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Abstract: Modeling the number of individuals in different states is a principal tool in the event of
an epidemic. The natural transition of individuals between possible states often includes deliberate
interference such as isolation or vaccination. Thus, the mathematical model may need to be re-
calibrated due to various factors. The model considered in this paper is the SIRD epidemic model.
An additional parameter is the moment of changing the description of the phenomenon when the
parameters of the model change and the change is not pre-specified. Detecting and estimating the
moment of change in real time is the subject of statistical research. A sequential (online) approach was
applied using the Bayesian shift point detection algorithm and trimmed exact linear time. We show
how methods of analysis behave in different instances. These methods are verified on simulated data
and applied to pandemic data of a selected European country. The simulation is performed with
a social network graph to obtain a practical representation ability. The epidemiological data used
come from the territory of Poland and concern the COVID-19 epidemic in Poland. The results show
satisfactory detection of the moments where the applied model needs to be verified and re-calibrated.
These show the effectiveness of the proposed combination of methods.

Keywords: change-point algorithm; epidemic model; Bayesian method; network graph; COVID-19
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1. Introduction

In probabilistic models, we try to adjust the description in the simplest possible form.
This method works well in the case of static phenomena that exhibit some stationarity,
defined as a phenomenon whose source remains constant over time. In observations of
such a phenomenon, randomness appears as a result of imperfect measurement methods
or slight fluctuations in factors illustrating the state of the environment. We expect similar
observations by dividing the phenomenon into areas (in time or space) with a homogeneous
environment. Violation of homogeneity is a signal that the observed phenomenon has
changed significantly. Thus, we would like to know how to detect these invisible changes
by observing visible effects. It is an important research aspect that has its methodology. An
adequate model of the phenomenon allows for a better short-term and long-term forecast.
A correct model in the short term usually needs to be improved for long-term analysis,
especially when the change in the phenomenon is sudden. We introduce the concept of
change point to standardize such mathematical models.

From the perspective of time, the use of epidemic models (v. [1–4]) allows the forecast-
ing of the number of daily cases (the intensity of epidemic development) in a short time
(v. [5]). The detailed models may be different at a time when immunity in the population
emerges only as a result of infection and the lack of a contact restriction policy. A change
in the process is also possible due to new mutations (v. [6]). The introduction of contact
restrictions and effective vaccination is another example where the appropriate model
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will be different. Applying a different model may deviate from information about the
environment while the change or signal is present in the observed data. This signal may be
the deteriorating compliance of the observations with the forecasts as measured by various
criteria. The methods of change-point analysis, based on the data, allow the determination
of rational criteria for determining the disorder moments.

In Figure 1, for example, with an approximate monthly segmentation, the sequence
of infection changes is observed from January 2020 to February 2020, February 2020 to
May 2020, May 2020 to August 2020, and August 2020 to early 2021 and then begins to
decline. At all these points of trend changes, not predicted by the SIRC model, there are
factors that are not properly accounted for in the basic model, and the model used should
be changed. Those factors that are not taken into account may include actions taken that
are noteworthy and documented for the investigation and control of an epidemic or the
emergence of a mutation in the virus. The continuum of pandemic phases Figure 2 can be
correlated with Figure 1. Figure 2 presents the four phases of a pandemic. The phases are
the inter-pandemic, alert, pandemic and transition. The peak which started from the alert
phase to the pandemic phase is caused by the great increase in the average daily cases. In
line with the phases are the risk assessments which includes preparing for the subdue of
worsening cases, responding and its result, recovery.

Figure 1. Daily cases of COVID-19 infection in Poland.

Figure 2. Continuum of pandemic phases.

The term change point comes from studying detailed manufacturing processes in
systems that routinely duplicate certain activities. We know that a correctly implemented
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production procedure results in high-quality products. The observed quality confirms
the correctness of the process; an increase in defectiveness is a signal that the production
process has been disordered. Thus, we have the intuition that the change point is a moment
where the nature of the process changes. In a sequence of observations, such changes
may be due to the abrupt deviation of the probability distribution at some point from
what it initially follows. The method of change-point analysis originated in Page [7] by
(v. [7,8]). The first approach was proposed to identify a single change point with a known
model before and after the disorder. It is more difficult to detect a change point when
the model after the change point is unknown (see [9]). The study has progressively been
improved by presenting algorithms that can be used to detect several change points in data.
These algorithms can be classified into two major groups, offline change point detection
algorithms and online change point detection algorithms. The online change point detection
algorithms are also known as sequential change-point detection algorithms, which use the
cumulative sum method (CUSUM), generalized likelihood ratio, or Shiryayev–Roberts (SR)
procedure (v. the monograph of the topic [10]).

To summarize, the subject of this research is to detect and estimate the moment of
change in real time. We used the sequential (online) approach. The concept of sequential
algorithms is desirable because our data are the daily numbers of infected people. Thus,
there is a need to raise some alarms following an observed change. We used algorithms
constructed based on Bayesian and purity methods. We demonstrated how to use the
algorithms. We tested the algorithms on simulated data before the real-life data. The
simulation was performed with a social network graph to obtain a practical representation
ability. We used Poland’s COVID-19 data for our real-life test (We use the data on the
daily number of COVID-19 infections in the period from January 2020 to early 2021 year in
Poland (v. worldometers.info site (https://www.worldometers.info/coronavirus/country/
poland/, accessed on 3 April 2021), Figure 1)). Additionally, we make remarks on the
correlation of the change-point result with COVID-19 events in Poland.

The rest of the study is structured as follows: Section 2 presents the concept of change-
point detection and its paradigms considered in this study. Section 3 presents the selected
change-point algorithm that will be used for change-point detection. Section 4 presents
the epidemic model for the study, and its parameter estimation. Section 5 presents the
simulation procedure and describes the real data. Section 6 presents the results obtained
from the application of the algorithms, which includes the simulation results and the real
data result.

2. Concept of Change-Point Detection

The incidence of the subject change-point detection has led to the development of novel
algorithms in several studies. This has further led to the application of some of these
algorithms to data that are defined within their scope of composition. Detecting change
points involves searching for the beginning of a new pattern within a given dataset. The
method of change-point detection has been widely used for time series modeling [11–13]
and has been applied to different areas, such as quality control [14], finance [15,16], climate
monitoring [17,18], genetics [19,20] and so on. A very simple illustration of change-point
detection is the case where we have a piece-wise function plotted as given in Figure 3. The
function, f (x) can be said to be composed of three different functions—linear function, a(x);
constant function, b(x) and linear function, c(x). These functions are defined at the change
points A and B, respectively, i.e., a(x) = Line OA, b(x) = Line AB and c(x) = Line BC.

Suppose that we have a sequence of random variables, xt, with probability distribution
function, ft, t = 1, 2, ..., n. The change point detection problem is to determine the point at
which there are significant changes in the properties of the dataset. The location of these
change points can be denoted by τ = (τ0 = 0, τ1, τ2, ..., τt, τm+1 = n).

The hypothesis tested by the change-point detection problem is presented as follows:

H0 : f1 = f2 = ... = fn
H1 : f1 = fτ1 6= fτ1+1 = ... = fτ2 6= fτ2+1 = ... = fτm 6= fτm+1 = ... = fn

(1)

https://www.worldometers.info/coronavirus/country/poland/
https://www.worldometers.info/coronavirus/country/poland/
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where

• 1 = τ0 < τ1 < τ2 < ... < τm < τt = n;
• m is the unknown number of change points;
• τ1, τ2, ..., τm are the change-point locations.

Figure 3. Simple change-point illustration.

The objectives of the change-point problem can be seen in light of the following points:
i. Quantity Objective: This involves the estimation of the possible number of change

points, m, within the data.
ii. Location Objective: This involves the identification of the locations of the t change

points in the data. This objective was further improved into quantifying the uncer-
tainty in the locations within a confidence interval.

iii. Modeling Objective: This is the final objective of the method and it seeks to determine
a befitting model for each of the m + 1 segments, i.e., fitting observations lying within
the splits that result from each change point.
In past literature, change-point problems have been solved using some basic and

defined approaches of statistical and mathematical methods. These approaches include
the likelihood ratio (LR) testing, the Cumulative Sum (CUSUM) methods, the Bayesian ap-
proach, the Hidden Markov Model (HMM) and the dynamic programming-based methods.
The change-point algorithms used in this study are based on the Bayesian approach and
the dynamic programming. Thus, the following subsections will discuss these paradigms,
including the corresponding algorithm used.

2.1. Bayesian Method of Change-Point Detection

The idea of the Bayesian approach can be easily understood from the concept of
Bayesian statistics (cf. Press [21], DeGroot [22]). Bayesian statistics is a theory that is based
on the Bayesian interpretation of probability, which expresses the degree of belief in an oc-
currence based on prior knowledge. The prior knowledge of such an occurrence can greatly
influence the degree of belief. The theory is in contrast to the frequentist approach that
considers probability to be the relative frequency of the occurrence after a large number of
trials. Bayesian statistics generally employs the Bayes theorem (cf. Martz and Waller [23]).
The Bayes theorem expresses the conditional probability of an event, A, given that event
B is true as (2). A is more similar to a proposition, while B is the evidence. P(A|B) is the
conditional probability after incorporating news that event B is true.
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P(A|B) = P(B|A)P(A)

P(B)
(2)

In change-point detection, the Bayesian approach involves placing a prior on the
number of change points, m, and their corresponding location. Although this method of
specifying priors may appear logical, the priors for the quantity and locations of change
points can be jointly defined indirectly by specifying a prior on the length of a segment,
and this technique offers computational advantages over specifying two distinct priors [24].
Suppose that we have a series, X, with k segments, and θk represents the parameter vector
for the kth segment of the series; then, the posterior probability of the set of m change points
at locations τ is presented in Equation (3).

P(m, τ, θ1, θ2, ..., θm+1|X, λ, ν1, ν2, ..., νk+1) ∝
P(m|λ)P(τ|m)P(θ1, θ2, ..., θm+1|ν1, ν2, ..., νm+1)P(X|m, τ, θ1, θ2, ..., θm+1) =

P(m|λ){∏m
k=1 P(τk)}P(θ1, θ2, ..., θm+1|ν1, ν2, ..., νm+1){∏m+1

k=1 ∏τk
t=τk−1+1 P(Xt|θk)}

(3)

where

1. k = 1, ..., m + 1
2. τ = (τ0 = 0, τ1, τ2, ..., τm, τm+1 = n)
3. P(θ1, θ2, ..., θm+1|ν1, ν2, ..., νm+1) is the joint prior of the parameter vectors
4. P(X|m, τ, θ1, θ2, ..., θm+1) is the likelihood of the given time series and given by

Equation (4)

P(X|m, τ, θ1, θ2, ..., θm+1) =
m+1

∏
k=1

τk

∏
t=τk−1+1

P(Xt|θk) (4)

A typical change-point model which employs this approach is the online change point
detection [25], which is one of the main algorithms used in this study. In addition to
change-point models, Bayesian approaches based on Markov Chain Monte Carlo (MCMC)
have been applied [26–28]. When the number of changes is unknown, reversible jump
MCMC [29] becomes a useful and typical strategy. It explores the joint space of the
model and parameters for a collection of models with varying numbers of change points.
The Bayesian approach, as one of the paradigms of change-point detection, with the
introduction of Markov chains, led to another paradigm known as the Hidden Markov
Models (HMMs) [30]. HMM is comparable in certain aspects to the Bayesian approach. For
instance, let the series X be assumed to have a first-order Markov property and hidden
segment labels Ξ = Ξ1, Ξ2, ..., Ξn; the likelihood of X modeled as a HMM is formulated as:

∑
Ξ

P(X, Ξ) = ∑
Ξ

n

∏
i=1

P(Xi, Ξi|Ξi−1, X1) (5)

In the HMM, work has also been done on calculating the number of hidden states.
Further discussion on the online Bayesian change-point detection is presented in Section 3.1.

2.2. Dynamic Programming Method

The dynamic programming method (DPM) was introduced using the concept of log-
likelihood. A penalized cost technique can be used to extend the log-likelihood approach
to change-point detection to the multiple change-point case. The dynamic programming
approach is then used on the penalized cost function to detect changes. Dynamic pro-
gramming is formulated through an optimization problem such that the likelihood of the
series, Xi i = 1, 2, ..., n, is used as the cost function, which is minimized. To improve the
optimization, a penalized approach can be used. Suppose that we have a change point at τ;
then, the optimization approach is presented in Equation (6)

min
1≤τ<n

{C(x1:τ) + C(xτ+1:n) + $} (6)
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C(x1:τ) + C(xτ+1:n) + $ < C(x1:n) (7)

It is important to note that Equation (6) follows from Equation (7). The penalty, $, is
re-defined from the threshold of the likelihood approach [10]. This can be generalized for
multiple change-point detection (say m change points) as in Equation (8).

min
m,τ1:m

{
m+1

∑
i=1

[C(xτi−1+1:τi )] + $} (8)

Equation (8) is unconstrained; it can, however, be solved in a constrained manner as
Equation (9) subjected to Equation (10)

Z = min
τ1:m
{

m+1

∑
i=1

[C(xτi−1+1:τi )]} (9)

subject to

min
mε1:M

{Z + f (m)} (10)

where f (m) is a chosen penalty term that increases as m increases and can also be a
linear function in a form that is similar in a certain respect to the penalized unconstrained
minimization approach. Although it might be difficult to know, nevertheless, M is present
as the maximum change points in the series.

In Auger and Lawrence [31], the Segment Neighborhood (SN) search method was
introduced, directed towards solving the constrained problem (9). The method uses a
recursive procedure (13) which links Zm(x1:t) to Zm−1(x1:s) for s < t to find the optimal
segmentation in a series by specifying a maximum number of changes, M.

Zm(x1:t) = min
τ
{

m

∑
i=0

C(x(τi+1):τi+1
)} (11)

= min
τm
{ min

τ1:(m−1)

m−1

∑
i=0

C(x(τi+1):τi+1
) + C(x(τm+1):τm+1

)} (12)

= min
τm−1
{Zm(x1:s) + C(x(τm+1):τm+1

)} (13)

Similarly, Jackson et al. [32] presented a solution to the penalized optimization problem
in (8) by proposing the optimal partitioning (OP) method. The OP method recursively
solves Equation (15).

Z(t) = min
τετ∗
{

m+1

∑
i=1

[C(xτi−1+1:τi )] + $} (14)

= min
sε0,...,t−1

{Z(s) + C(x(s+1) : t) + $} (15)

where τ∗ is the set of all possible change-point numbers and positions for data segmentation
up to time t. The computation cost of the OP method is O(n2), and the method is much
faster than the SN method, having a computational cost of O(Mn2). The advantage
of the SN is that it can find multiple change points within a range with 1:M changes.
Additionally, recent algorithms that use pruning approaches to decrease computations have
been developed to address the computational cost of executing dynamic programming
algorithms. There are two types of these pruning techniques as used in studies: the
inequality-based pruning used for the Pruned Exact Linear Time (PELT) [33] algorithm
and the functional pruning used in the Function Pruning Optimal Partitioning (FPOP)
algorithm [34]. The aim of pruning is to remove the points that can never be change points
during the recursion procedure. The dynamic procedure will be discussed in light of the
PELT algorithm later in the study.
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3. Change-Point Algorithm

The two main change-point algorithms used in this study are discussed in this section.

3.1. Bayesian Online Change-Point Detection

The study reverts to the Bayesian Online Change-Point Detection (BOCPD) approach
presented by Adams and MacKay [25]. The detection algorithm of the BOCPD (Algorithm 1)
assumes that the sequence of observation consists of segments resulting from some partition.
Thus, the algorithm identifies a change point when the underlying generative model of
the observation changes and a new segment surfaces. The approach basically makes use
of run length, rt. Suppose that rt is a non-negative discrete variable which represents the
length of time until the next change point. This implies that rt = 0 at every change point.
The BOCPD algorithm is based on estimating the posterior probability of the current run
length, P(rt|x1:t), and integrates the underlying predictive model, P(xt+1|rt, x(r)t ), over it.
The resulting joint distribution over the observed data and the run length from the posterior
probability of the current run length follows the below recursion:

P(rt, x1:t) = ∑
rt−1

P(rt, rt−1, x1:t) (16)

= ∑
rt−1

P(xt|rt−1, x(r)r )P(rt|rt−1)P(rt−1, x1:t−1) (17)

Now, it becomes possible to compute the joint distribution by computing the predictive
distribution over the newly observed data, P(xt|rt−1, x(r)r ), and the prior over rt given rt−1.
P(xt|rt−1, x(r)r ) can be calculated since the new observation only depends on the recent data
x(r)t . However, the prior over rt given rt−1, i.e., P(rt|rt−1), is computed through a hazard
function H(rt−1) ∈ [0, 1] that allows two possible outcomes for rt.

P(rt|rt−1) =


H(rt−1 + 1) if rt = 0
1− H(rt−1 + 1) if rt = rt−1 + 1
0 otherwise

(18)

This implies that the hazard function implicitly induces a distribution over the period
of the segments included in an observation sequence. In the long run, the joint probability
will not only help to detect change points but also help to predict future observations. In
essence, the marginal predictive distribution is obtained as:

P(xt+1|x1:t) = ∑
rt

P(xt+1|x
(r)
t , rt)P(rt|x1:t) (19)
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Algorithm 1 BOCPD Algorithm.

Input: H(.) (Hazard function) and Θprior (Prior hyper-parameters for the observation
model)

1: for each new datum, xt do
2: for rt ← 0 to n do . Estimate using sufficient statistics
3: π

(r)
t = P(xt|ν(r)t , κ

(r))
t

4: end for
5: for rt ← 1 to n do . Compute the growth probabilities
6: P(rt = rt−1 + 1, x1:t) = ∑rt−1

(1− H(rt−1))P(rt−1, x1:t−1)π
(r)
t

7: end for
8: for rt ← 0 to n do . Compute the change-point probabilities
9: P(rt = 0, x1:t) = P(rt−1, x1:t−1)π

(r)
t H(rt−1)

10: end for
11: P(rt|x1:t) = P(rt, x1:t)/P(x1:t) . Compute the run length distribution
12: Θ0

t = Θprior . Update sufficient statistics
13: for rt ← 1 to R do
14: Update Θrt

t from Θrt−1
t−1 and xt+1

15: end for
16: P(xt+1|x1:t) = ∑rt P(xt+1|x

(r)
t , rt)P(rt|x1:t) . Output prediction

17: end for

3.2. Pruned Exact Linear Time Algorithm

The Pruned Exact Linear Time (PELT) Algorithm [33] was proposed with the intent of
searching how the computational efficiency of the optimal partition (OP) method [32] can be
improved through pruning. The pruning is done while ensuring that the global minimum
of the cost function is still found. Whilst some methods use the likelihood functions as their
cost function, the arguably most used cost function minimization approach for estimating
change points is:

min
τετ∗
{

m+1

∑
i=1

[C(xτi−1+1:τi )] + $ f (m)} (20)

where:
C(.) is a cost function for a segment;
$ f (m) is a penalty to guard against overfitting.

The OP method was obtained from the equation. For the modification of the OP
method to include pruning, the PELT algorithm (Algorithm 2) was proposed through the
following theorem:

Theorem 1. When introducing a change point into a sequence of observations, the cost, C, of the
sequence reduces. Mathematically, assume that there is a constant K such that ∀s < t < T,

C(x(s+1):t) + C(x(t + 1) : T) + K ≤ C(x(s+1):T) (21)

Then, if
F(s) + C(x(s+1):t) + K ≥ F(t) (22)

holds, at a future time T > t, s can never be the optimal last change point prior to T.
It is important to note that $ has no relationship with the change points, cp(0) is null at the start
and K also relies on Theorem 1.
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Algorithm 2 PELT Algorithm.

Input: (a) Set of data, yiεR, i = 1, ..., n, (b) a measure of C(.) dependent on yi, (c) a penalty
constant, β, independent of the change points and (d) a constant K satisfying theorem 1

Output: Change points in cp(n)
1: Initialize: F(0) = −β, cp(0), R1 = 0
2: for τ∗ ← 1 to n do
3: Calculate F(τ∗) = minτεRτ∗ [F(τ) + C(y(τ+1)+τ∗) + β]

4: Let τ1 = argF(τ∗)
5: Set cp(τ∗) = [cp(τ1), τ1]
6: And Rτ∗+1 = τεRτ∗ ∪ τ∗ : F(τ) + C(y(τ+1)+τ∗) + K ≤ F(τ∗)
7: end for

The cost function we used for the PELT algorithm is discussed in Section 3.3.

3.3. Cost Function and Penalties

The cost function, also known as the loss function or error function, is a function that
maps an event or the values of one or more variables into a real number that intuitively
represents any “cost” associated with the event in mathematical optimization. In most cases,
they are functions that are desired to be minimized. They are a measure of homogeneity
and can be classified into either parametric [35] or non-parametric [36]. The concept of cost
functions in change-point detection is such that its value is low in segments with no change
points and high in segments with change points. Although there are many ways to define
costs, they are mostly equal to a loss based on an acceptable likelihood model.

With respect to the PELT algorithm, the method uses a penalized cost function based
on the introduction of $ f (m). Suppose that a datum is modeled from a normal distribution
independently and identical with mean µ and variance σ2; the log-likelihood of the data
x(s+1):t is

l(x(s+1):t; µ, σ) = − t− s
2

log(σ2)− 1
2σ2

t

∑
j=s+1

(yj − µ)2 (23)

The log-likelihood function (23) is used to formulate the cost associated with a segment
with respect to the known or unknown case of the mean and the variance.

• The cost function of a segment specific mean, µ, assuming that the variance, σ2, is
known and common to all observations, is given by (24).

C1(x(s+1):t) = (t− s)log(σ2) +
1
σ2

t

∑
j=s+1

(yj −
1

t− s

t

∑
i=s+1

yi)
2 (24)

The cost function associated with the segment is obtained by performing a minus
twice the log-likelihood (23).

• Similarly, the cost function of a segment specific variance σ2, assuming that the mean
µ is known and constant for the observation, is given by

C2(x(s+1):t) = (t− s){log(
1

t− s

t

∑
j=s+1

(yj − µ)2) + 1} (25)

• The cost function of a segment specific mean µ and variance σ2 is obtained by using
minus twice the log-likelihood (23) after maximizing over both µ and σ. The resulting
function is given by (26)

C3(x(s+1):t) = (t− s){log(
1

t− s

t

∑
j=s+1

(yj −
1

t− s

t

∑
i=s+1

yi)
2) + 1} (26)
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As discussed earlier for the penalized nature of the cost function used in the PELT
algorithm, it important to note that the performance of the penalized optimization approach
depends on the penalty value, β. Simply put, the choice of the penalty value has a significant
effect on the detected changes. Suppose that introducing a change point leads to certain
number parameters, denoted by p; most of the literature has considered a penalty based
on different criteria for model selection. One of the most used is the Akaike Information
Criterion (AIC) [37]. This is an estimator of prediction error; thus, it measures the goodness
of fit of an estimated statistical model.

AIC = 2p− 2 ln(L̂) (27)

BIC = p ln(n)− 2 ln(L̂) (28)

In addition to p defined as the estimated parameters in the model, let L̂ denote
the maximum value of the likelihood function for the model, and the AIC is given in
Equation (27). The Bayesian Information Criterion (BIC) [38], also known as the Schwarz
Information Criterion (SIC), is another closely used approach to the AIC. The BIC presented
in Equation (28) and the AIC both attempt to resolve the problem of overfitting (that is,
the problem of increased likelihood while fitting a model due to additional parameters).
However, the penalty term is larger in BIC than in AIC. There is a modification of the
BIC, MBIC, proposed by Zhang and Siegmund [39]. The MBIC accounts for the length of
the segments; although it works well for simulated data, the study by Hocking et al. [40]
has shown it to be limited with real-life datasets. The elbow plot approach, which is an
adaptive penalty choice, was proposed by Lavielle and Moulines [41]. The method involves
sequentially running the optimization problem for different numbers of change points and
plotting it against the unpenalized cost; the traditional elbow plot approach is used to select
the best segmentation point. This method is similar to that used by Hocking et al. [40],
which reported the best segmentation with various numbers of change points, and then
used the annotated training data to figure out the best penalty.

4. Secretion of Homogeneous Segments in the Number of Daily Infections

Modeling of infectious diseases is a subject having no depreciating interest in research
across its concerned fields, such as mathematics, public health, epidemiology, etc. This
results from the ubiquitous prevalence of various diseases occurring among the human race.
A prominent example is the current pandemic at the time of writing—the COVID-19 virus.
We will discuss the various models for infectious diseases with a focus on the infection rate
in this section. We will also discuss two change-point detection algorithms that we will be
using with the models.

4.1. Epidemic Model

Epidemic models are a well-known tool for simulating the mechanism by which
infectious diseases spread. Several studies have used these models to predict future
disease outbreaks, propose methods or strategies to prevent disease outbreaks and assess
the efficacy of these methods. The epidemic model can exist in two types, which are
stochastic and deterministic. The stochastic model is a model type which allows for
random variance in one or more inputs over time to estimate the probability distributions
of possible outcomes. On the other hand, the deterministic models involve assigning
the population to different groups or sub-groups or compartments. Each compartment
represents a specific phase of the epidemic. In addition, the stochastic models are based
on chance variations in exposure risk, disease dynamics and other illness dynamics. The
transition rates in the deterministic models are expressed mathematically as derivatives.
Three common common epidemic models are presented below:

(i) The SIS Model—the model has two compartments—the susceptible and the infec-
tious. The model flow is presented below:
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Susceptible(S) −→ In f ectious(I) −→ Susceptible(S)

The model compartments result from infections that do not confer any long-lasting
immunity—infections such as influenza and the common cold. The differential form
of the model is presented as follows:

S′(t) =
−β(t)S(t)I(t)

N
+ γI(t)

I′(t) =
β(t)S(t)I(t)

N
− γI(t)

where
S(t1) = S1 > 0, I(t1) = I1 > 0
β is the average number of contacts per person per time, t.
γ is the rate at which people in the infectious compartment become susceptible again.
N is assumed to be fixed in this case; thus, N ≡ N(t) = S(t) + I(t)

(ii) The SIR Model—the model has three compartments—the susceptible, the infectious
and the removed. The model flow is presented below:

Susceptible(S) −→ In f ectious(I) −→ Removed(R)

The “removed” compartment of the model accounts for any individual that recovers
or dies from the disease. The differential form of the model is presented as follows:

S′(t) =
−β(t)S(t)I(t)

N

I′(t) =
β(t)S(t)I(t)

N
− γI(t)

R′(t) = γI(t)

where
S(t1) = S1 > 0, I(t1) = I1 > 0, R(t1)
β is the average number of contacts per person per time, t.
γ is the rate at which people in the infectious compartment are removed.
N is assumed to be fixed in this case; thus, N ≡ N(t) = S(t) + I(t) + R(t).

(iii) The SIRD Model—the model is a modification of the SIR model, in which the
recovered and the removed (which implies the dead) are separated. Thus, it has four
compartments, and the model flow is presented presented below:

Susceptible(S) −→ In f ectious(I) −→ Recovered(R) −→ Death or Removed(D)

The differential form of the model is presented as follows:

S′(t) =
−β(t)S(t)I(t)

N

I′(t) =
β(t)S(t)I(t)

N
− γI(t)ψI(t)

R′(t) = γI(t)

D′(t) = ψI(t)

where
S(t1) = S1 > 0, I(t1) = I1 > 0, R(t1) ≥ 0
β is the average number of contacts per person per time, t.
γ is the rate at which people in the infectious compartment recover.
ψ is the rate at which people in the infectious compartment are removed (that is, die).
N is assumed to be fixed in this case; thus, N ≡ N(t) = S(t) + I(t) + R(t) + D(t).
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4.2. Parameter Estimation

An important parameter that draws the attention of researchers more in the epidemic
model lies within the infection compartment from the susceptible compartments. The first
basic parameter is the infection rate itself, which is more convenient to be estimated with a
time constant population assumption using the method adopted in the study by Wacker
and Schluter Wacker and Schlüter [42]. For the purpose of this study, we focus more on the
SIRD model. The time discrete formulation of the SIRD model was derived using the finite
difference approach such that the approximation

f ′(ti + 1) ≈ fi+1 − fi
∆t

= fi+1 − fi (29)

holds for all i ∈ 1, . . . , n since ∆t = 1. The implication of this is the following equations:

Si+1 − Si =
−βi+1Si+1 Ii+1

N
(30)

Ii+1 − Ii =
βi+1Si+1 Ii+1

N
− γi+1 Ii+1 − ψi+1 Ii+1 (31)

Ri+1 − Ri = γi+1 Ii+1 (32)

Di+1 − Di = ψi+1 Ii+1 (33)

The time varying coefficients sequence is obtained as with the following conditions:

• if Ii+1 6= 0, set γi+1 =
Ri+1−Ri

Ii+1
and τi+1 =

Di+1−Di
Ii+1

– if Si+1 6= 0, set βi+1 =
N(Si−Si+1)

Si+1 Ii+1

– if Si+1 = 0, set βi+1 = 0

• if Ii+1 = 0, set βi+1 = 0, γi+1 = 0 and τi+1 = 0

The coefficients, γ and τ, are usually assumed to be constant in time; thus, they can be
represented with their mean (γ̄ and τ̄) or median (γ̂ and τ̂). That is,

ζ̄ =
n

∑
i=2

ζi (34)

ζ̂ =

{
ζ[ n

2 ] if n is odd
ζ[ n−1

2 ]+ζ[ n+1
2 ]

2 if n is even
(35)

where ζ ∈ {γ, β}.
Another parameter of interest is the time count of the number of people with the

disease, i.e., the infectious compartment. This can be modeled using several approaches,
such as the ARIMA time series approach.

5. Simulation Procedure and Real Data Description

The real data for the study will be such that it follows an SIRD epidemic model.
Thus, we perform the simulation for the SIRD epidemic model proposed in Section 4.
This is because the source of the real-life data contains only the details relating to the
infectious, recovered and removed (death) compartment. Using a fixed population figure
is a particular limitation of our study. We adopt a network-based simulation to model
an epidemic that allows for phase-type transmissibility in a SIRD model; see Figure 4.
The network approach allows the real-life explanation of connectivity, which, in this case,
allows the contact rate effect, i.e., the average number of contacts per person per time. The
network also allows the simulation to be done randomly.
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Figure 4. SIRD network model.

The network algorithm is constructed in a manner such that:

• The average number of contacts per person per time, β, is random and phase-based.
• The beta is chosen such that β ∼ Exp(λ) and λ varies within time intervals. Six

different λs were chosen for λ; this implies six phases and five known change points
in the transmission rate of the decease.

• Other parameters of the model (γ and τ) are fixed based on the assumption in
Section 4.2. The choice of these parameters for the simulation is γ = 0.3 and τ = 0.15

• The network starts with the whole population as susceptible with a single infection
(N = 1000).

• The disease is only transferable within neighbors of the node with the probability βt
at time t.

According to the simulation assumptions, the epidemic model was simulated on a
random graph (Figure 5)—G(N = 1000, p = 0.02), where N is the number of nodes (that is,
N is the population) and p is the probability of an edge connecting to another (that is, it
shows the connectivity in society). Algorithm 3 describes how the SIRD simulation was
carried out.

Algorithm 3 Network algorithm for the SIRD model.

1: S1 = N − I1, I1 = 1, R1 = 0, D1 = 0 . Initialize nodes in the compartments
2: i = 0
3: while i < T do
4: for node in It−1 do
5: Infect neighbor nodes at rate βt to obtain It
6: for in It−1 do
7: Simultaneously,
8: Recover nodes at rate γ to obtain Rt
9: Remove (death) nodes at rate γ to obtain Dt

10: Check It ∩ Rt ∩ Dt = 0
11: for node in graph do
12: if node not in Dt:
13: if node not in Rt:
14: if node not in It:
15: put node in St
16: next i
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Figure 5. Simulated epidemic curve on a random graph.

We used the daily COVID-19 data for Poland from 15th February 2020 to 2nd April
2021. We extracted the data from worldometers.info site (https://www.worldometers.info/
coronavirus/country/poland/ (accessed on 3 April 2021)), including a fixed population of
Poland since the time discrete approach considered in the estimation of the transmission
rate uses a fixed population size. The compartmental plot of Poland’s COVID-19 data is
presented in Figure 6. We ignored the susceptible compartment in Figure 6 to improve the
visibility of other compartments. The model simulation and parameter estimation were
done on Python, while the change-point detection algorithm was implemented using the
packages [43] presented by their authors in R. Five different penalties were considered for
the PELT algorithm: AIC, BIC/SIC, MBIC, Manual and None. None means no penalty was
introduced in the optimization procedure of the algorithm. We use the elbow method for
the manual penalty, with the penalty value obtained at 3.5 for both simulated and real data.
The result of the simulation and application are discussed in the next section. The change
points detected are presented in Appendix A (see Tables A1–A15).

Figure 6. Discrete estimated SIRD plot for Poland COVID-19 infections.

https://www.worldometers.info/coronavirus/country/poland/
https://www.worldometers.info/coronavirus/country/poland/
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6. Results and Discussion
6.1. Simulation Result

Here, the result of the change-point detection algorithm is presented for the simulated
data. To illustrate an online approach, both change-point algorithms (PELT and BOCPD)
were tested in bits of 20, 30, 50, 100 and 201. It was possible to trace the change-point
process of the transmission rate since the rate was self-introduced at time-points 35, 65, 100,
137 and 174.

The two algorithms (BOCPD and PELT) explored were able to properly detect some
changes between the transmissibility data after time-point 20. We also discovered that the
use of no penalty value results in the discovery of too many change points in the data. This
was especially too many for the case of the specific mean penalty function (Function (24));
we detected change points at every time point. The manual approach, i.e., the use of the
traditional elbow plot, had the second lowest performance. The AIC and the MBIC penalty
function used on either of the specific variance (Function (25)) or specific mean and variance
(Function (26)) are preferred for change-point detection in the simulated transmission rate
and the infection. Based on the accuracy of the detection algorithm and the number of
change points detected, the MBIC penalty function is preferred. Thus, we report the plot
for only the MBIC penalty value. Furthermore, a larger sample improves the detection. We
can see this in the BOCPD result.

Figure 7 shows the detection location of the BOCPD, specific variance PELT, and
specific mean and variance PELT algorithm. The two PELT algorithms have three change
points where they coincide (CP at 18, 20 and 99) and the last change point with a difference
of one time-point—CP located at time-point 56 for specific variance and 57 for specific
mean and variance PELT. These change points are one to two time-points away from the
BOCPD change points; BOCPD change points are located at time points 21, 58 and 101.
The change points discovered in the transmissible rate by the algorithms are related to the
induced change-point locations. For instance, the real change point fixed at the time-point
is in the domain of the change point located at time-point 20 for the two PELT algorithms
and 21 for the BOCPD. The change point fixed at 65 can be linked with the change point at
56 in the specific variance PELT algorithm, point 57 in the specific mean and variance PELT
algorithm and point 58 of the BOCPD. The change point fixed at 100 is detected at 99 for the
PELT algorithms and 101 for the BOCPD. Thus, we can conclude that it is difficult to detect
the last two fixed change points, i.e., 137 and 174. The reason may be due to a low variation
in the segment of the observation containing the change points. It is possible to understand
this from the change-point detection involving only the mean with constant variation.

We compare the result from the transmission rate to the daily infection. We discover
that the points of detection do not necessarily agree. This effect can be understood from the
simulation algorithm of the SIRD model. The disease flows at a specific rate per time but
an infected person does not become “double-infected”. A general observation that shows
the PELT algorithm detecting changes at a point behind the BOCPD can also be noticed.
For instance, the BOCPD detects changes at time-points 21, 28 and 35, while the specific
mean and variance PELT algorithm detect changes at time-points 20, 27 and 34. Specific
variance PELT has change points located at time-points 20 and 28. The three methods were
sensitive enough to detect the end segment of the disease (Figure 8). The issue of variance
detection from the transmission rate and the difference in its change-point locations from
the daily infection implies that change-point detection that takes variations into account is
most needed for a phase-type model such as this.
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Figure 7. Detection of CPs in the simulated transmission rate (BOCPD(m) = 3, PELT_Mean_Var(m) = 4,
PELT_Var(m) = 4).

Figure 8. Detection of CPs in the simulated infection compartment (BOCPD(m) = 3,
PELT_Mean_Var(m) = 3, PELT_Var(m) = 2).).

6.2. Change-Point Detection on Real-Life Data

Following the same procedure used to detect change points in the simulated data,
we observe similar effects of the change-point algorithms on the transmission rate and
daily infection. These include the fact that the specific variance and the specific mean
and variance PELT algorithm are preferred based on observations from Figure 9. Specific
variance PELT was very sensitive to high variation. In this case, the specific mean and
variance PELT appears to be better than other PELT approaches. This is because it could
detect abrupt changes in segments with small variations (Figure 9). The plotted algorithms
detect almost similar changes till the same time-point (CPs at time-points 18–19, 32–33 and
49–52). After these time-points, the specific variance PELT algorithm could not detect any
other changes.
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Figure 9. Detection of CPs in the COVID-19 transmission rate (BOCPD(m) = 10,
PELT_Mean_Var(m) = 12, PELT_Var(m) = 3).

Figure 10 presents the pattern of detecting high and low variation changes as in the
transmission rate, which was also observed for the daily infection. However, it is more
obvious from Figure 11 that the specific variance PELT detects fewer change points than the
other algorithms. It is important to note that choosing highly optimized (specific variance
PELT with MBIC) change points does not imply that the other change points detected by
other means are not significant. Critically checking these points, we can observe change
events surrounding the COVID-19 pandemic. The specific variance PELT with MBIC was
selected based on the simulation result. We detect change points at points 264, 300 and 389.
These points fall on 4 November 2020, 10 December 2020 and 9 March 2021. The events
surrounding these dates are highlighted below:

• Change point at time-point 264 (4 November 2020): Stricter coronavirus disease
(COVID-19) restrictions were announced for Saturday (7 November 2020) by the
Polish Prime Minister Mateusz Morawiecki, who also warned that if cases did not
become stable, a full lockdown might be introduced in a week to ten days. As a result
of the new laws, most retail malls, theaters, museums, galleries and cinemas would
close. Students who had not previously worked remotely would be required to do
so. Hotel rooms would be available only to business guests. Previously, bars and
restaurants had been ordered to close, and the elderly had been advised to remain at
home. This was due to the increase in the daily cases.

• Change point at time-point 298 (10 December 2020): Due to increased disease activity
in Poland, authorities planned to strengthen current coronavirus disease (COVID-19)
restrictions from 28 December 2020 to at least 17 January 2021. International arrivals
were expected to isolate for 10 days, unless they traveled through private means.
Additionally, theaters, museums, etc., were closed and hotels were only opened for
business purposes. Looking at Figure 10, we observe that a decrease in daily infections
was observed around this period; however, the purpose of this declaration can either
be traced to the total current infections and/or cumulative infections. The period
was also the festive season and the beginning of a new year, which could lead to a
high contact rate between people, especially during new year’s eve. The news also
indicated that the second wave of COVID-19 started around late December.

• Change point at time-point 389 (9 March 2021): Another rise in daily COVID-19
infections in Poland; news spread tagged sometime around early March the third wave
of COVID-19 in Poland. Health officials tightened COVID-19 entry restrictions for
certain travelers on 27 February 2021, while domestic limitations would be extended
until at least 14 March 2021. On 20 March 2021, a total lockdown was announced for



Axioms 2022, 11, 213 18 of 32

the whole country of Poland. The new restriction required pupils within the age of
1–3 years to return back to online learning.

Figure 10. Detection of CPs in COVID-19 infection (BOCPD(m) = 24, PELT_Mean_Var(m) = 33,
PELT_Var(m) = 3).).

Figure 11. Specific variance detection of CPs in COVID-19 infection using PELT.

7. Conclusions

This work investigates change-point detection algorithms in phase-type signals. The
subject of consideration was the epidemic model, which suited the data that we used for
the analysis. We used the Suspected, Infected, Recovered and Death (SIRD) model for the
study. The main parameter that we were interested in was the mean and the variance of
the transmissibility rate and daily infection. The two algorithms used for our analysis were
the Bayesian Online Change Point Detection (BOCPD) algorithm and Pruned Exact Linear
Time (PELT) algorithm. BOCPD employs the Bayes theorem depending on run length.
PELT is an optimization approach to change points with pruning. Since it is possible to
run the optimization in the PELT algorithm with different penalty values, we considered
five different statistical penalty functions. These included the AIC, BIC/SIC, MBIC, a
Manual approach using the elbow method and a null penalty value. The PELT algorithm
also permits change-point detection for two parameters of interest: the mean, the variance
and the variance and the mean together. We tested the algorithms on simulated data
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before the real-life data. The simulation was performed with a social network graph to
obtain a practical representation ability. We used Poland’s COVID-19 data for our real-life
test. Estimating the change points in the simulated transmissibility rate and the daily
infection, we discovered that (a) the BOCPD and the PELT algorithm will most likely detect
the same change points, probably with a unit time difference; (b) mean detection in the
PELT algorithm has poor performance; this implies that the variance or a combination
of both parameters for detection is better; (c) the penalty value that optimizes the model
parameters well is the MBIC; (d) the change-point location of the transmissibility rate
and daily infection is not necessarily the same. As illustrated, we observed the events
surrounding the moment of change in the variance PELT algorithm with the MBIC as the
penalty value. The three dates detected by this algorithm were 11 November 2020, 10
December 2020 and 9 March 2021. We discovered that the last two dates were the period
when the second and third waves of COVID-19 were said to have started in Poland. There
was a strict lockdown policy announcement during these periods.
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AIC Akaike’s Information Criterion (p. 10, cf. [37])
BIC Bayesian Information Criterion (p. 10, cf. [38])
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CUSUM Cumulative Sum (p. 3)
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Appendix A. Tables

Table A1. PELT Algorithm Result for Simulated Transmissibility Rate.

n Penalty
PELT(Mean) PELT(Variance) PELT(Mean, Variance)

m τ m τ m τ

20

None 19
1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11,12,
13, 14,15, 16, 17,

18, 19

8 2, 5, 7, 9, 11,
14, 16, 18

8 2, 5, 7, 9, 11,
13, 15, 18

SIC, BIC 1 20 1 18 5 2, 5, 7, 9, 18

MBIC 1 20 1 18 2 2, 18

AIC 1 20 1 18 6 2, 5, 7, 11, 14, 18

Manual 1 20 1 18 8 2, 5, 7, 9, 11,
13, 15, 18

30

None 29
1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11,

12, 13, 14, 15, 16,
17, 18, 19, 20, 21,
22, 23, 24, 25, 26,

27, 28, 29

12
2, 5, 7, 9, 11,
14, 16, 18, 20,

23, 25, 27

13
2, 5, 7, 9, 11, 13,

15, 18, 20, 22,
24, 26, 28

SIC, BIC 1 30 2 18, 20 4 2, 5, 18, 20

MBIC 1 30 2 18, 20 3 2, 18, 20

AIC 1 30 2 18, 20 7 2, 5, 7, 11, 14,
18, 20

Manual 1 30 2 18, 20 10 2, 5, 7, 9, 11, 13,
15, 18, 21, 24

* means each time point was detected as a change point; *** means change points detected are more than 40.

Table A2. PELT Algorithm Result for Simulated Transmissibility Rate.

n Penalty
PELT(Mean) PELT(Variance) PELT(Mean, Variance)

m τ m τ m τ

50

None 49 *** 22
2, 5, 7, 9, 11,
14, 16, 18, 20,
23, 25, 27, 29,
31, 33, 35, 37,
39, 41, 44, 46,

48

22
2, 5, 7, 9, 11,

13, 15, 18, 20,
22, 24, 26, 28,
30, 32, 35, 37,
39, 41, 43, 45,

47

SIC, BIC 1 50 2 18, 20 3 2, 18, 20

MBIC 1 50 2 18, 20 3 2, 18, 20

AIC 1 50 2 18, 20 10
2, 5, 7, 11,

14, 18, 20, 32,
35, 37

Manual 1 50 2 18, 20 17
2, 5, 7, 9, 11,

13, 15, 18, 21,
24, 32, 35, 37,
39, 41, 45, 47
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Table A2. Cont.

n Penalty PELT(Mean) PELT(Variance) PELT(Mean, Variance)

m τ m τ m τ

100

None 99 *** 43 *** 44 ***

SIC, BIC 1 100 1 71 4 2, 18, 20, 57

MBIC 1 100 1 71 3 18, 20, 57

AIC 1 100 6 19, 21, 24, 58,
74, 77

20
2, 5, 7, 11,

14, 18, 20, 32,
35, 37, 39, 52,
54, 56, 72, 75,
77, 79, 93, 95

Manual 1 100 8 19, 21, 24, 58,
74, 77, 79, 84

36

2, 5, 7, 9, 11,
13, 15, 18, 21,
24, 32, 35, 37,
39, 41, 45, 47,
51, 54, 56, 59,
62, 66, 68, 70,
72, 75, 77, 79,
81, 84, 88, 91,

93, 95, 98

201

None 200 *** 86 *** 88 ***

SIC, BIC 1 201 4 18, 20, 56, 99 6 2, 18, 20, 57,
99, 111

BIC 1 201 4 18, 20, 56, 99 6 2, 18, 20, 57,
99, 111

MBIC 1 201 4 18, 20, 56, 99 4 18, 20, 57, 99

AIC 1 201 11
18, 20, 56, 72, 75,

77, 80, 84, 93,
95, 99

51 ***

Manual 1 201 13
18, 20, 56, 72,
75, 77, 80, 84,

93, 95, 99, 111,
114

70 ***

* means each time point was detected as a change point; *** means change points detected are more than 40.
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Table A3. PELT Algorithm Result for Simulated Infection.

n Penalty
PELT(Mean) PELT(Variance) PELT(Mean, Variance)

m τ m τ m τ

20

None 19 * 8 2, 4, 6, 8,
10, 13, 15, 17

8 2, 4, 6, 9,
11, 13, 16, 18

SIC, BIC 17
2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13,
14, 15, 16, 17, 19

1 20 2 2, 9

MBIC 17
2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13,
14, 15, 16, 17, 19

1 20 1 2

AIC 17
2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13,
14, 15, 16, 17,19

4 4, 10, 13, 17 5 2, 4, 10, 13,
17

Manual 17
2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13,
14, 15, 16, 17, 19

4 4, 10, 13, 17 6 2, 4, 10, 13,
16, 18

30

None 29 * 13
2, 4, 6, 9, 11,
13, 16, 18, 20,
22, 24, 26, 28

13
2, 4, 6, 9, 11,

13, 15, 17, 19,
21, 24, 26, 28

SIC, BIC 27
2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13,
14, 15, 16, 17, 19,
20, 21, 22, 23, 24,
25, 26, 27, 28, 29

2 20, 25 4 2, 9, 20, 25

MBIC 27
2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13,
14, 15, 16, 17, 19,
20, 21, 22, 23, 24,
25, 26, 27, 28, 29

1 20 3 2, 20, 25

AIC 27
2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13,
14, 15, 16, 17, 19,
20, 21, 22, 23, 24,
25, 26, 27, 28, 29

2 20, 25 8 2, 4, 10, 13,
17, 19, 25, 28

Manual 27
2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13,
14, 15, 16, 17, 19,
20, 21, 22, 23, 24,
25, 26, 27, 28, 29

2 20, 25 10
2, 4, 10, 13,

17, 19, 21, 24,
26, 28

* means each time point was detected as a change point; *** means change points detected are more than 40.
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Table A4. PELT Algorithm Result for Simulated Infection.

n Penalty
PELT(Mean) PELT(Variance) PELT(Mean, Variance)

m τ m τ m τ

50

None 34

1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11,
12, 13, 14, 15,
16, 17, 18, 19,
20, 21, 22, 23,
24, 25, 26, 27,
28, 29, 30, 31,

32, 33, 34

17
2, 4, 6, 9, 12,
14, 16, 18, 20,
23, 25, 27, 29,
31, 33, 35, 42

21
2, 4, 6, 9, 11,

13, 15, 17, 19,
21, 24, 26, 28,
30, 32, 34, 36,
38, 40, 45, 47

SIC, BIC 30

2, 3, 4, 5, 6, 7,
8, 9, 10, 11,

12, 13, 14, 15,
16, 17, 19, 20,
21, 22, 23, 24,
25, 26, 27, 28,
29, 30, 31, 33

2 20, 25 5 2, 20, 25, 30,
34

MBIC 30

2, 3, 4, 5, 6, 7,
8, 9, 10, 11,

12, 13, 14, 15,
16, 17, 19, 20,
21, 22, 23, 24,
25, 26, 27, 28,
29, 30, 31, 33

2 20, 25 4 20, 25, 30, 34

AIC 31

2, 3, 4, 5, 6, 7,
8, 9, 10, 11,

12, 13, 14, 15,
16, 17, 19, 20,
21, 22, 23, 24,
25, 26, 27, 28,
29, 30, 31, 32,

33

2 20, 25 10
2, 4, 10, 13,

17, 19, 25, 28,
31, 34

Manual 31

2, 3, 4, 5, 6, 7,
8, 9, 10, 11,

12, 13, 14, 15,
16, 17, 19, 20,
21, 22, 23, 24,
25, 26, 27, 28,
29, 30, 31, 32,

33

2 20, 25 13
2, 4, 10, 13,

17, 19, 21, 24,
26, 28, 30, 32,

34

* means each time point was detected as a change point. *** means change points detected are more than 40.
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Table A5. PELT Algorithm Result for Simulated Infection.

n Penalty
PELT(Mean) PELT(Variance) PELT(Mean, Variance)

m τ m τ m τ

100

None 34

1, 2, 3, 4, 5,
6, 7, 8, 9, 10,
11, 12, 13, 14,
15, 16, 17, 18,
19, 20, 21, 22,
23, 24, 25, 26,
27, 28, 29, 30,
31, 32, 33, 34

34

2, 4, 6, 8, 10,
13, 15, 17, 20,
22, 24, 26, 28,
30, 32, 34, 38,
42, 46, 52, 54,
59, 62, 65, 68,
71, 74, 77, 80,
83, 86, 89, 92,

95

39

2, 4, 6, 9, 11,
13, 15, 17, 19,
21, 24, 26, 28,
30, 32, 34, 36,
38, 40, 45, 47,
49, 53, 56, 59,
62, 65, 68, 71,
74, 77, 80, 83,
86, 90, 92, 94,

96, 98

SIC, BIC 30

2, 3, 4, 5, 6,
7, 8, 9, 10, 11,
12, 13, 14, 15,
16, 17, 19, 20,
21, 22, 23, 24,
25, 26, 27, 28,
29, 30, 31, 33

2 20, 27 5
2, 20, 25, 30,

34

MBIC 29

2, 4, 5, 6, 7,
8, 9, 10, 11,

12, 13, 14, 15,
16, 17, 19, 20,
21, 22, 23, 24,
25, 26, 27, 28,
29, 30, 31, 33

2 20, 27 3 20, 27, 34

AIC 31
2, 3, 4, 5, 6, 7,

8, 9, 10, 11, 12,
13, 14, 15, 16, 17,
19, 20, 21, 22, 23,
24, 25, 26, 27, 28,
29, 30, 31, 32, 33

2 20, 27 10
2, 4, 10, 13,

17, 19, 25, 28,
31, 34

Manual 31
2, 3, 4, 5, 6, 7,

8, 9, 10, 11, 12,
13, 14, 15, 16, 17,
19, 20, 21, 22, 23,
24, 25, 26, 27, 28,
29, 30, 31, 32, 33

6 4, 10, 13, 17,
20, 27

13
2, 4, 10, 13,

17, 19, 21, 24,
26, 28, 30, 32,

34

201

None 34

1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11,

12, 13, 14, 15, 16,
17, 18, 19, 20, 21,
22, 23, 24, 25, 26,
27, 28, 29, 30, 31,

32, 33, 34

19
2, 4, 6, 9, 11,

13, 15, 17, 19,
21, 24, 26, 28,
30, 32, 34, 37,

72, 74

72 ***

* means each time point was detected as a change point; *** means change points detected are more than 40.
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Table A6. PELT Algorithm Result for Simulated Infection.

n Penalty
PELT(Mean) PELT(Variance) PELT(Mean, Variance)

m τ m τ m τ

201

SIC, BIC 30

2, 3, 4, 5, 6,
7, 8, 9, 10, 11,
12, 13, 14, 15,
16, 17, 19, 20,
21, 22, 23, 24,
25, 26, 27, 28,
29, 30, 31, 33

2 20, 28 4 20, 25, 30, 34

MBIC 29

2, 4, 5, 6, 7,
8, 9, 10, 11, 12,
13, 14, 15, 16,
17, 19, 20, 21,
22, 23, 24, 25,
26, 27, 28, 29,

30, 31, 33

2 20, 28 3 20, 27, 34

AIC 31

2, 3, 4, 5, 6,
7, 8, 9, 10, 11,
12, 13, 14, 15,
16, 17, 19, 20,
21, 22, 23, 24,
25, 26, 27, 28,
29, 30, 31, 32,

33

5

9, 16, 19, 26,
29

10
2, 4, 10, 13,

17, 19, 25, 28,
31, 34

Manual 31

2, 3, 4, 5, 6,
7, 8, 9, 10, 11,
12, 13, 14, 15,
16, 17, 19, 20,
21, 22, 23, 24,
25, 26, 27, 28,
29, 30, 31, 32,

33

5

9, 16, 19, 26,
29

13

2, 4, 10, 13, 17,
19, 21, 24, 26,
28, 30, 32, 34

* means each time point was detected as a change point; *** means change points detected are more than 40.

Table A7. BOCPD Algorithm Result for Simulated Transmissibility Rate and Infection.

n
β I(t)

m τ m τ

20 1 19 1 *

30 1 21 1 21

50 1 21 3 21,28,35

100 2 21, 58, 100 100 21,28,36

201 3 21, 58, 101 3 21,28,37
* means each time point was detected as a change point; *** means change points detected are more than 40.
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Table A8. BOCPD Algorithm Result for Poland’s COVID-19 Transmissibility Rate and Infection.

n
β I(t)

m τ m τ

20 1 19 1 19

30 1 19 2 19, 21

50 2 19, 33 4 19, 21, 31, 41

100 4 19, 33, 52, 66 7 19, 21, 31, 41, 53, 65, 81

200 6 19, 33, 52, 66,
116, 153 13 19, 21, 31, 41, 53, 65, 81,

97, 114, 134, 146, 171, 188

413 10 19, 33, 52, 66, 116, 153,
223, 269, 284, 383

24
19, 21, 31, 41, 53, 65, 81, 97,
114, 134, 146, 171, 188, 205,
224, 237, 246, 258, 272, 292,

304, 339, 376, 398
* means each time point was detected as a change point; *** means change points detected are more than 40.

Table A9. PELT Algorithm Result for Poland’s COVID-19 Transmissibility Rate.

n Penalty PELT(Mean) PELT(Variance) PELT(Mean, Variance)

m τ m τ m τ

20

None 2 18, 19 4 2, 6, 12, 18 4 2, 9, 13, 18

SIC, BIC 1 20 1 18 1 18

MBIC 1 20 1 18 1 18

AIC 1 20 1 18 1 18

Manual 1 20 1 18 1 18

30

None 12
18, 19, 20, 21,
22, 23, 24, 25,
26, 27, 28, 29

8 10, 12, 14, 18,
21, 24, 26, 28

9
2, 9, 13, 18,

20, 22, 24, 26,
28

SIC, BIC 1 30 2 18, 21 2 18, 21

MBIC 1 30 1 30 2 18, 21

AIC 1 30 2 18, 21 2 18, 21

Manual 1 30 2 18, 21 2 18, 21

50

None 32

18, 19, 20, 21,
22, 23, 24, 25,
26, 27, 28, 29,
30, 31, 32, 33,
34, 35, 36, 37,
38, 39, 40, 41,
42, 43, 44, 45,
46, 47, 48, 49

17
2, 5, 7, 12, 18,
21, 24, 26, 29,
32, 34, 36, 38,
41, 44, 46, 48

17
2, 9, 13, 18,

20, 22, 24, 26,
28, 30, 32, 34,
36, 39, 41, 44,

47

SIC, BIC 1 50 3 18, 21, 32 4 18, 21, 32, 39

MBIC 1 50 1 32 4 18, 21, 32, 39

AIC 1 50 5 18, 21, 32, 36, 41 6 18, 21, 32, 36,
38, 43

Manual 1 50 5 18, 21, 32, 36, 41 9 18, 21, 30, 32, 36,
39, 41, 44, 47
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Table A9. Cont.

n Penalty PELT(Mean) PELT(Variance) PELT(Mean, Variance)

m τ m τ m τ

100

None 82 *** 41

3, 5, 7, 9, 13,
15, 18, 21, 24,
26, 29, 32, 34,
36, 39, 41, 44,
47, 49, 51, 53,
55, 57, 60, 62,
65, 67, 69, 71,
73, 75, 77, 79,
81, 83, 86, 88,
91, 93, 95, 98

41

2, 9, 13, 18,
20, 22, 24, 26,
28, 30, 32, 34,
36, 39, 41, 44,
47, 49, 51, 53,
55, 57, 60, 62,
65, 67, 69, 71,
73, 75, 77, 79,
81, 83, 85, 87,
89, 91, 93, 95,

98

SIC, BIC 1 100 2 18, 32 8 18, 21, 32, 39,
53, 55, 57, 65

MBIC 1 100 2 18, 32 5 18, 21, 36, 53,
65

* means each time point was detected as a change point; *** means change points detected are more than 40.

Table A10. PELT Algorithm Result for Poland’s COVID-19 Transmissibility Rate.

n Penalty
PELT(Mean) PELT(Variance) PELT(Mean, Variance)

m τ m τ m τ

100

AIC 1 100 5 18, 21, 32, 43, 57 22

18, 21, 32, 36,
38, 44, 47, 49,
53, 55, 57, 65,
69, 71, 75,77,
81, 83, 87, 89,

91, 93

Manual 1 100 5

18, 21, 32, 43,
57

27

18, 21, 30, 32,
36, 39, 41, 44,
47, 49, 53, 55,
57, 60, 65, 69,
71, 75, 77, 81,
83, 87, 89, 91,

93, 95, 98

200

None 182 *** 81 *** 86 ***

SIC, BIC 1 200 4 18, 32, 43, 153 12
18, 21, 32, 39,

53, 57, 65, 124,
133, 147, 157, 183

MBIC 1 200 2 18, 40 7 18, 32, 51, 65,
124, 133, 152
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Table A10. Cont.

n Penalty
PELT(Mean) PELT(Variance) PELT(Mean, Variance)

m τ m τ m τ

AIC 1 200 10

18, 21, 32, 43, 53,
55, 57, 65, 159, 176

53

18, 21, 32, 36,
38, 44, 47,

49, 53, 55, 57,
65, 69, 71, 75,
77, 81, 83, 87,
89, 91, 93, 95,

98, 106, 110, 112,
115, 124, 129, 131,
135, 137, 139, 144,
147, 150, 152, 156,
164, 166, 169, 171,
174, 176, 180, 182,
184, 186, 188, 190,

192, 197

Manual 1 200 11
18, 21, 32, 43,
53, 55, 57, 65,
157, 166, 176

65 ***

413

None 395 *** 171 *** 182 ***

SIC, BIC 1 413 8
18, 32, 49, 164,

176, 235, 267, 281 17

18, 21, 32, 39,
53, 65, 124, 133,

147, 157, 183, 215,
236, 239, 267, 283,

382

* means each time point was detected as a change point; *** means change points detected are more than 40.

Table A11. PELT Algorithm Result for Poland’s COVID-19 Transmissibility Rate.

n Penalty
PELT(Mean) PELT(Variance) PELT(Mean, Variance)

m τ m τ m τ

413

MBIC 1 413 3 18, 32, 49 12
18, 32, 51, 65,

124, 133, 152, 183,
215, 268, 283, 382

AIC 1 413 15
18, 21, 32, 43,

53, 65, 157, 164,
176, 213, 223, 267,

281, 382, 386

128 ***

Manual 1 413 19
18, 21, 32, 43,

53, 65, 157, 164,
176, 213, 222, 235,
260, 268, 281, 319,

321, 382, 386

151 ***

* means each time point was detected as a change point; *** means change points detected are more than 40.
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Table A12. PELT Algorithm Result for Poland’s COVID-19 Daily Infection.

n Penalty
PELT(Mean) PELT(Variance) PELT(Mean, Variance)

m τ m τ m τ

20

None 1 18 7 5, 7, 9, 11, 13, 15, 18 4 2, 9, 13, 18

SIC, BIC 1 20 1 18 1 1, 17

MBIC 1 20 1 18 1 18

AIC 1 20 1 18 1 18

Manual 1 20 1 18 1 18

30

None 11
18, 20, 21, 22,
23, 24, 25, 26,

27, 28, 29

9
3, 10, 12, 18,

20, 22, 24, 26,
28

9
2, 9, 13, 18,

20, 22, 24, 26,
28

SIC, BIC 9
20, 22, 23, 24,
25, 26, 27, 28,

29

1 26 4 18, 20, 22, 26

MBIC 9
20, 22, 23, 24,
25, 26, 27, 28,

29

1 26 3 18, 20, 26

AIC 9
20, 22, 23, 24,
25, 26, 27, 28,

29

1 26 5 18, 20, 22, 26,
28

Manual 9
20, 22, 23, 24,
25, 26, 27, 28,

29

1 26 6 18, 20, 22, 24,
26, 28

* means that each time point was detected as a change point; *** means that the change points detected are more
than 40.

Table A13. PELT Algorithm Result for Poland’s COVID-19 Daily Infection.

n Penalty
PELT(Mean) PELT(Variance) PELT(Mean, Variance)

m τ m τ m τ

50

None 31

18, 20, 21, 22, 23,
24, 25, 26, 27, 28,
29, 30, 31, 32, 33,
34, 35, 36, 37, 38,
39, 40, 41, 42, 43,
44, 45, 46, 47, 48,

49

18

2, 7, 11, 18,
20, 23, 25, 27,
29, 31, 33, 35,
37, 39, 41, 43,

45, 47

19

2, 9, 13, 18, 20,
22, 24, 26, 28,
30, 32, 34, 36,
38, 40, 42, 44,

46, 48

SIC, BIC 29

20, 22, 23, 24, 25,
26, 27, 28, 29, 30,
31, 32, 33, 34, 35,
36, 37, 38, 39, 40,
41, 42, 43, 44, 45,

46, 47, 48, 49

1 42 8

18, 20, 22, 26, 30,
35, 42, 48

MBIC 29

20, 22, 23, 24, 25,
26, 27, 28, 29, 30,
31, 32, 33, 34, 35,
36, 37, 38, 39, 40,
41, 42, 43, 44, 45,

46, 47, 48, 49

1 42 6

18, 20, 26, 30,
35, 42

AIC 29

20, 22, 23, 24, 25,
26, 27, 28, 29, 30,
31, 32, 33, 34, 35,
36, 37, 38, 39, 40,
41, 42, 43, 44, 45,

46, 47, 48, 49

3 33, 38, 42 13

18, 20, 22, 26, 28,
30, 33, 35, 38, 40,

42, 45, 48
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Table A13. Cont.

n Penalty
PELT(Mean) PELT(Variance) PELT(Mean, Variance)

m τ m τ m τ

Manual 29
20, 22, 23, 24, 25,
26, 27, 28, 29, 30,
31, 32, 33, 34, 35,
36, 37, 38, 39, 40,
41, 42, 43, 44, 45,

46, 47, 48, 49

3 33, 38, 42 16
18, 20, 22, 24,
26, 28, 30, 32,
34, 36, 38, 40,
42, 44, 46, 48

100 None 81 *** 38

18, 20, 22, 24,
26, 28, 30, 32,
34, 36, 38, 40,
42, 44, 46, 48,
50, 52, 54, 56,
58, 60, 62, 64,
66, 69, 71, 73,
76, 78, 80, 82,
85, 87, 90, 93,

95, 97

43

2, 9, 13, 18, 20,
22, 24, 26, 28,
30, 32, 34, 36,
38, 40, 42, 44,
46, 48, 50, 52,
54, 56, 58, 60,
62, 64, 66, 68,
70, 72, 74, 76,
78, 80, 82, 85,

87, 89, 91,
93, 95, 97

* means each time point was detected as a change point; *** means change points detected are more than 40.

Table A14. PELT Algorithm Result for Poland’s COVID-19 Daily Infection.

n Penalty
PELT(Mean) PELT(Variance) PELT(Mean, Variance)

m τ m τ m τ

100

SIC, BIC 79 *** 2 47, 60 14

18, 20, 26, 30,
35, 42, 48, 55,
64, 71, 80, 86,

90, 93

MBIC 78 *** 1 100 12 18, 20, 26, 30, 38, 47,
55, 64, 71, 80, 86, 95

AIC 79 *** 4 43, 50, 55, 63 32

18, 20, 22, 26, 28, 30,
33, 35, 38, 40, 42, 45,
48, 50, 52, 55, 58, 60,
62, 64, 66, 69, 71, 73,
78, 80, 85, 87, 90, 93,

95, 97

Manual 79 *** 4 43, 50, 55, 63 39

18, 20, 22, 24, 26, 28,
30, 32, 34, 36, 38, 40,
42, 44, 46, 48, 50, 52,
54, 56, 58, 60, 62, 64,
66, 69, 71, 73, 76, 78,
80, 82, 85, 87, 89, 91,

93, 95, 97

200

None 181 *** 90 *** 92 ***

SIC, BIC 178 *** 8
52, 64, 79, 96, 145,

151, 164, 173 24

18, 20, 26, 30, 38, 47,
55, 64, 71, 80, 86, 95,
104, 112, 134, 141,
144, 153, 157, 161,
171, 180, 187, 192

MBIC 177 *** 4 62, 87, 148, 165 19
18, 20, 30, 40, 52, 64,
71, 80, 86, 97, 112,
134, 141, 144, 151,
163, 171, 181, 192

AIC 178 *** 11 52, 64, 79, 93, 112,
134, 146, 151, 164,

170, 180

69 ***

Manual 178 *** 11 52, 64, 79, 93, 112,
134, 146, 151, 164,

170, 180

83 ***

* means each time point was detected as a change point; *** means change points detected are more than 40.
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Table A15. PELT Algorithm Result for Poland’s COVID-19 Daily Infection.

n Penalty
PELT(Mean) PELT(Variance) PELT(Mean, Variance)

m τ m τ m τ

413

None 394 *** 189 *** 192 ***

SIC, BIC 391 *** 4 243, 258, 301, 389 48

18, 20, 26, 30, 38, 47,
55, 64, 71, 80, 86, 95,

104, 112, 134, 141, 144,
153, 157, 161, 171, 181,
192, 202, 208, 218, 223,
230, 236, 243, 250, 257,
265, 273, 290, 298, 304,
309, 316, 338, 345, 369,
375, 382, 390, 396, 404,

411

MBIC 390 *** 3 264, 300, 389 33

18, 20, 30, 40, 52, 64,
71, 80, 86, 97, 112, 134,
141, 144, 170, 181, 192,
203, 224, 236, 245, 257,
271, 291, 303, 316, 339,
369, 375, 382, 390, 396,

404

AIC 391 *** 5 245, 256, 264, 301,
389

148 ***

Manual 391 *** 5 245, 256, 264, 301,
389

177 ***

* means each time point was detected as a change point; *** means change points detected are more than 40.
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