ(~ev) = ~eσ(v) for all v ∈ V .

Since ρσ permutes the orthonormal basis, it is an isometry. In addition, we have

ρreg ◦ σ(v) = eσ(v) = ρσ ◦ ρreg(v).

We conclude that ρreg is a symmetric drawing.

2.3. Spectral Drawing Algorithm

The Laplacian operator L of X is a linear transformation on R[V ] characterized by

L(~ev) = ∑
(v,v′)∈E

~ev −~ev′
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The Laplacian operator is positive semi-definite with eigenvalues

0 = λ1 < λ2 ≤ λ3 ≤ . . . ≤ λn.

Let {~u1, . . . ,~un} be the corresponding orthonormal eigenbasis such that L(~ui) = λi~ui
for all i. Let Uk be the k-dimensional subspace of R[V ] spanned by {~u2, . . . ,~uk+1}. The
k-dimensional spectral drawing Spdk is a straight-line drawing given by

Spdk(v) := projUk
(~ev).

Here projUk
(~x) is the orthogonal projection onto Uk.

2.4. Potential Energy Function of Spectral Drawing Algorithm

Given a k-dimensional subspace W of R[V ], define the energy function of W as

E(W) := ∑
(v,w)∈E

‖projW(~ev)− projW(~ew)‖2.

Suppose {~α1, · · · ,~αk} is an orthonormal basis of W. Then we have

‖projW(~ev)− projW(~ew)‖2 =
k

∑
i=1

(〈~ev,~αi〉 − 〈~ew,~αi〉)2.

Hence, one can rewrite the energy function as

E(W) =
k

∑
i=1

∑
(v,w)∈E

(〈~ev,~αi〉 − 〈~ew,~αi〉)2 =
k

∑
i=1
〈~αi, L(~αi)〉2.

Therefore, subject to the condition W ⊥ (1, · · · , 1)t, E(W) is minimal if W is spanned
by eigenvectors of L corresponding to λ2, · · · , λk+1. In other words, the k-dimensional
spectral drawing has the minimal energy among all drawings arising from the projections
onto k-dimensional subspaces.

2.5. Spectral Drawings and Symmetric Drawings

The following theorem shows when the spectral drawing is a symmetric drawing.

Theorem 1. When Uk is a direct sum of eigenspaces E(λ) of L, Uk is ρσ invariant for any
automorphism σ of X and Spdk is a symmetric drawing.

Proof. Let σ be an automorphism of X . First, let us show that the isometry ρσ and L
commute. For any v ∈ V ,

ρσ(L(~ev)) = ρσ

 ∑
(v,v′)∈E

~ev −~ev′


= ∑

(v,v′)∈E
~eσ(v) −~eσ(v′) = ∑

(σ(v),σ(v′))∈E
~eσ(v) −~eσ(v′)

= ∑
(σ(v),v′′)∈E

~eσ(v) −~ev′′ = L(ρσ(~ev)).

Next, we show that Uk is ρσ-invariant. Suppose ~u is a λ-eigenvector of L in Uk. Then

L(ρσ(~u)) = ρσ(L(~u)) = ρσ(λ~u) = λρσ(~u).
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Therefore, ~u is also a λ-eigenvector and it is contained in Uk. We conclude that Uk is
ρσ-invariant, or equivalently projUk

and ρσ commute. Finally, set σ̃ = σ
∣∣
Uk

. Then for all
v ∈ V ,

Spdk(σ(v)) = projUk
(~eσ(v)) = projUk

(ρσ(~ev)) = ρσ

(
projUk

(~ev)
)
= σ̃(Spdk(v)).

Therefore, Spdk is a symmetric drawing.

Example 1. When X is the underlying graph of the skeleton of a platonic solid, we always have
λ2 = λ3 = λ4 < λ5. (This can be verified by direct computation.) Therefore, the 3-dimensional
spectral drawing of X is a symmetric drawing.

2.6. Partially Symmetric Drawing

Note that the subspace Uk is not unique when Uk is not a direct sum of eigenspace of
L. For example, when λ2 = λ3 = λ4 = λ5, then U3 can be any three dimensional subspace
of E(λ2). In this case, we need an extra structure to obtain a good choice of U3.

To do so, fix an automorphism σ of X and let ρσ be the isometry on R[V ] given in
Section 2.2. Then the restriction of ρσ on E(λ) is still an isometry. Recall the following
theorem of linear isometries.

Theorem 2 ([8] Theorem 6.46). Let T be a linear isometry on a nonzero-real finite dimensional real
inner product space W. Then there exists a collection of pairwise orthogonal T-invariant subspaces
{W1, · · · , Wm} of V such that

(a) dim(Wi) = 1 or 2 for all i.
(b) W = W1 ⊕ · · · ⊕Wm.
(c) When dim(Wi) = 1, T

∣∣
Wi

= 1or −1.

(d) When dim(Wi) = 2, T
∣∣
Wi

is a rotation with non-real eigenvalues. In this case, Wi is is called
a rotational plane of T.

Applying the above theorem to all eigenspaces of L, we have the following result.

Theorem 3. Given an isometry σ of X , there exists a decomposition R[V ] = ⊕Wi such that for
all i,

1. Wi is contained in some eigenspace of L.
2. Wi is ρσ-invariant.
3. Wi is either of one dimension or it is a rotational plane of ρσ.

Note that for a rotational plane Wi in the above theorem, the projection from R[V ] to
Wi induces a planar drawing of the graph X which preserves the symmetry σ. In this case,
we say the resulted drawing is partially symmetric.

3. Toroidal Graph Drawing

In this section, we propose a deterministic algorithm to draw highly symmetric toroidal
graphs on a torus. We shall use (R/2πZ)2 as the model of the torus.

3.1. The Drawing Algorithm

Let X = (V , E) be an undirected connected graph with the set of vertices V =
{v1, · · · , vn}. Fix an automorphism σ of X , which can be chosen to be of maximal order or
any specific symmetry that we would like to preserve. Suppose that ρσ contains at least
two rotational planes. The following is our proposed algorithm.

1. Find two mutually orthogonal rotational plane W1 and W2 of ρσ such that each Wi is
contained in some eigenspace E(λi) of L with the smallest possible λi.
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2. Find an orthonormal basis {~u1,~u2} of W1 and an orthonormal basis {~u3,~u4} of W2.
3. Write ~ui = (ui1, · · · , uin)

T . Define a map f : V 7→ (R/2πZ)2 given by f (vi) = (θi, ψi)
which satisfies the following condition.

(cos θi, sin θi, cos ψi, sin ψi) =

(
u1i√

u1i
2 + u2i

2
,

u2i√
u1i

2 + u2i
2

,
u3i√

u3i
2 + u4i

2
,

u4i√
u3i

2 + u4i
2

)
.

Remark 1. When
√

u1i
2 + u2i

2 or
√

u3i
2 + u4i

2 equals to zero, set θi or ψi to be zero respectively.

4. For each edge (vi, vj), draw a shortest straight line segment between (θi, ψi) and
(θj, ψj) in the space R/(2πZ)2. (If the shortest straight line segments are not unique,
just choose one of them.) Then we obtain a drawing of X on the torus (R/2πZ)2. In
addition, combing with the standard parametric equation of the torus in R3, one can
also obtain a drawing on R3.

3.2. Examples

In the following examples, we not only draw the graph on (R/2πZ)2 but also draw
the graph on the torus in R3 using the parametrization

f (θ, ψ) = ((R + r cos θ) cos ψ, (R + r cos θ) sin ψ, r sin ψ)

with (R, r) = (2.5, 1).

Example 2. For the graph Kn with n = 5, 6, or 7, the second smallest eigenvalue λ2 of L equals n,
which is of dimension n− 1. Label the vertices by 1 to n and let σ = (123 · · · n) be an automorphism
of Kn which is of order n. Choose W1 and W2 to be any two orthogonal rotational planes of ρσ in
E(λ2) which will be used in the step 1 of the algorithm. The following figures show the drawing
obtained by our algorithm, where the gray area is the fundamental domain of (R/2πZ)2 in R2. In
this case, the result drawing of Kn gives an embedding on a torus as shown in Figures 3–5.

Figure 3. The drawings of K5 on (R/2πZ)2 and R3.
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Figure 4. The drawings of K6 on (R/2πZ)2 and R3.

Figure 5. The drawings of K7 on (R/2πZ)2 and R3.

Example 3. For the bipartie graph K3,3, the eigenvalues of the Laplacian are

0 < 3 = 3 = 3 = 3 < 6.

Label the vertices as shown in the following figure and let σ = (152634) be an automorphism
on K3,3. Choose W1 and W2 to be two orthogonal rotational planes of ρσ in E(3). In this case, the
result drawing of K3,3 gives an embedding on a torus as shown in Figure 6.

1

2

3

4

5

6

Figure 6. The drawings of K3,3.
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Example 4. Let X be the Heawood graph which is a bipartite graph with the vertex set V1 ∪ V2.
Here

• V1 is the set of 1-dimensional subspaces in (F2)
3 which cardinality equals to 7;

• V2 is the set of 2-dimensional subspaces in (F2)
3 which cardinality equals to 7;

• for v ∈ V1 and w ∈ V2, v1 and v2 are adjacent if v1 ⊂ v2 as a subspace of (F2)
3.

Here, F2 is the finite field with 2 elements. The automorphism group of X contains the group
PGL2(F2) as an index two subgroup of order 168. The spectrum of the Laplacian of X is

0 < (3−
√

2) = · · · = (3−
√

2)︸ ︷︷ ︸
6−times

< (3 +
√

2) = · · · = (3 +
√

2)︸ ︷︷ ︸
6−times

< 6.

Let σ =

 0 0 1
1 0 1
0 1 0

 which is an element of order 7 in PGL2(F2). Choose W1 and W2 to

be two orthogonal rotational planes of ρσ in the 6-dimensional subspace E(3−
√

2). In this case,
the result drawing of the Heawood graph X gives an embedding on a torus as shown in Figure 7.

Figure 7. The drawings of the Heawood graph.

Example 5. Let X = G(n, k) be the generalized Petersen graph which vertex set is {u1 , · · · ,
un, v1, · · · , vn} and the edge is

⋃n
i=1{(ui, ui+1), (ui, vi), (vi, vi+k)} were subscripts are to be read

modulo n. Let σ be the automorphism on X given by σ(vi) = vi+1 and σ(ui) = ui+1 for all i.
There are three torodial edge-transitive petersen graphs, namely the Petersen graph G(5, 2), the
Möbius–Kantor graph G(8, 3), and the Nauru graph G(12, 5).

1. For the Petersen graph G(5, 2), the second smallest eigenvalue λ2 of the Laplacian equals 2,
which is of dimension 5. Let W1 and W2 be two rotational planes of ρσ on E(λ2). However, in
the resulted drawing as shown in Figure 8, 10 vertices are divided into 5 pairs and each pair
maps to one point.

Figure 8. The (ramified) drawings of the Petersen graph G(5, 2).

2. For the Möbius–Kantor graph G(8, 3), the second smallest eigenvalue λ2 of the Laplacian
equals 3−

√
3, which is of dimension 4. Let W1 and W2 be two rotational planes of σ on

E(λ2). However, in the resulted drawing as shown in Figure 9, 16 vertices are divided into
8 pairs and each pair maps to one point.
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Figure 9. The (ramified) drawings of the Möbius–Kantor graph G(8, 3).

3. For the Nauru graph G(12, 5), the second smallest eigenvalue λ2 of the Laplacian equals
3−
√

3, which is of dimension 4. Let W1 and W2 be two rotational planes of σ on E(λ2).
However, in the resulted drawing as shown in Figure 10, 24 vertices are divided into 12 pairs
and each pair maps to one point.

Figure 10. The (ramified) drawings of the Nauru graph G(12, 5).

For torodial generalized Petersen graphs and this particular σ, our algorithm does not give
an embedding onto a torus. One may choose a different σ to obtain a different drawing. However,
unlike other examples, none of σ induces an embedding onto a torus.

Example 6. Let G = Z/mZ× Z/nZ and S = {(±1,±1)}. The Cayley graph X of (G, S) is a
rectangular mesh on a torus. The spectrum of the Laplacian L is given by{

4− 2 cos
(

2π j
m

)
− 2 cos

(
2πk

n

)∣∣∣∣1 ≤ j ≤ m, 1 ≤ k ≤ n
}

.

When n 6= m, we have
0 = λ1 < λ2 = λ3 < λ4 = λ5 < λ6.

In this case, we can simply set W1 = E(λ2) and W2 = E(λ4) and the result drawing of the
Cayley graph X gives an embedding on a torus as shown in Figure 11.

Figure 11. The drawing for (m, n) = (6, 4).
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When n = m, we have

0 = λ1 < λ2 = λ3 = λ4 = λ5 < λ6.

Set σ(x) = x + (1, 2). In this case, E(λ2) can be decomposed as a direct sum of two orthogonal
rotational planes W1 and W2 of ρσ. In this case, the result drawing of the Cayley graph X gives an
embedding on a torus as shown in Figure 12.

Figure 12. The drawing for (m, n) = (6, 6).

Note that the symmetric drawing of the Cayley graph in this example has been studied in the
3-sphere in [9,10].

Example 7. Let G be a group of isometries on R2 generated by three isometries:

s1(~x) = −~x + (1, 0), s2(~x) = −~x + (0, 1), and s3(~x) = −~x + (1, 1).

Let N be a translation subgroup spanned by t1(~x) := ~x + ~u1 and t1(~x) = ~x + ~u2 for
some ~u1,~u2 ∈ Z2. In this case N is a normal subgroup of G and the Cayley graph X of
(G/N, {s1, s2, s3}) is a so-called toroidal fullerence. The spectrum of the Laplacian can be found
in [11] Especially, when ~u1 = (m, 0) and ~u2 = (0, n), the spectrum of the Laplacian is given by

{3±
√

3 + 2 cos(2π j/m) + 2 cos(2πk/n) + 2 cos(2π(j/m + k/n))
∣∣1 ≤ j ≤ m, 1 ≤ k ≤ n}.

When n = m, we have

0 = λ1 < λ2 = λ3 = λ4 = λ5 = λ6 = λ7 < λ8.

Set σ(x) = x + (1, 2). In this case, the six dimensional subspace E(λ2) can be decomposed as
a direct sum of three rotational planes of ρσ. We choose W1 and W2 as any two of them. In this case,
the result drawing of the Cayley graph X gives an embedding on a torus as shown in Figure 13.

Figure 13. The drawing for (m, n) = (6, 6).

When n 6= m, we have

0 = λ1 < λ2 = λ3 < λ4 = λ5 < λ6.
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In this case, we can simply set W1 = E(λ2) and W2 = E(λ4) and the result drawing of
the Cayley graph X gives an embedding on a torus as shown in Figure 14.

Figure 14. The drawing for (m, n) = (8, 6).

4. Further Works

In this paper, we provide a simple algorithm to draw torodial graphs on three-
dimensional Euclidean space. The main idea is to express the torus as a product of two
1-spheres S1 × S1, which can be regarded a subset of S3.

However, our method can not apply to graphs of high genus since there is no simple
way to describe closed surfaces of high genus in three-dimensional Euclidean space.

In the future, we would like to study graphs of genus two as the starting point. Such
graphs shall be drawn on the so-called double torus. Unlike the usual torus, the double
torus is a quotient of the hyperbolic plane. Therefore, the a new method must be developed.
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