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Abstract: In this work, we consider a class of initial boundary value problems for fourth-order
dispersive wave equations with superlinear damping and non-local source terms as well as time-
dependent coefficients in Ω× (t > 0), where Ω is a bounded domain in RN and N ≥ 2. We prove
that there exists a safe time interval of existence in the solution [0, T], with T being a lower bound of
the blowup time t∗. Moreover, we find an explicit lower bound of t∗, assuming the coefficients are
positive constants.
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1. Introduction

During the past few decades, the investigation of unboundedness phenomena has been
one of the most developed topics. In order to examine these phenomena, different important
methods have been introduced, such as Lyapunov functions ([1,2]) or the potential well
theory ([3–6]).

For linear or nonlinear parabolic and hyperbolic equations, which have solutions that
blow up in a finite time, the blowup time t∗ cannot in general be computed exactly. As
a consequence, many papers are devoted to finding the upper and lower bounds for t∗

(see [7,8] and the references therein).
The aim of this paper is to obtain a lower bound of t∗ for the solutions to the problem

under investigation.
We consider the following problem for a fourth-order dispersive wave equation with

nonlinear damping and a non-local source term and time-dependent coefficients:

utt − a1(t)∆u− a2(t)∆utt +a3(t)∆2u + g(ut)= f (u), x ∈ Ω, t > 0, (1)

u = 0,
∂u
∂n

= 0 or u = 0, ∆u = 0, x ∈ ∂Ω, t > 0, (2)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (3)

where Ω is a bounded domain in RN such that N ≥ 2 with a smooth boundary ∂Ω,
∂u
∂n

as
the outward normal derivative of u on the boundary ∂Ω and the superlinear damping term
g(ut), and the superlinear source term f (u) are defined as follows:

g(ut) = k1(t)ut|ut|m−2, m > 2 (4)

f (u) =: k2(t) u|u|p−2
ˆ

Ω
|u|qdx, p ≥ q > 2, (5)
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where ai(t), i = 1, 2, 3 are positive differentiable functions and k1(t), k2(t) are positive
continuous functions for t ≥ 0. All the coefficients are bounded in any time interval.
Furthermore u0(x), u1(x) are given functions defined in Ω. The presence of the term ∆utt
classifies Equation (1) as a dispersive equation. We refer to u = 0, ∂u

∂n = 0 in Equation (2) as
the Dirichlet boundary conditions, while u = 0, ∆u = 0 represents the Navier boundary
conditions.

We define the following:

t∗ = sup{t ∈ R+ : u exists in Ω× [0, t)}, (6)

where t∗ is called the blowup time or lifespan of the solution.
In the literature, a large part of the results concerns the global existence of the solutions.

Less attention was paid to the blowup solutions, since in physical situations, the blowup
phenomenon must be avoided (see, for instance, the collapse of a suspension bridge
in [9,10]). For this reason, we will consider a bounded time interval [0, T], where the
solution is bounded and T is obtained by deriving a lower bound of the blowup time,
should a blowup occur. In this sense, an upper bound is useless.

Let us mention some known results for solutions to the fourth-order hyperbolic
problems with nonlinear damped and source terms.

Messaoudi in [11] gave the following for solutions to the Petrovsky equation:

utt + ∆2u + a|ut|m−2 = b|u|p−2 in Ω, (t > 0), (7)

Under Dirichlet boundary conditions, a, b > 0, p, q > 2, and Ω is a bounded domain
in RN where N ≥ 1, proving the existence of a local weak solution, and when discussing
the competition between the damping and the source terms, through suitable Lyapunov
functions, he proved that if p > m (with the initial energy E(0) < 0), the solution blows up
in a finite time. However, if p ≤ m, the solution exists globally.

In [12], Chen and Zhou succeeded in showing that the conditions for blowup estab-
lished by Messaoudi can be somewhat relaxed, establishing that it is enough to assume
E(0) ≤ 0.

In [13], Wu and Tsai improved the results in [11,12] by showing that the solution of
Equation (7) is global under some conditions, but without the relation between p and m
and the blowups if p > m and the initial energy E(0) ≤ 0.

For the solutions of Equation (7) with Equations (2) and (3) for the initial boundary
conditions, Philippin and Vernier-Piro in [14] obtained a lower bound of the lifespan when
the spatial domain Ω ⊂ R3.

When f (u) = u|u|p−2 log uk, k > 0 in Equation (7) , Liu in [15], by using the potential
well method, derived the local and global existence and decay estimate of the solution and
also proved that if the initial energy is negative, it blows up in a finite time. The logarithmic
nonlinearity has attracted the interest of researchers in light of the connection with nuclear
physics, optics, and geophysics, as pointed out in [15] (see also [16]).

Di and Shang in [17] investigated the existence of global solutions for the following
equation:

utt − ∆u− β∆ut + γ∆2u− δ∆utt + a|ut|m−2|ut = b|u|p−2u, in Ω, (t > 0),

This is true under Equations (2) and (3) in presence of the dispersive term ∆utt, the
strong dissipation term ∆ut, the nonlinear damping term |ut|m−2|ut, the nonlinear source
term |u|p−2u, and with positive constant coefficients. To prove the results, they used a
combination of the Galerkin method and the monotonicity compactness method.

We recall that plate models have also been of great importance in studying the struc-
tural behavior and instability of suspension bridges (see [9,10]). If Ω ⊂ R2, Mukiawa and
Messaoudi in [18] considered the problem which comes from the modeling of the down-
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ward displacement of a suspension bridge using a thin rectangular plate with partially
hinged boundary conditions:

utt + ∆2u(x, y, t)−
ˆ

g(t− s)∆2uds + h(ut) = u|u|p−2, in Ω, (t > 0),

They showed that the solution blows up in a finite time, proving that in the presence of
a nonlinear source such as earthquake shocks, the bridge will collapse in a finite time. For
more detail, see also the quoted report [19] on the Tacoma Narrows Bridge failure [9,10,20].

The study of the lower bounds of the blowup time was extended to hyperbolic systems
of the fourth order (see [21–23]).

In the case of parabolic fourth-order equations, interesting results are present in [24,25]
due to the presence of the determinant of the Hessian matrix. Depending on the boundary
conditions and the size of the data, the existence of a finite time blowup as well as the
existence of global in-time solutions are discussed.

For higher order hyperbolic problems, Autuori and Pucci in [26] treated the local
asymptotic stability for different classes of polyharmonic Kirchhoff systems governed by
time-dependent source forces and nonlinear damping terms. One of them is the following:

utt + (−∆)Lu−M(||∇u||22)∆u + µu + Q(x, t, u, ut) + f (x, t, u) = 0, L ≥ 1,

where u = (u1, · · · , uN) under Dirichlet boundary conditions, the nonlocal term M(||∇u||22)
is the coefficient of ∆u, and it is a model for vibrating beams of the Woinowsky-Krieger
type when L = 2. For a blowup at infinity for solutions to polyharmonic Kirchhoff systems,
see [27].

In this paper, we focus our attention on the possibility of establishing a time interval
where the solution exists and it is bounded, providing a lower bound of the blowup time
if a blowup occurs. Our approach is based on first-order differential inequalities satisfied
by suitable energy functions associated to the problem in Equations (1)–(3) when the
coefficients are either time-dependent or constants.

The novelties for the lower bounds of t∗ with respect to the cited papers are as
follows: the classes of problems under investigation having time-dependent coefficients,
the presence of a dispersion term ∆utt, the source term being the product of a superlinear
term with a term of a nonlocal type, and the existence of a safe time interval [0, T] where the
solution remains bounded, with T as a lower bound of t∗ and T being explicit and easily
computable if the coefficients are positive constants.

The scheme of this paper is as follows. In Section 2, we present some preliminary
definitions and Lemmas as well as our main results. In Sections 3–5, we prove Theorem 1,
Corollary 1, and Theorem 2, respectively. Appendix A is devoted to proving how the
boundedness of the energy functions E(t) and E(t) (defined in Equations (8) and (17)) in a
closed time interval implies the boundedness of the L2 norm of the solution in the same
interval.

2. Preliminaries and Main Results

First, we recall the definition of a weak solution.

Definition 1. We say that u(x, t) is a weak solution to the problem in Equations (1)–(3) for
Ω× [0, T), where if u ∈ L∞(0, T; H2

0(Ω) ∩ Lp(Ω)), ut ∈ L∞(0, T; H1
0(Ω) ∩ Lm(Ω)) satisfies

the following conditions:
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(1) f or any φ ∈ H2
0(Ω) ∩ Lm(Ω) and a.e. t ∈ [0, T)

(utt, φ) + a1(∇u,∇φ) + a2(∇utt,∇φ) + a3(∆u, ∆φ) + k1(ut|ut|m−2, φ)

= k2(u|u|p−2( ˆ
Ω
|u|qdx

)
, φ);

(2) u(x, 0) = u0(x) ∈ H2
0(Ω) ∩ Lp(Ω), ut(x, 0) = u1(x) ∈ H1

0(Ω) ∩ Lm(Ω).

With the aim of deriving a lower bound of the lifespan of the solution u(x, t) and to
obtain an interval where the solution remains bounded, we introduce an energy function:

E(t) = Kd(t)
(
||ut||22 + a1(t)||∇u||22 + a2(t)||∇ut||22 + a3(t)||∆u||22

)
(8)

where K(t) is a derivable positive function defined for t ∈ (0, ∞) and d is a positive constant,
both yet to be chosen, and

E0 =: E(0) = Kd(0)
(
||u1||22 + a0

1||∇u0||22 + a0
2||∇u1||22 + a0

3||∆u0||22
)

, (9)

where a0
i = ai(0), i = 1, 2, 3. Since we are interested in blowup solutions, now we give the

definition of a blowup in the E(t) norm.

Definition 2. We assert that the solution to Equations (1)–(3) blows up at a finite time t∗ in the
E(t) norm if

lim
t→t∗

E(t) = +∞. (10)

We point out that the boundedness of E(t) in the interval [0, T] implies the bounded-
ness of ||u(x, t)||22 in the same interval (see Appendix A).

It is clear that if there exists a finite time T < t∗, with T being a lower bound of the
blowup time, and as a consequence, the energy function E(t) is bounded in the interval
[0, T].

We now state some lemmas to be used in the proofs of the main results. Let us recall
the Sobolev embedding inequality Wp,m(Ω) ⊂ Lr(Ω) (see Theorem 2.4 in [28] for p = 2).

Lemma 1. Let Ω be a bounded domain in RN . Let m ≥ 1, and let r be an arbitrary number with
2 ≤ r < +∞ if N < 2m and 2 ≤ r < 2N

N−2m if N > 2m. Then, for any w ∈ W2,m
0 (Ω), there

exists a constant Sr = S(r, Ω) such that

||w||Lr ≤ Sr||(−∆)
m
2 w||2, (11)

where Sr denotes the best embedding constant.

Lemma 2. Let u(x, t) be the solution to Equations (1)–(3). Let E(t) and E0 be defined in
Equations (8) and (9) and satisfy Equation (10). Then, there exists a time t̄ ∈ [0, t∗) such that

Ea(t) ≤ Eb(t)Ea−b
0 , ∀t ∈ [t̄, t∗), (12)

for any 1 < a < b.

Proof. If E(t) is non-decreasing for t ∈ [0, t∗), then E(t) ≥ E0, t ∈ [0, t∗), which implies
E(t)
E0
≥ 1, and the Lemma is proven.
If E(t) is non-increasing, there exists a time t̄ ∈ (0, t∗) such that E(t̄) = E0. Then,

E(t) ≥ E0 for t ∈ [t̄, t∗), and Equation (12) holds.
We can have a third possibility: some kind of oscillations may appear, but in this case

there also exists a time t̄ ∈ (0, t∗) such that E(t̄) = E0. Then, E(t) ≥ E(t̄) = E0 for t ∈ [t̄, t∗).
Additionally, in this case, (12) holds.
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Our aim is to seek a lower bound of the blowup time t∗ for the solution u(x, t) to
Equations (1)–(3).

Now, we state the main results in this paper. First, we consider the case where in
Equation (1), the coefficients ai(t), i = 1, 2, 3 are assumed to be positive, time-dependent,
and differentiable functions, while ki(t), i = 1, 2 are assumed to be positive, continuous,
and time-dependent functions, each of them bounded in any time interval.

Theorem 1. Let u(x, t) be a solution to the problem in Equations (1)–(3) and E(t) and E0 be
defined in Equations (8) and (9), satisfying Equation (10). Let q and 2(p− 1) satisfy Lemma 1.
Assume that there exist positive functions η(t) and δi(t), i = 1, 2, 3 such that

K′(t)
K(t)

≤ η(t), ∀t ∈ [0, t∗), (13)

and

a′i(t)
ai(t)

≤ δi(t), ∀t ∈ [0, t∗). (14)

Then, E satisfies the following differential inequality:

E′(t) ≤ γ1E(t) + γ2E
q
2+1 + γ3E

q
2+p−1, (15)

with γi(t) positive functions, depending on p, q.K(t), d, η, δi, and the Sobolev constant defined in
Lemma 1.

Corollary 1. Lower Bound
Under the hypotheses of Theorem 1, E(t) remains bounded in [0, T0] with

T0 = H−1
( E2− q

2−p
0

q
2 + p− 2

)
, (16)

where H−1(t) is the inverse of H(t) =
´ t

0 ω(τ)dτ and ω(t) is a positive function depending on
γi(t), E0, and some other positive constants. T0 provides a lower bound for the blowup time.

The next theorem examines the case when, in Equation (1), all the coefficients ai,
i = 1, 2, 3 and k j, j = 1, 2 are positive constants. We introduce a new energy function:

E(t) = ||ut||22 + a1||∇u||22 + a2||∇ut||22 + a3||∆u||22 (17)

with

E0 =: E(0) = ||u1||22 + a1||∇u0||22 + a2||∇u1||22 + a3||∆u0||22. (18)

Theorem 2 (Constant Coefficients). Let u(x, t) be a solution to the problem in Equations (1)–(3)
with constant coefficients and E(t) and E0 defined in Equations (17) and (18), satisfying Equation (10).
Then, the following is true:

E ′(t) ≤ σ1E
q
2+1 + σ2E

q
2+p−1, (19)

with σ1, σ2 depending on a3, k2, and the Sobolev constant defined in Lemma 1. Moreover, a lower
bound T1 for the lifespan t∗ is given by
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T1 =:
E2− q

2−p
0

c( q
2 + p− 2)

, (20)

where c = σ1E
2−p
0 + σ2.

3. Proof of Theorem 1

Proof. First of all, we point out that the function Kd(t) in Equation (8) can be fixed to be
equal to one or chosen so that γi(t) in Equation (15) can be simplified. In the computations
below, Kd(t) is present.

By the definition of E(t) in Equation (8), it follows that

E′(t) = dKd−1K′
(
||ut||22 + a1(t)||∇u||22 + a2(t)||∇ut||22 + a3(t)||∆u||22

)
(21)

+ 2Kd
(
(ut, utt)− a1(t)(ut, ∆u)− a2(t)(ut, ∆utt) + a3(t)(ut, ∆2u)

)
+ Kd

(
a′1(t)||∇u||22 + a′2(t)||∇ut||22 + a′3(t)||∆u||22

)
= J1 + J2 + J3.

Let us estimate J1, J2, J3 in terms of E(t). By using Equation (14), we find that J1 satisfies
the inequality

J1 ≤ d η(t)E(t). (22)

J2 = 2Kd
(

k2(t)
ˆ

Ω

[
ut u|u|p−2

ˆ
Ω
|u|qdx

]
dx− k1(t)

ˆ
Ω
|ut|mdx

)
. (23)

Now, in J2, we estimate the term containing the source with the nonlocal term. By
using the Schwarz inequality and the following arithmetic-geometric inequality Aθ B1−θ ≤
θA + (1− θ)B, A, B > 0, 0 < θ < 1, we obtain

||u||qq(ut, u|u|p−2) ≤ ||u||qq(||ut||2||u||
(p−1)
2(p−1)) (24)

≤ ||u||qq
(1

2
||ut||22 +

1
2
||u||2(p−1)

2(p−1)

)
.

By using Lemma 1 with m = 2, r = q, and r = 2(p− 1), we have

||u||qq ≤ Sq
q||∆u||q2 (25)

and

||u||2(p−1)
2(p−1) ≤ S2(p−1)

p ||∆u||2(p−1)
2 . (26)

By inserting the inequalities in Equations (25) and (26) in (24), the following estimate
holds:

||u||qq(ut, u|u|p−2) (27)

≤1
2

Sq
q||∆u||q2

(
||ut||22 + S2(p−1)

p

(
||∆u||2(p−1)

2

)
≤ 1

2
Sq

qK−d q
2 a−

q
2

3 E
q
2

(
K−dE + S2(p−1)

p K−d(p−1)a1−p
3 Ep−1

)
.
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Then, by neglecting the negative term −k1(t)
´

Ω |ut|mdx and inserting Equation (27)
in (23), we obtain

J2 ≤ γ2(t)E
q
2+1 + γ3(t)E

q
2+p−1 (28)

where

γ2(t) = k2(t)S
q
qK−d q

2 a−
q
2

3 , (29)

γ3(t) = k2(t)S
q
qS2(p−1)

p Kd(2− q
2−p)a1− q

2−p
3 .

We can also estimate J3 by using Equation (14)

J3 ≤ δ(t)E(t), (30)

where δ(t) =: δ1(t) + δ2(t) + δ3(t). When plugging Equations (22), (28) and (30) into
Equation (21), we obtain the differential inequality in Equation (15) satisfied by E(t) such
that

E′(t) ≤ γ1(t)E(t) + γ2(t)E
q
2+1 + γ3(t)E

q
2+p−1, (31)

γ1(t) = η(t)d + δ(t)

where γ2(t) and γ3(t) in Equation (29), and Theorem 1 is proven.

4. Proof of Corollary 1

Proof. We note that it is possible to obtain from Equation (31) an inequality that can be
integrated explicitly and, as a consequence, find an explicit lower bound of the lifespan.

Note that in Equation (31), the relation between the powers of the energy function
E(t) is the following:

1 <
q
2
+ 1 <

q
2
+ p− 1,

since it was supposed that p > 2 and q > 2. From Lemma 2, we have

E(t)
E0
≤ E(t)

q
2+1

E0
q
2+1

≤ E(t)
q
2+p−1

E0
q
2+p−1

(32)

By inserting the last inequalities in Equation (32) in (31), we obtain a simpler differen-
tial inequality:

E′(t) ≤ ω(t)E
q
2+p−1, t ∈ (t̄, t∗) (33)

where ω(t) = γ1(t)E2− q
2−p

0 + γ2(t)E2−p
0 + γ3(t).

When integrating Equation (33) between t̄ to t, taking into account that E(t)→ +∞ as
t→ t∗, it follows that

E2− q
2−p

0
q
2 + p− 2

=
E2− q

2−p
0 (t̄)

q
2 + p− 2

≤
ˆ t∗

t̄
ω(τ)dτ ≤

ˆ t∗

0
ω(τ)dτ, t ∈ (0, t∗). (34)

Denoted by H(t∗) =
´ t∗

0 ω(τ)dτ, and with H−1 as its inverse, the inequality in Equa-
tion (34) provides a lower bound T0 of t∗ with T0 in Equation (16). We conclude that the
solution E(t) remains bounded in the interval [0, T0].
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5. Proof of Theorem 2

Proof. By the definition of E(t) in Equation (17), it follows that

E ′(t) = 2
(
(ut, utt)− a1(ut, ∆u)− a2(ut, ∆utt) + a3(ut, ∆2u)

)
(35)

≤ 2
(

k2(||u||
q
q(ut, u|u|p−2)− k1||ut||mm.

)
When neglecting the negative term −k1||ut||mm, plugging Equations (25) and (26) into

Equation (35) yields

E ′(t) ≤ k2

a
q
2
3

Sq
q E

q
2+1 +

k2

a
q
2+p−1
3

Sq
qS2(p−1)

p E
q
2+p−1 := σ1E

q
2+1 + σ2E

q
2+p−1 (36)

where σ1 = k2 a−
q
2

3 Sq
q and σ2 = k2 a1− q

2−p
3 Sq

qS2(p−1)
p . From Lemma 2, we have

E
q
2+1 ≤ E(t)

q
2+p−1E0

2−p. (37)

By replacing Equation (37) into Equation (36), we have

E ′(t) ≤ {σ1E
2−p
0 + σ2}E

q
2+p−1. (38)

By integrating Equation (38) from 0 up to t and then letting t → t∗, it then follows,
arguing as in the proof of Corollary 1, that E(t) remains bounded for t ∈ [0, T1] with T1 in
Equation (20). T1 provides a lower bound for the blowup time t∗.
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Appendix A

The existence of a lower bound T0 for the blowup time to the energy function E(t) has
a consequence that the interval [0, T0] is a safe interval of existence for the L2 norm of the
solution u(x, t). Indeed, let us consider the biharmonic eigenvalue problem with Dirichlet
boundary conditions:

∆∆φ = Λφ, x ∈ Ω ⊂ RN , N ≥ 2, (A1)

φ = 0,
∂φ

∂n
= 0, x ∈ ∂Ω, (A2)

where φ is normalized by ||φ||22 = 1.
Let Λ1 be the first eigenvalue of the problem in Equations (A1) and (A2). For all φ 6= 0,

Λ1 satisfies the following inequality (see [29]):

||φ||22 ≤ Λ−1
1 ||∆φ||22, (A3)

The problem in Equation (A1) is closed, being related to the biharmonic differential
equation

∆∆φ = f
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with the same boundary conditions from Equation (A2), which describes the characteristic
vibrations of a clamped plate. For this reason, the biharmonic eigenvalue problem is also
known as the clamped plate eigenvalue problem. Now, when applying Equation (A3) to
the solutions u, the boundedness of E(t) in the time interval [0, T0] implies the boundedness
of the L2 norm of u in the same interval, since

||u||22 ≤ Λ−1
1 ||∆u||22.

The same remark holds for E(t) in the time interval [0, T1]. Clearly, these bounds T0
and T1 are not optimal. Moreover, the boundedness of E(t) in [0, T0] and of E(t) in [0, T1]
also implies the boundedness of ||ut||22, ||∇u||22, ||∇ut||22, and ||∆u||22 in the same intervals.
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