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1. Introduction

Many results in the theory of asymptotic approximations have been obtained from
1930 onwards. Indeed, there were a lot of results on integral manifolds, equations with
retarded argument, quasi- or almost-periodic equations etc. Earlier work on this theory has
been presented in the famous book [1].

Averaging is a valuable method to understand the long-term evolution of dynamical
systems characterized by slow dynamics and fast periodic or quasi-periodic dynamics. In [2],
a transparent proof of the validity of averaging in the periodic case is presented. Different
proofs for both the periodic and the general case are provided by [3,4]. In the last paper,
moreover, the relation between averaging and the multiple time-scales method is established.

The averaging method for constructing approximate solutions in the theory of ODEs is
presented in [5,6]. In [7], the asymptotic analysis of nonlinear dynamical systems is developed.

The work [8] is devoted to using an asymptotic method for studying the Cauchy prob-
lem for a 1D Euler–Poisson system, which represents a physically relevant hydrodynamic
model but also a challenging case for a bipolar semiconductor device by considering two
different pressure functions. In [9], the averaging results for ordinary differential equations
perturbed by a small parameter are proved. Here, authors assume only that the right-hand
sides of the equations are bounded by some locally Lebesgue integrable functions with the
property that their indefinite integrals satisfy a Lipschitz-type condition.

In [10], the authors prove that averaging can be applied to the extremal flow of
optimal control problems with two fast variables, that is considerably more complex
because of resonances.

The averaging method is one of the most effective tools for constructing approximate
solutions, including optimal control problems for ODEs [11] and PDEs [12], where the
autors consider the optimal control problem in coefficients in the so-called class of H-
admissible solutions.

The Krasnoselski–Krein theorem and its various modifications [13–15] play an essential
role in all such considerations, since it guarantees the limit transition in perturbed problem
with fast-oscillating coefficients of the form a

( t
ε

)
as ε→ 0.
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The typical averaging problem may be defined as follows: one considers an unper-
turbed problem in which the slow variables remain fixed. Upon perturbation, a slow drift
appears in these variables which one would like to approximate independently of the
fast variables.

In the present paper we use this approach to nonlinear parabolic system with fast-
oscillating (w.r.t. time variable) coefficients f

( t
ε , y
)

on an infinite time interval. We prove
that the optimal control of the problem with averaging coefficients can be considered to be
”approximately” optimal for the initial perturbed system.

2. Statement of the Problem

Let Ω ⊂ Rd be a bounded domain. In cylinders Q = (0,+∞)×Ω we consider an
initial boundary-value problem for a parabolic system [16,17]

∂y
∂t = A∆y + f

( t
ε , y
)
+ g(y) · u(t, x), (t, x) ∈ Q,

y|∂Ω = 0,
y|t=0 = y0(x).

(1)

Here ε > 0 is a small parameter, A is a real N × N matrix, f is a given vector-
valued mapping, g is a given matrix-valued mapping, y = (y1, . . . , yN) is an unknown
state function, u = (u1, . . . , uM) is an unknown control function, which are determined
by requirements

u ∈ U ⊆ (L2(Q))M, (2)

J(y, u) =
∫
Q

e−γ·t · q(x, y(t, x))dtdx +
∫
Q

M

∑
i=1

αi · u2
i (t, x)dtdx → inf, (3)

where γ, α1, . . . , αM are positive constants.
Under the natural assumptions on A, f , g, U, q we prove, that the optimal control

problem (1)–(3) has a solution {ȳε, ūε}, i.e., for every u ∈ U and for any solution yε of (1)
with control u we have

J(ȳε, ūε) ≤ J(yε, u)

In what follows we consider the problem of finding an approximate solution of (1)–(3)
by transition to averaged coefficients. For this purpose we assume that uniformly w.r.t.
y ∈ RN there exists

f̄ (y) := lim
T→∞

1
T

T∫
0

f (s, y)ds. (4)

We consider the following optimal control problem
∂y
∂t = A∆y + f̄ (y) + g(y) · u(t, x), (t, x) ∈ Q,
y|∂Ω = 0,
y|t=0 = y0(x),

(5)

u ∈ U ⊆ (L2(Q))M, (6)

J(y, u) =
∫
Q

e−γ·t · q(x, y(t, x))dtdx +
∫
Q

M

∑
i=1

αi · u2
i (t, x)dtdx → inf . (7)

It should be noted that the transition to the averaging parameters can essentially
simplify the problem. In particular, if f̄ does not depend on y then in some cases exact
solution of (1)–(3) can be found [18,19]. Another approaches for finding exact solutions of
optimal control problems and approximate procedures can be found in [20,21].
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Assume that {ȳ, ū} is a solution of (5)–(7). The main goal of the paper is to prove the
limit equality

J(ȳε, ūε)− J(ȳ, ū)→ 0, ε→ 0. (8)

As a consequence of (8) we will prove that the control ū is approximately optimal for
the problem (1)–(3) in the following sense:

J(ȳε, ūε)− J(yε, ū)→ 0, ε→ 0,

where yε is a solution of (1) with control ū.

3. Assumptions, Notations and Basic Results

We assume the following conditions hold.

Assumption 1. 1
2 (A + A∗) ≥ v · I, where v > 0 and I is a unit matrix;

Assumption 2. f : R+ ×RN 7→ RN is continuous and bounded:

∃C1 > 0 ∀t ≥ 0 ∀y ∈ RN ‖ f (t, y)‖RN ≤ C1;

Assumption 3. g : RN 7→ RN×M is continuous and bounded:

∃C2 > 0 ∀y ∈ RN ‖g(y)‖RN×M ≤ C2;

Assumption 4. U ⊆
(

L2(Q)
)M is closed and convex, 0 ∈ U;

Assumption 5. q : Ω×RN 7→ R is a Carathéodory function, ∃K1, K2 ∈ L1(Ω), ∃C3 > 0 such
that ∀x ∈ Ω, ∀ξ ∈ RN

|q(x, ξ)| ≤ C3‖ξ‖2
RN + K2(x), q(x, ξ) ≥ K1(x).

Here, ‖ξ‖RN denotes the Euclidean norm of ξ ∈ RN .

For u ∈ U and y0 ∈
(

L2(Ω)
)N we understand solution of (1) in weak (or generalized)

sense on every finite time interval, i.e., y is a solution of (1) if

y ∈ L2
loc

(
0,+∞, (H1

0(Ω))N
)⋂

L∞
loc

(
0,+∞, (L2(Ω))N

)
such that ∀T > 0, ∀ϕ ∈ (H1

0(Ω))N , ∀η ∈ C∞
0 (0, T) the following equality holds:

−
T∫

0

(y, ϕ)H · η′dt +
T∫

0

(A∇y,∇ϕ)Hηdt =
T∫

0

(
f
(

t
ε

, y
)

, ϕ

)
H

ηdt +
T∫

0

(g(y) · u, ϕ)Hηdt. (9)

Here and after we denote by ‖ · ‖H and (·, ·)H the classical norm and scalar prod-
uct in H := (L2(Ω))N , by ‖ · ‖V and (·, ·)V the classical norm and scalar product in
V := (H1

0(Ω))N , by ‖ · ‖U the norm in L2(Q))M, and by V∗ the dual space to V.
Due to the Assumptions 1–3, every solution of (1) satisfies

∂y
∂t
∈ L2

loc(0,+∞, V∗).

It means that ∀T > 0 every solution of (1) is an absolutely continuous function from
[0, T] to H, and equality (9) is equivalent to the following one [16]:

d
dt
(y, ϕ)H + (A∇y,∇ϕ)H =

(
f
(

t
ε

, y
)

, ϕ

)
H
+ (g(y) · u, ϕ)H (10)
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for almost all (a.a.) t > 0.
It is known [16,17] that, under Assumptions 1–3, for every y0 ∈ H, u ∈ U there exists

at least one solution of (1), and for a.a. t > 0

1
2

d
dt
‖y(t)‖2

H + v · ‖y(t)‖2
V ≤ C1‖y(t)‖H + C2‖y(t)‖H · ‖u(t)‖(L2(Ω))M . (11)

Remark 1. Uniqueness of solution of (1) is not guaranteed. This can be done under some additional
assumptions, e.g., [16] ∀s ≥ 0, ∀y ∈ RN , ∀ω ∈ RN(

f ′y(s, y)ω, ω
)
RN
≥ −C4 · ‖ω‖RN

In the sequel, we denote by F ε (or F̄ ) a set of all pairs {y, u}, where y is a solution of
(1) (or (5)) with control u.

The following Lemma gives us a result about the solvability of the optimal control
problem (1)–(3) and it also provides some useful inequalities.

Lemma 1. Under the Assumptions 1–5 for every ε > 0 the problem (1)–(3) has a solution {ȳε, ūε},
that is,

J(ȳε, ūε) ≤ J(y, u) ∀{y, u} ∈ F ε.

Proof of Lemma 1. Fix ε > 0 and suppress index ε throughout the proof. The idea of the
proof is to derive a priori estimates for the minimizing sequence. Obtained estimates allow
us to pass to the limit in problem (1)–(3).

From (11), Poincare inequality ‖y‖2
V ≥ λ‖y‖2

H , y ∈ V, and Young inequality we derive
that for some δ > 0, C5 > 0 (not depending on ε) for every {y, u} ∈ F ε for a.a. t > 0

d
dt
‖y(t)‖2

H + δ‖y(t)‖2
H ≤ C5

(
1 + ‖u(t)‖2

(L2(Ω))M

)
.

Therefore using Gronwall inequality we get for all t > 0

‖y(t)‖2
H ≤ e−δ·t

‖y0(t)‖2
H + C5

t∫
0

(
1 + ‖u(s)‖2

(L2(Ω))M

)
eδ·sds

, (12)

‖y(t)‖2
H ≤ e−δ·t‖y0‖2

H +
C5

δ
+ C5 · ‖u‖2

U . (13)

From the inequality (13) and the first inequality from the Assumption 5 we have that
for some C6 > 0

J(y, u) ≤ C6

(
1 + ‖y0‖2

H + ‖u‖2
U

)
. (14)

Now let {yn, un} be a minimizing sequence, that is,

lim
n→∞

J(yn, un) = inf
{y,u}∈F ε

J(y, u) =: J̄ε. (15)

Note that due to the Assumption 5 ∀{y, u} ∈ F ε

J(y, u) ≥ ‖K1‖L1

γ
⇒ J̄ε ≥ ‖K1‖L1

γ
> −∞.

From (15) for sufficiently large n

J(yn, un) ≤ J̄ε + 1. (16)
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On the other hand, for α := min
1≤i≤M

αi > 0

J(yn, un) ≥
‖K1‖L1

γ
+ α · ‖un‖2

U . (17)

Inequalities (16) and (17) imply that {un} is bounded in (L2(Q))M, so for subsequence

un → u weakly in (L2(Q))M. (18)

Due to convexity of U we have inclusion u ∈ U. From (11) over (0, T) and using (13)
we we obtain from (5) that {yn} is bounded in

L2(0, T; V)
⋂

L∞(0, T; H),{
∂yn
∂t

}
is bounded in L2(0, T; V∗). Using Compactness Lemma [22] we conclude that

up to subsequence ∀T > 0

yn → y weakly in L2(0, T; V),

yn → y in L2(0, T; H), (19)

∀t ≥ 0 yn(t)→ y(t) weakly in H,

yn(t, x)→ y(t, x) a.a. in Q.

From (19) and Lebesgue’s Dominated Convergence Theorem we can pass to the limit in
the equality (9) applied to {yn, un}, and obtain that {y, u} ∈ F ε. Due to pointwise convergence

e−γ·t · q(x, yn(t, x))→ e−γ·tq(x, y(t, x)) a.a. in Q,

Fatou’s lemma and weak convergence (18) we have

J̄ε = lim
n→∞

J(yn, un) ≥ lim
∫
Q

e−γ·tq(x, yn(t, x))dtdx + lim
∫
Q

M

∑
i=1

αi(un
i (t, x))2dtdx ≥ J(y, u).

Therefore {y, u} is a solution of (1)–(3).

4. Main Results

We assume that ∀η > 0 ∃δ > 0 ∀t ≥ 0, ∀y, z ∈ RN

‖y− z‖RN < δ⇒ ‖ f (t, y)− f (t, z)‖RN < η. (20)

Assumption (20) implies that the averaged function f̄ : RN 7→ RN from (4) is a
continuous function and the Assumption 2 holds. It means that under conditions (4), (20)
the optimal control problem (5)–(7) has a solution {ȳ, ū}.

The main result of the paper is the following

Theorem 1. Suppose that the Assumptions 1–5 and (4), (20) hold and, moreover, the problem (5)
has a unique solution for every u ∈ U. Let {ȳε, ūε} be a solution of (1)–(3). Then

J(ȳε, ūε)→ J(ȳ, ū), ε→ 0, (21)

and up to subsequence
ȳε → ȳ in L2

loc(0,+∞; H),

ūε → ū in (L2(Q))M, (22)
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where {ȳ, ū} is a solution of (5)–(7).

Proof. Let εn → 0, {ȳn, ūn} be a solution of (1)–(3) for ε = εn. Due to the optimality of
{ȳn, ūn} we have

J(ȳn, ūn) ≤ J(yn, 0),

where yn is a solution of (1) with ε = εn and u ≡ 0. Then from (14)

1
γ
‖K1‖L1 + α‖ūn‖2

U ≤ C6 · (1 + ‖y0‖2
H).

Repeating arguments used in the prof of Lemma 1 conclude that on subsequence for
some ŷ, û:

ūn → û weakly in (L2(Q))M, n→ ∞,

ȳn → ŷ in the sense of (19), n→ ∞, (23)

Let us prove that {ŷ, û} ∈ F̄ , i.e., ŷ is a solution of the averaged problem (5) with
control û. For this purpose it is sufficient to make a limit transition in the equality

(ȳn, ϕ)H − (y0, ϕ)H +

T∫
0

(A∇ȳn,∇ϕ)H =

T∫
0

(
f
(

t
εn

, ȳn
)

, ϕ

)
H
+

T∫
0

(g(ȳn)ūn, ϕ))H , (24)

for arbitrary ϕ ∈ V and T > 0.
Limit transition in the left part of (24) is a direct consequence of (23). From the

Dominated Convergence Theorem we see that

g(ȳn)→ g(ŷ) in L2(0, T; H), n→ ∞.

Then (23) implies convergence in the last term of (24).
Let us prove that ∀T > 0, ∀ϕ ∈ V

∫
QT

N

∑
i=1

fi

(
t

εn
, ȳn(t, x)

)
ϕi(x)dtdx →

∫
QT

N

∑
i=1

f̄i(ŷ(t, x))ϕi(x)dtdx, n→ ∞, (25)

where QT = (0, T)×Ω. Due to the Dominated Convergence Theorem ∀0 < a < b, ∀ψ ∈ H

b∫
a

∫
Ω

N

∑
i=1

(
fi

(
t

εn
, ψ(x)

)
− f̄i(ψ(x))

)
ϕi(x)dxdt→ 0, n→ ∞. (26)

Due to Egorov’s theorem ∀δ > 0 ∃Qδ
1 ⊂ QT such that µ(Qδ

1) < δ and

ȳn → ŷ uniformly on QT \Qδ
1 as n→ ∞. (27)

Here µ is Lebesgue’s measure on R2. On the other hand there exists a sequence of
step functions

ym(t, x) =
m

∑
k=1

ym
k (x) · χAm

k
(t), {ym

k } ⊂ H,

{Am
k = (am

k , bm
k )} is a covering of (0, T) such that

ym → ŷ in L2(0, T; H) and a.e. in QT .

Moreover ∀δ > 0 ∃Qδ
2 ⊂ QT such that µ(Qδ

2) < δ and

ym → ŷ uniformly on QT \Qδ
2 as m→ ∞.
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Let us denote

I(n)1 :=
∫

QT

N

∑
i=1

(
fi

(
t

εn
, ȳn(t, x)

)
− fi

(
t

εn
, ŷ(t, x)

))
ϕi(x)dtdx,

I(n)2 :=
∫

QT

N

∑
i=1

(
fi

(
t

εn
, ŷ(t, x)

)
− f̄ (ŷ(t, x))

)
ϕi(x)dtdx.

Then due to (27)

I(n)1 ≤
∫

QT\Qδ
1

∥∥∥∥ f
(

t
εn

, ȳn(t, x)
)
− f

(
t

εn
, ŷ(t, x)

)∥∥∥∥
RN
· ‖ϕ(x)‖RN dtdx + 2C1 · ‖ϕ‖

1
2
H · δ

1
2 . (28)

Due to (20) for a given δ > 0 ∃λ ∀n ≥ 1, ∀t ≥ 0

‖y− z‖RN < λ⇒
∥∥∥∥ f
(

t
εn

, y
)
− f

(
t

εn
, z
)∥∥∥∥ ≤ δ

1
2 .

Therefore, choosing n1 such that ∀n ≥ n1

sup
(t,x)∈QT\Qδ

1

‖ȳn(t, x)− ŷ(t, x)‖RN < λ

we get from (28) that ∀n ≥ n1

I(n)1 ≤ δ
1
2 · µ

1
2 (QT) · ‖ϕ‖

1
2
H + 2C1 · ‖ϕ‖

1
2
H · δ

1
2 ≤ C7(T)δ

1
2 . (29)

On the other hand, for every step function ym(t, x) we have due to (26): ∀m ≥ 1

∫
QT

N

∑
i=1

(
fi

(
t

εn
, ym(t, x)

)
− f̄i(ym(t, x))

)
ϕi(x)dtdx

=
m

∑
k=1

∫
Am

k

∫
Ω

N

∑
i=1

(
fi

(
t

εn
, ym

k (x)
)
− f̄i(ym

k (x))
)

ϕi(x)dtdx → 0, n→ ∞.
(30)

So ∀m ≥ 1, ∃n2 = n2(m), ∀n ≥ n2∣∣∣∣∣∣
∫

QT

N

∑
i=1

(
fi

(
t

εn
, ym(t, x)

)
− f̄i(ym(t, x))

)
ϕi(x)dtdx

∣∣∣∣∣∣ < δ. (31)

Furthermore, ∃m0, ∀m ≥ m0, ∀n ≥ 1∫
QT\Qδ

2

∥∥∥∥ f
(

t
εn

, ŷ(t, x)
)
− f

(
t

εn
, ym(t, x)

)∥∥∥∥
RN
· ‖ϕ(x)‖RN dtdx ≤ δ

1
2 · µ

1
2 (QT) · ‖ϕ‖

1
2
H , (32)

∫
QT\Qδ

2

‖ f̄ (ŷ(t, x))− f̄ (ym(t, x))‖RN · ‖ϕ(x)‖RN dtdx ≤ δ
1
2 · µ

1
2 (QT) · ‖ϕ‖

1
2
H . (33)

Combining (30)–(33), we obtain ∀m ≥ m0, ∀n ≥ n2(m)

I(n)2 ≤ 2 · δ
1
2 · µ

1
2 (QT)‖ϕ‖

1
2
H + δ ≤ C8(T) · δ

1
2 . (34)

Inequalities (29), (34) imply (25). So we can pass to the limit in (24) and obtain that
{ŷ, û} ∈ F̄ . Now let us prove that {ŷ, û} is an optimal process in (5)–(7).
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Fatou’s lemma implies
limJ(ȳn, ūn) ≥ J(ŷ, û).

On the other hand, for every u ∈ U and any yn–solution of (1) with control u and
ε = εn we get

J(ȳn, ūn) ≤ J(ȳn, u).

Using the same arguments as in proof of the Lemma 1 for {yn} we derive that

yn → y in the sense of (19),

where y is a unique solution of (5) with control u.
Let us prove that∫

Q

e−γ·tq(x, yn(t, x))dtdx →
∫
Q

e−γ·tq(x, y(t, x))dtdx (35)

Indeed due to the Assumption 5 and (13) we have∣∣e−γ·tq(x, yn(t, x))
∣∣ ≤ C3e−γ·t‖yn(t, x)‖2

RN + e−γ·t · K2(x). (36)

As yn → y in L2(0, T; H) and a.e. in Q, we deduce from Lebesgue’s Dominated
Convergence theorem:

∀T > 0
∫

QT

e−γ·tq(x, yn(t, x))dtdx →
∫

QT

e−γ·tq(x, y(t, x))dtdx, n→ ∞. (37)

On the other hand, from (12) and (36)

+∞∫
T

∫
Ω

e−γ·t|q(x, yn(t, x))|dtdx ≤
+∞∫
T

e−γ·t[C3 · ‖yn(t)‖2
H + ‖K2‖L1

]
dt

≤
+∞∫
T

e−γ·t
[

C3e−δ·t · ‖y0(t)‖2
H +

C3 · C5

δ
+ C3 · C5 · ‖u‖2

U + ‖K2‖L1

]
dt

≤ C9 · e−γ·T ,

(38)

where C9 does not depend on T and n. The last inequality together with with (37) leads
to (35).

From (35) we conclude the following inequality: ∀{y, u} ∈ F̄

J(ŷ, û) ≤ limJ(ȳn, ūn) ≤ limJ(yn, u) = J(y, u). (39)

This means that {ŷ, û} is a solution of (5)–(7).
Now we substitute u = û in previous arguments. Then y = ŷ due to uniqueness. So

from (39), we obtain
J(ŷ, û) ≤ limJ(ȳn, ūn) ≤ J(ŷ, û).

These inequalities mean that up to subsequence

J(ȳn, ūn)→ J(ŷ, û), n→ ∞. (40)

Since J(ŷ, û) = inf{y,u}∈F̄ J(y, u), then convergence in (40) holds for the whole se-
quence. Therefore (21) is proved.

Moreover, up to subsequence ȳn tends to ŷ in L2
loc(0,+∞; H). So, repeating arguments (37)

and (38) for ȳn, and using boundness of {ūn}, we have
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∫
Q

e−γ·tq(x, ȳn(t, x))dtdx →
∫
Q

e−γ·tq(x, ŷ(t, x))dtdx.

Then from (40) and weak convergence we deduce (22)

Corollary 1. An optimal control ū ∈ U of the averaged problem (5)–(7) can serve as an ”approxi-
mate” optimal control in the initial problem (1), that is:

J(ȳε, ūε)− J(yε, ū)→ 0, ε→ 0, (41)

where yε is a solution of (1) with control u = ū.

Indeed, for yεn , εn → 0, we can repeat arguments of the proof of the Theorem, and due
to the uniqueness of the solution of (5) for u = ū we have up to subsequence

yεn → ȳ in the sense of (19)

Then (35) holds and taking into account strong convergence (22), we obtain (41).

5. Conclusions and Future Research

We sought to obtain a theoretical result that demonstrates the effectiveness of the
averaging method of finding an approximate solution of the optimal control problem
for a non-linear parabolic system with fast-oscillating coefficients with respect to a time
variable. We proved that the optimal control of the problem with averaging coefficients
can be considered as an ”approximately” optimal for the initial perturbed system. To
demonstrate effectiveness of the method we plan to continue research focusing on the
practical applications and simulation results using in particular genetic algorithms.

Author Contributions: Conceptualization, O.A.K., O.V.K., A.R. and V.S.; methodology, O.A.K.,
O.V.K., A.R. and V.S.; formal analysis, O.A.K., O.V.K., A.R. and V.S.; investigation, O.A.K., O.V.K.,
A.R. and V.S.; writing—original draft preparation, O.A.K., O.V.K., A.R. and V.S.; writing—review and
editing, O.A.K., O.V.K., A.R. and V.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bogoliubov, N.N.; Mitropolsky, Y.A. Asymptotic Methods in the Theory of Non-Linear Oscillations; Gordon and Breach: New York,

NY, USA, 1961.
2. Roseau, M. Vibrations nonlinéaires et théorie de la stabilité; Springer: Berlin, Germany, 1966.
3. Besjes, J.G. On the asymptotic methods for non-linear differential equations. J. Mécanique 1969, 8, 357–373.
4. Perko, L.M. Higher order averaging and related methods for perturbed periodic and quasi-periodic systems. SIAM J. Appl. Math.

1969, 17, 698–724. [CrossRef]
5. Lochak, P.; Meunier, C. Multiphase Averaging for Classical Systems; Springer: New York, NY, USA, 1988.
6. Samoilenko, A.M.; Stanzhitskyi, A.N. On averaging differential equations on an infinite interval. Differ. Uravn. 2006, 42, 476–482.

[CrossRef]
7. Sanders, J.A.; Verhulst, F. Averaging Methods in Nonlinear Dynamical Systems; Springer: New York, NY, USA, 1985.
8. Donatella Donatelli, D.; Mei, M.; Rubino, B.; Sampalmieri, R. Asymptotic behavior of solutions to Euler–Poisson equations for

bipolar hydrodynamic model of semiconductors J. Differ. Equ. 2013, 255, 3150–3184. [CrossRef]
9. Lakrib, M.; Kherraz, T.; Bourada, A. Averaging for ordinary differential equations perturbed by a small parameter. Math. Bohem.

2016, 141, 143–151. [CrossRef]

http://doi.org/10.1137/0117065
http://dx.doi.org/10.1134/S0012266106040070
http://dx.doi.org/10.1016/j.jde.2013.07.027
http://dx.doi.org/10.21136/MB.2016.12


Axioms 2022, 11, 175 10 of 10

10. Dell’Elce, L.; Caillau, J.-B.; Pomet, J.-B. Considerations on Two-Phase Averaging of Time-Optimal Control Systems. Available
online: https://hal.inria.fr/hal-01793704v3 (accessed on 31 March 2022).

11. Nosenko, T.V.; Stanzhytskyi, O.M. Averaging method in some problems of optimal control. Nonlin. Osc. 2008, 11, 539–547.
[CrossRef]

12. Ciro D’Apice, C.; De Maio, U.; Kogut, O.P. Optimal Control Problems in Coefficients for Degenerate Equations of Monotone Type:
Shape Stability and Attainability Problems. SIAM J. Control Optim. 2012, 50, 1174–1199. [CrossRef]

13. Kichmarenko, O.; Stanzhytskyi, O. Sufficient conditions for the existence of optimal control for some classes of functional-
differential equations. Nonlin. Dyn. Syst. Theory 2018, 18, 196–211.

14. Plotnikova, N.V. The Krasnoselskii-Krein theorem for differential inclusions. Differ. Uravn. 2005, 41, 997–1000.
15. Gamma, R.; Guerman, A.; Smirnov, G. On the asymptotic stability of discontinuous systems via the averaging method. Nonlin.

Ann. 2011, 74, 1513–1522. [CrossRef]
16. Chepyzhov, V.V.; Visnik, M.I. Attractors for Equations of Mathematical Physics; AMS: Providence, RI, USA, 2002.
17. Kapustyan, O.V.; Kasyanov, P.O.; Valero, J. Structure of the global attractor for weak solutions of a reaction-diffusion equation.

Appl. Math. Inf. Sci. 2015, 9, 2257–2264.
18. Kapustian, O.A.; Sobchuk, V.V. Approximate homogenized synthesis for disturbed optimal control problem with superposition

type cost functional. Stat. Opt. Inf. Comp. 2018, 6, 233–239.
19. Kapustian, E.A.; Nakonechny, A.G. The minimax problems of pointwise observation for a parabolic boundary-value problem. J.

Autom. Inf. Sci. 2002, 34, 52–63.
20. Pichkur, V.V.; Sobchuk, V.V. Mathematical Model and Control Design of a Functionally Stable Technological Process. Diff. Eq. App.

2021, 29, 32–41. [CrossRef]
21. Garashchenko, F.G., Pichkur, V.V. Structural optimization of dynamic systems by use of generalized Bellman’s principle. J. Autom.

Inf. Sci. 2000, 32, 1–6.
22. Sell, G.R.; You, Y. Dynamics of Evolutionary Equations; Springer: New York, NY, USA, 2002.

https://hal.inria.fr/hal-01793704v3
http://dx.doi.org/10.1007/s11072-009-0049-5
http://dx.doi.org/10.1137/100815761
http://dx.doi.org/10.1016/j.na.2010.10.024
http://dx.doi.org/10.15421/142102

	Introduction
	Statement of the Problem
	Assumptions, Notations and Basic Results
	Main Results
	Conclusions and Future Research
	References

