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Abstract: Λ-Fractional analysis was introduced to fill up the mathematical gap exhibited in frac-
tional calculus, where the various fractional derivatives fail to fulfill the prerequisites demanded by
differential topology. Nevertheless, the various advantages exhibited by the fractional derivatives,
and especially their non-local character, attracted the interest of physicists, although the majority of
them try to avoid it. The introduced Λ-fractional analysis can generate fractional geometry since the
Λ-fractional derivatives generate differentials. The Λ-fractional analysis is introduced to mechanics to
formulate non-local response problems with the demanded mathematical accuracy. Further, fractional
peridynamic problems with horizon are suggested.
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1. Introduction

Most of the natural materials are heterogeneous and with non-smooth geometry. Ap-
proximation models have been adopted in continuum physics, for smoothing the geometry
of those physics materials. Further, a lot of theories are restricted to local action approxima-
tions, where conventional local derivatives are satisfying the postulated physics. Indeed,
Noll, Truesdell et al. [1] postulated the local action axiom. Mandelbrot [2], responding to the
need of adopting non-smooth geometries, closer to real physics, introduced the geometry
of fractals, which are continuous geometrical objects but without smooth derivatives. There
exists a broad literature concerning fractal structures and also their applications in various
scientific areas, such as physics, mechanics, biology, biomechanics, economy, etc. [3–6].
Moreover, the fractals were combined with fractional calculus, just to add mathematical
tools, for better analysis and numerical procedures. It is recalled that fractional calculus
introduces non-local analysis, which is important in physics, especially in nano- and micro-
physics. Eringen [7] proposed non-local extensions of two fundamental laws in physics:
(a) the energy balance law to remain in global form and (b) a material point is considered
to be attracted by all points of the body, at all past times.

Lastly, the fractal geometries were connected with fractional calculus for a better de-
scription of fractal geometries. However, fractals exhibit a non-smooth geometry. Neverthe-
less, fractional calculus cannot generate fractional geometry, since the fractional derivatives
are not real mathematical derivatives but functional operators [8–11]. The richness of
rigorous information included, not only in those references but in many other places, is
valuable for any worker on fractional calculus. Those texts have been recognized as dictio-
naries for fractional calculus information. However, some procedures have been presented,
proposing homogenization of the fractal geometries using fractional differentials [12–15].
In reality, fractional differentials do not mathematically exist, since fractional derivatives
do not satisfy the prerequisites, demanded by differential geometry, for generating differen-
tials. There exist extensions of the properties demanded from differential topology, such as
the extensions of the Leibniz rule and the chain rule. However, differential topology does
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not accept extensions, only exact forms of the rules. The most striking is that the fractal
geometrical physical objects are homogenized following local geometry through fractional
calculus, inherently a non-local procedure, not capable of generating geometry, as stated by
Lazopoulos [16]. The present work presents the Λ-fractional geometry of fractals and its
application to mechanics. The Λ-fractional analysis is used for defining the Λ-fractional
derivative and Λ-fractional space, where the Λ-fractional derivative is a local derivative
equipped with all the properties of a derivative, corresponding to the differential. It would
have been more prosperous for the fractional calculus worker to be able to use all the
existing rigorous information. However, geometrical problems demand the existence of the
differential. Hence, fractional differential geometry may be generated in the Λ-fractional
space. Further, results may be transferred in the initial space. Specifically, the fractal
structures will be transferred into the Λ-space. Those fractional fractal structures in the
Λ-space may geometrically be transformed, following conventional differential geometry
procedures. The results may be transferred into the initial space. The method has been ap-
plied to mechanics [17,18]. It should be pointed out that the present version of Λ-fractional
analysis presented here has been adjusted to conform with the fractional rules that are
broadly accepted. The present work discusses the idea of homogenization of fractal ge-
ometries [12–15,19–22] and considering the fractal Cantor bar concludes that the procedure
fails. Nevertheless, the Λ-fractional Cantor bar could be used in physics and its geometry
may be used in studying its axial deformation. Further, the Λ-fractional analysis with the
horizon is introduced just to take care of possible homogenization procedures in fractal
media. Hence, the Λ-fractional analysis works out, whereas the fractional homogenization
procedure of fractal structures fails. The present work may be considered as a precursor for
studying the homogenization procedure of the fractal continuum mechanics media.

2. The Fractional Calculus

Fractional Calculus has already been a well-organized branch of applied mathematics
with many applications in physics, biology, economy, etc. There exist a lot of books for
the interested reader [8–11,23], concerning the theory and its applications in various areas,
offering sophisticated methods and rigorous approaches. A summary is presented.

Starting from the definition of the fractional integrals, the left and right fractional
integrals for a fractional dimension 0 < γ ≤ 1 are defined by:

a Iγ
x f (x) =

1
Γ(γ)

x∫
a

f (s)

(x− s)1−γ
ds, (1)

x Iγ
b f (x) =

1
Γ(γ)

b∫
x

f (s)

(s− x)1−γ
ds, (2)

where Γ(γ) is Euler’s Gamma function and γ is the order of fractional integrals. There
exist quite a few fractional derivatives. One of the first is the Riemann–Liouville fractional
derivative (FR). Further, the left RL derivative is defined by:

RL
a Dγ

x f (x) =
d

dx

(
α I1−γ

x ( f (x))
)
=

1
Γ(1− γ)

d
dx

x∫
a

f (s)
(x− s)γ ds. (3)

Likewise, the right Riemann–Liouville’s fractional derivative (RL) is defined by:

RL
x Dγ

b f (x) =
d

dx

(
x I1−γ

b ( f (x))
)
= − 1

Γ(1− γ)

d
dx

b∫
x

f (s)
(s− x)γ ds. (4)
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The relation between fractional integrals and derivatives is expressed by:

RL
aDγ

x
(

a Iγ
x f (x)

)
= f (x). (5)

The right fractional derivative and the right fractional integrals are connected by
similar relations. It is quite evident that all the fractional derivatives are non-local and they
yield the conventional local derivative at the point x when:

f ′(α) = (limx→a
RL

αDγ
x f (x) + limx→a

RL
xDγ

a f (x)). (6)

Although The RL fractional derivative does not acquire all the properties required by
differential analysis, the most important defect of that derivative was considered to be its
non-zero value of the constant. Hence it was proposed that the Caputo fractional derivative
take care of that handicap. Caputo’s fractional derivative is defined by:

C
a Dγ

x f (x) =
1

Γ(γ− 1)

x∫
a

f ′(s)
(x− s)γ ds (0 < γ < 1). (7)

Nevertheless, that fractional derivative is very popular, although the properties of
the derivative are not valid except for the linearity. There also exist some other fractional
derivatives, such as Grunwald–Letnikov, Marchaud, and many others referred to in various
texts [10,11].

All those derivatives are non-local and may be useful in non-local field theories.
However, they lack basic properties for corresponding to differentials. So they are not able
to generate differential geometry demanded by real problems.

3. The Homogenization of the Fractals Procedure

There exists an effort of embedding the fractal geometry into Euclidean geome-
try through fractional analysis. The idea was started by Stillinger [12] and applied by
Palmer et al. [13]. Tarasov [14,21] and Balanking [15] presented the homogenized fractal
spaces and embedded them into fractional spaces. Ostoja-Starzewsky et al. [18,20,22]
presented continuum mechanics applications of homogenized fractal media based upon
Tarasovs’ procedure. Tarasov proposed the homogenization of the mass law:

dm = ρdVD, (8)

where D is the fractal dimension of the mass. Tarasov used the fractional integral for
representing the mass volume in some fractal regions embedded in the Euclidean three-
dimensional space. However, that embedding is mathematically questionable since frac-
tional derivative does not exist in the mathematical sense. Indeed, fractional derivatives do
not comply with the requirements of differential topology and fractional differential geom-
etry could not be generated. Nevertheless, Tarasov [14,21] presents the homogenization
of the fractals procedure and applies it in fields theory. The mass integral is defined for a
fractal region W by:

m(W) =
∫

W
ρdVγ =

∫
W

ρ c3dV3,

with c3 = Rγ−323−γΓ
(

3
2

)
Γ
(γ

2

)
, R =

√
xixi, (9)

the magnitude R of the position vector R, and the gamma function Γ. Further, the homoge-
nization procedure is used to apply Green–Gauss field’s theorem, valid for local derivatives.
For the one-dimensional fractals, the coefficient c3 becomes:

c =
Γ
(
1 + γ

2
)

Γ
( 3

2
)
Γ
(

1+γ
2

) . (10)
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Hence the mass of a fractal bar of unit length is:

m = ρc. (11)

Let us consider a bar of unit length with the fractal geometry of the Cantor set with
fractal dimension γ = 0.6309 [23]. Then, the coefficient c equals c = 0.8805. Hence, the mass
of the Cantor fractal bar, according to the homogenization procedure, is equal to:

mC
L=1 = 0.8805 ρ. (12)

However, it is well known that the measure of the length of the unit Cantor bar is equal
to 1 [24]. Consequently, homogenization of the fractals procedure is not mathematically
correct. That is due to the embedding procedure into fractional spaces, not being able to
generate geometry. However, Λ-fractional derivatives generate geometry in the Λ-space
since they correspond to differentials. That analysis will be presented in the next chapter.

4. The Λ-Fractional Analysis

The need for encoding fractional calculus was pointed out by Davis [25] in 1927. “The
great elegance that can be secured by the proper use of fractional operators and the power
they have in simplifying the solution of complicated functional equations should more
than justify a more general recognition and use”. Further, at an International Conference in
1973, Ross [26,27] postulated the specific characteristics of fractional derivatives as follows:

1. If f (z) is an analytic function of the complex variable z (or z = x a real variable), the
derivative Dγ(f (z)) is the analytic function of γ and z.

2. The operation Dγf must produce the same result as the ordinary differentiation when
γ is a positive integer: Dγf (x) = fγ(x). If γ = −n, a negative integer, Dγ f (x) must
produce the same result as ordinary n-fold integration, and g(x) = D(−n)f (x) must
vanish together with all its n-l derivatives at x = the lower terminal of integration.

3. The fractional operators must be linear.
4. The operation of order zero leaves the function unchanged: Do f = f.
5. The law of exponents (indices) holds for integration of arbitrary order:

D−µD−v f = D−µ−νf, Re(µ) and R(v) > O.

Nevertheless, all the well-known fractional derivatives do not access all the properties
of the derivatives because they fail to satisfy differential topology rules for corresponding
to differentials, generating differential geometry. Those well-known rules are Chilling-
worth [10]:

Linearity D(a f (x) + bg(x)) = aD f (x) + bDg(x). (13)

Leibniz rule D( f (x)·g(x)) = D f (x)·g(x) + f (x)·Dg(x). (14)

Chain rule D(g( f ))(x) = Dg( f (x)·D f (x)). (15)

Atanackovic et al. [28] presented a book concerning fractional calculus with appli-
cations to mechanics. Lazopoulos [16,29,30] presented a fractional derivative satisfying
both the prerequisites of differential topology in addition to the fractional postulates of the
well-known fractional derivatives. The Λ-fractional analysis was proposed with the basic
characteristics of the Λ-fractional derivative and Λ-fractional space where the fractional
derivatives behave as local ones.

The Λ-fractional derivative (Λ-FD) is defined as:

Λ
a Dγ

x f (x) =
RL

αDγ
x f (x)

RL
aDγ

x x
. (16)
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Recalling the definition of Riemann–Liouville’s fractional derivative, Equation (3), the
Λ-FD is expressed by:

Λ
a Dγ

x f (x) =
da I1−γ

x f (x)
dx

da I1−γ
x x
dx

=
da Ix

1−γ f (x)
da Ix1−γx

. (17)

Further, the Λ-fractional space is defined by (X, F(X)) with:

X =a Ix
1−γ1, F(X) =a Ix

1−γ f (x(X)). (18)

The Λ-FD exhibits all the properties of the conventional local derivatives in the Λ-
fractional space (X, F(X)). Hence, fractional differential geometry may be generated as a
conventional differential geometry in the fractional Λ-space, (X, F(X)). Then, the results
may be transferred to the initial one using the relation:

f (x) = RL
aD1−γ

x F(X(x)) = RL
αD1−γ

x I1−γ f (x). (19)

Therefore, the various metrics, such as Riemannian, etc., and the frame indifference
(translations and rotations) are valid in the Λ-fractional space, where the differential
geometry may be any known differential geometry. No derivative exists in the initial
space. On the contrary, derivatives exist in the Λ-fractional space. Then, the results may be
transferred only as functions from the Λ-fractional space to the initial one.

In case the contribution of the right side fractional derivative should be taken into
consideration, the Λ-fractional space may be defined with:

I1−γ f (x) =
1
2
(α I1−γ

x f (x) + x I1−γ
b f (x)) =

1
2
(α I1−γ

x f (x) + a I1−γ
x f (b− x). (20)

Just to understand the difference between the Λ-fractional derivative and the other
derivatives, let us consider the function:

y = x3. (21)

Figure 1 depicts the functions of the various derivatives, such as the conventional
derivative, the fractional Riemann–Liouville derivative, and the Λ-derivative as a function
in the initial space.
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the other ones. 

  

Figure 1. The various derivatives of the function y = x3.

The blue curve indicates the function y = x3 and the green one is the conventional
derivative. Furthermore, the yellow one is the well-known Riemann–Liouville fractional
derivative. However, the red one is the function of the Λ-fractional derivative transferred
into the initial space. The action of the Λ-fractional derivative is more intense than the
other ones.



Axioms 2022, 11, 85 6 of 21

5. The Λ-Fractional Fractal Bar Extension

In the present section, the Λ-fractional deformation of a fractal bar under axial loading
is discussed. Suppose that a bar, fixed at one end, is deformed by the application of an axial
load p at its other end. The bar is Λ-fractionally deformed. Figure 2 shows the undeformed
xo and the deformed ψ(xo) placements of the bar in the initial space.
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The Λ-fractional analysis is connected with the Λ-fractional space, where the x-
coordinate is transformed as:

X =
1

Γ(1− γ)

∫ x

0

x
(x− s)γ ds=

x2−γ

Γ(3− γ)
. (22)

Further, the load P in the Λ-space, corresponding to the axial load p in the initial space,
is defined by:

P =
1

Γ(1− γ)

∫ l

0

p
(l − s)γ ds =

pl1−γ

Γ(2− γ)
. (23)

In addition, the axial length l of the bar, in the initial space, becomes in the Λ-space:

L =
l2−γ

Γ(3− γ)
. (24)

Figure 3 shows the undeformed and deformed placements in the Λ-space.
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Moreover, the constant elastic modulus E in the initial space is transferred in the
Λ-fractional space as non-constant EΛ along the x-axis. Indeed:

EΛ =
1

Γ(1− γ)

∫ x

0

E
(x− s)γ ds =

Ex1−γ

Γ(2− γ)
. (25)

In addition, the constant cross section area in the initial space is transferred in the
Λ-fractional space by:

AΛ =
1

Γ(1− γ)

∫ x

0

A
(x− s)γ ds =

Ax1−γ

Γ(2− γ)
. (26)

Since the derivatives in the Λ-space are local, the strain of the bar in the Λ-fractional
space is defined by:

dY
dX

=
P

EΛ AΛ =
Γ(2− γ) pl1−γ

EAx2−2γ
. (27)

Recalling further Equation (22), X = x2−γ

Γ(3−γ)
, the fractional strain is equal to:

dY
dX

=
Γ(2− γ) pl1−γ

EAx2−2γ
. (28)

Hence, Equation (28) yields:

Y(X) =

X∫
0

Γ(2− γ)pl1−γ

EA(Γ(3− γ)X)(1−
γ

2−γ )
dX (29)

with Y(X) denoting the displacement in the fractional Λ-space, with the boundary condition,
Y(0) = 0. Further, Equation (29) may be expressed in the variable x of the initial space by:

Y(x) =
∫ x

0

Γ(2− γ) pl1−γ

EAx2−2γ

(
dX
dx

)
dx =

∫ x

0

pl1−γ

EAx1−γ
dx. (30)

Further, the displacement Y in the Λ-space may be expressed through Equation (22)
as a function of the initial space. Indeed:

Y(x) =
pl1−γ

EAγ
xγ. (31)

Recalling Equation (5), the displacement Y(X) in the Λ-space is transferred to y(x) in
the initial plane (x, y) through:

y(x) =
1

Γ(γ)
d

dx

∫ x

0

Y(s)

(x− s)1−γ
ds. (32)

Hence, the displacement field in the initial space is defined by:

y(x) =
1

Γ(γ)
d

dx

∫ x

0

(
pl1−γ

EAγ sγ
)

(x− s)1−γ
ds =

21−2γ pl1−γ
√

π

EAΓ(γ)Γ
(

1
2 + γ

) x−1+2γ. (33)

For the fractal bar with dimension γ = 0.63 and with (unit length), the non-dimensional
displacement y(x) has been shown in Figure 4.

y(x) =
1.575px0.26

E A
. (34)
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function is shown in Figure 5.
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Considering that in the Λ-space the conventional mechanics’ rules are valid, the axial
stress Σ(X) in the Λ-space is defined by:

Σ(x) =
P

AΛ =
p
A

(
l
x

)1−γ

. (35)

Consequently, the axial stress, along the bar in the initial space, is defined through
the relation:

σ(x) =
1

Γ(γ)
d

dx

∫ x

0

Σ(s)

(x− s)1−γ
ds =

pl1−γ

Γ(γ)A
d

dx

∫ x

0

ds

(s(x− s))1−γ
. (36)

Figure 6 shows the distribution of the real stresses in the initial space.
It is evident that the present method exhibits the size effect phenomenon, which is

well known by gradient theories, see Aifantis [31].
Likewise, the right RL derivative, Equation (4), may also be considered since there is

not any direction preference. Figure 7 shows the stress distribution along the unit rod with
fractal dimension d = 0.63 and fractal dimension d = 0.8.

Non-Local Action

The non-dimensional displacement of the fractional unit bar for the fractional-order
γ = 0.63 is shown in Figure 8.

Figure 9 shows the distribution of the displacement field in the initial space for the left
and right fractional deformation.
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The present theory may be extended to any continuum media, just to describe the
fractional response of fractal media.

6. The Extension of a Bar with Fractal Cross-Section Area Distribution
6.1. The Left Λ-Fractional Analysis

The present section deals with the fractional deformation of a bar with an order
different from the fractal dimension of the distribution of the cross-section area of the bar.
The distribution of the cross-section area along the bar is characterized by the Hausdorff
dimension dH = 1.5, and it is defined by:

a(x) = 1 + ∑∞
n=1 n−0.5ncos(nnx). (37)

Restricting to n = 5 for computation reasons, the cross-section area is defined by:

a(x) ≈ 1 + ∑5
n=1 n−0.5ncos(nnx). (38)

Transferring the cross-section area in the Λ-space, the area function A(x) is defined by:

A(x) =
1

Γ(1− γ)

∫ x

0

a(s)
(x− s)γ ds. (39)

Recall from Equation (22):

X =
x2−γ

Γ(3− γ)
and x = (Γ(3− γ)X)

1
2−γ . (40)

Through the analysis of the problem, the fractional order γ = 0.6 will be considered.
Then, introducing the variable X into Equation (39) through Equation (40), the area of
the cross section A(X) is defined in the Λ-space as a function of X. Therefore, the fractal
cross-section area a(x), Figure 10 in the initial space, is transferred into the dual Λ-space as
shown in Figure 11.
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Figure 10. The (dimensionless) distribution of the cross-sectional area a(x).

Further, the length of the bar l in the initial space becomes L in the fractional Λ-space
through Equation (24). The axial force p applied at the right end of the bar corresponds
to the P load in the Λ-space defined by Equation (23). In addition, Young’s modulus of
elasticity E corresponds to EΛ defined by Equation (25).

Since in the Λ-space everything works conventionally, the equilibrating axial stress in
the Λ-space, shown in Figure 12, is defined by:

Σ(X) =
P

A(X)
. (41)
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The real stress is applied to the initial space. Therefore, the stress Σ(X) function
corresponding to the axial stress applied in the Λ-space is transferred as the real stress Σ(x),
distributed along the bar in the initial space, and is defined through the relation:

σ(x) =
1

Γ(γ)
d

dx

∫ x

0

Σ(s)

(x− s)1−γ
ds. (42)

The stress function Σ(x), applied in the Λ-space, is expressed in the variable x of the
initial space. The distribution of the axial stress function Σ(x) in the initial space is shown
in Figure 13.
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Recalling Equations (23)–(26), the strain in the Λ-space is defined by:

dY
dX

=
P

EΛ A(X)
=

pl1−γ

E(Γ(3− γ)X)
1−γ
2−γ A(X)

. (43)

Let us point out that strain, as a derivative of the displacement function, is valid only
in the Λ-space. No derivative exists in the initial space. However, the displacement function
exists in the initial space and may be found as transferring the displacement function in the
Λ-space. Therefore, integrating the strain, Equation (43), the displacement in the Λ-space is
defined. Hence:

Y(X) =
∫ X

0

pl1−γ

E(Γ(3− γ)X)
1−γ
2−γ A(X)

dX. (44)

The displacement Y(X) has been computed for γ = 0.6. In addition, the displacement
Y(x) in the Λ-space may be computed concerning the x variable of the initial space, which
may be defined through the equation:

Y(x) =
∫ x

0

pl1−γ

E(x)1−γ A(x)

x1−γ

Γ(2− γ)
dx. (45)

Further, the displacement function y(x) in the initial space is defined through the equation:

y(x) =
1

Γ(γ)
d

dx

∫ x

0

Y(s)

(x− s)1−γ
ds. (46)

For the present case, the non-dimensional displacement is shown in Figure 14.
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The present problem indicates the methodology for discussing the fractional deforma-
tion of a fractal medium of different dimensions from the fractional order.

6.2. The Right Λ-Fractional Analysis

The right Λ-fractional space is defined considering the variable z = 1 − x. Then, the
function α(z) denoting the distribution of the cross-section area of the fractal bar, corre-
sponding to α(x), is defined by, see Equation (37):

a(z) = 1 + ∑∞
n=1 n−0.5ncos(nn(1− z)). (47)

Again, restricting to n = 5 for computation reasons, the cross-section area is defined by:

a(z) ≈ 1 + ∑5
n=1 n−0.5ncos(nn(1− z)). (48)
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Transferring the cross-section area in the right Λ-space, the area function A(z) is
defined by:

A(z) =
1

Γ(1− γ)

∫ z

0

a(s)
(z− s)γ ds =

1
Γ(1− γ)

∫ z

0

1 + ∑5
n=1 n−0.5ncos(nn(1− s))

(z− s)γ ds. (49)

Recall from Equation (40):

Z =
z2−γ

Γ(3− γ)
and z = (Γ(3− γ)Z)

1
2−γ . (50)

Then, introducing the variable Z into Equation (49) through Equation (70), the area
of the cross section A(Z) is defined in the Λ-space as a function of Z. Therefore, the fractal
cross-section area a(z), Figure 15 in the initial space, is transferred into the dual Λ-space
having the Figure 16.
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Figure 16. The distribution of the cross-sectional area A(Z) in the Λ-space.

Further, the length of the bar l in the initial space becomes L in the fractional Λ-space
through Equation (24). The axial force p applied at the right end of the bar corresponds
to the P load in the Λ-space defined by Equation (23). In addition, Young’s modulus of
elasticity E corresponds to EΛ defined by Equation (25).

Since in the Λ-space everything works conventionally, the equilibrating axial stress,
shown in Figure 17, in the Λ-space is defined by:

Σ(Z) =
P

A(Z)
=

pl1−γ

Γ(2− γ)A(Z)
. (51)
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Hence, the stress Σ(Z) function corresponding to the axial stress applied in the Λ-space
is transferred as the real stress, Σ(z), distributed along the bar in the initial space, and is
defined through the relation:

σ(z) =
1

Γ(γ)
d

dx

∫ z

0

Σ(s)

(z− s)1−γ
ds. (52)

The stress function Σ(z), applied in the Λ-space, is expressed in the variable z in the
initial space. The distribution of the axial stress function Σ(z) in the initial space is shown
in Figure 18.
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The final result concerning the stresses in the right initial space is defined reminding
that z = 1 − x.

Following the same procedure as in the previous section for defining the strain, the
strain in the right Λ-space is defined by:

dY
dZ

=
P

EΛ A(Z)
=

pl1−γ

E(Γ(3− γ)X)
1−γ
2−γ A(Z)

. (53)

Therefore, integrating the right Λ-fractional strain, Equation (53), the displacement in
the right Λ-space is defined. Hence:

Y(Z) =
∫ Z

0

pl1−γ

E(Γ(3− γ)Z)
1−γ
2−γ A(Z)

dZ. (54)
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The displacement Y(X) has been computed for γ = 0.6. In addition, the displacement
Y(z) in the Λ-space may be computed concerning the z variable of the initial space, which
may be defined through the equation:

Y(z) =
∫ z

0

pl1−γ

E(z)1−γ A(z)

z1−γ

Γ(2− γ)
dz. (55)

Further, the displacement function y(z) in the initial space is defined through the equation:

y(z) =
1

Γ(γ)
d
dz

∫ z

0

Y(s)

(z− s)1−γ
ds (56)

For the present case, the non-dimensional displacement is shown in Figure 19.
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The next step is the interconnection and combination of the left and right fractional
Λ-solutions.

6.3. The Two Side Λ-Fractional Analysis

The final results in stresses and displacements in the initial space are defined as the
mean values of the left and right results. Therefore, recalling Figure 13 concerning the
stresses in the left initial space and Figure 18 indicating the distribution of the stresses in
the right initial space, the distribution of the stresses in the fractal bar, that is the mean
value of the left and right distribution of the stresses, is described in Figure 21.
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The maximum stresses are located around the poles.
Further, proceeding to the final distribution of the displacement field is the mean value

of the left and right distribution of the displacement fields of the fractal bar, as shown in
Figure 22.
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The present chapter completes the discussion of the Λ-fractional deformation of the
fractal bar, which may also serve as a model for the discussion of Λ-fractional deformation
of any structure.

7. Λ-Fractional Deformation with a Horizon

Fractional analysis has been applied to homogenize fractals media. Indeed, Ostoja-
Starzewsky et al. [18,20,22] used Tarasov’s [14,21] homogenization of fractal spaces. Never-
theless, Tarasov’s proposal contradicts measure theory [24] because the length of Cantor’s
rod is found as different from a unit, contrary to the exact mathematical procedure. There-
fore, that approach is not reliable.

Trying to develop a mathematically correct procedure similar to the homogenization
of the fractals into the context of fractional analysis, an analog of peridynamic theory
Refs. [32,33] is proposed in the Λ-fractional analysis. Indeed, horizon h is considered in the
Λ-space in the various problems with fractal functions. Let us consider a function f (x) in
the initial space (x, f (x)). The corresponding function in the Λ-fractional space is defined
by (X, F(X)). Nevertheless, for the existence of a horizon h, the function f (x) corresponds,
in the Λ-fractional space, to F(X) − F(X − h) function. In addition, the derivatives of the
functions F(X) in the Λ-fractional space are local. Further, Taylor expansion of the F(X − h)
yields with horizon h << 1:

F(X − H) ≈ F(X) − F′(X)H + o(h). (57)

Therefore, the function in the Λ-fractional space with the horizon h becomes:

F(X) − F(X − H) = F′(X)H. (58)
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Let us apply the proposed method of Λ-fractional analysis to the extension of the
Cantor rod under axial load p applied to its end. Considering the constant cross-section
area a in the initial space, the corresponding cross-section area A in the Λ-fractional space
is defined by:

A =
a(XΓ(3− γ))

1−γ
2−γ

Γ(2− γ)
(59)

Therefore, the corresponding load P in the Λ-fractional space is defined by:

P =
1

Γ(1− γ)

∫ l

0

p
(l − s)γ ds =

pl1−γ

Γ(2− γ)
. (60)

Then, the stress S(X) in the Λ-space is defined by:

S(X) =
pl1−γ

a
(XΓ(3− γ))

1−γ
2−γ . (61)

Further, the Λ-fractional stress Σ(X) with horizon H is defined by:

Σ(X) =
dS(X)

dX
H =

d
dX

 pl1−γ(XΓ(3− γ))
1−γ
2−γ

α

H. (62)

The non-dimensional diagram of the Λ-fractional stress Σ(X) in the Λ-space, with,

q = l1−γ p
a , is shown in Figure 23.
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It is quite strange that the values of the Λ-fractional stress with horizon H in the
Λ-space are negative. Likewise, the stress Σ(x) in the Λ-space expressed with the variable x
of the initial space is:

Σ(x) = Σ(X) : X → x2−γ

Γ(3− γ)
. (63)

Hence, the true stress Σ(x) in the initial space is defined by:

σ(x) =
1

Γ(γ)
d

dx

∫ x

0

Σ(s)

(x− s)1−γ
ds. (64)

The left Λ-fractional stress in the initial space with q = l1−γ p
a H is shown in Figure 24.

Proceeding, the average of the left and right fractional stresses is shown in Figure 25.
Those stresses are the true stresses for the fractional tension of the Cantor rod in the

initial space.
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Proceeding further, to the definition of the displacement field in the initial space,
Young’s modulus EΛ in the Λ-fractional space is defined by, see Equation (59):

EΛ =
E(XΓ(3− γ))

1−γ
2−γ

Γ(2− γ)
. (65)

Then, the strain εΛ in the Λ-fractional space is defined by:

εΛ =
P

AEΛ =
pl1−γΓ(2− γ)(XΓ(3− γ))−1+ γ

2−γ

αE
. (66)

In addition, the Λ-fractional strain εΛH with horizon H is defined by:

εΛH =
dY(X)

dX
=

dεΛ

dX
H =

0.793pl0.37H
aEX0.54 . (67)

Furthermore, the displacement in the Λ-fractional space is defined by:

Y(X) =
∫ x

0
εΛHdX = 1.738

pl0.37H
aE

X0.46. (68)

Expressing the displacement in the Λ-space Y(x) with the variable x of the initial
space through:

X =
x2−γ

Γ(3− γ)
, (69)
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The displacement in the initial space is defined through the relation:

y(x) =
1

Γ(γ)
d

dx

∫ x

0

Y(s)

(x− s)1−y ds. (70)

The left Λ-fractional displacement of the Cantor rod is shown in Figure 26.
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Further, the average left and right displacement of the extended Cantor rod is shown
in Figure 27.
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The present section introduces the fractional deformation of a body with horizon. The
present theory may be transferred into fractional deformation problems with horizon.

8. Conclusions

The relation between fractional calculus and fractal geometries is explored in the
present study. Specifically, the idea of using fractional calculus for the homogenization
of fractal structures is discussed. It is pointed out that fractional calculus is a non-local
analysis, contrary to the homogenization procedure, considered as local. Further, fractional
derivatives do not satisfy the prerequisites of differential topology for corresponding
to differentials. Therefore, fractional differential geometry does not exist and its use in
real problems is not correct. Nevertheless, a homogenization fractal method has been
presented and supported in physics and mechanics [12–15,18,20–22]. That method accepts
differential in fractional calculus, not mathematically existing. In addition, it uses a non-
existing “differential” in a non-local (fractional) analysis to generate a local analysis of
fractal geometries. Further, that method allows the application of field theorems valid in
the conventional local analysis. The proposed homogenization method of fractals fails as a
mathematical tool.

Applying Λ-fractional analysis with the Λ-fractional derivative and Λ-fractional space,
the non-local fractional calculus in the initial space is transformed into conventional cal-
culus in the Λ-space. The results may be transferred into the initial space. That analysis
has been applied to a fractal rod of constant cross section and under axial deformation.
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Further, the procedure has been applied to a rod with a fractal distribution of the cross-
section area along the bar. The applications indicate how Λ-fractional analysis and fractal
geometries may co-operate, contrary to the existing homogenization procedure, which is
a non-convincing concept. The Λ-fractional analysis with horizon is introduced to take
care of the deformation of the fractal structures with horizon. The presented theory may be
applied to fractional problems in continuum mechanics of fractal media.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: No conflict of interest exists in the present study.
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