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Abstract: In this paper, a symplectic algorithm is utilized to investigate constrained Hamiltonian
systems. However, the symplectic method cannot be applied directly to the constrained Hamiltonian
equations due to the non-canonicity. We firstly discuss the canonicalization method of the constrained
Hamiltonian systems. The symplectic method is used to constrain Hamiltonian systems on the basis
of the canonicalization, and then the numerical simulation of the system is carried out. An example is
presented to illustrate the application of the results. By using the symplectic method of constrained
Hamiltonian systems, one can solve the singular dynamic problems of nonconservative constrained
mechanical systems, nonholonomic constrained mechanical systems as well as physical problems in
quantum dynamics, and also available in many electromechanical coupled systems.

Keywords: constrained Hamiltonian system; canonicalization; symplectic method; numerical
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1. Introduction

In 1993, symplectic algorithms for constrained Hamiltonian systems have been pro-
posed [1]. We know that the displacements q and momenta p of an object moving freely
are given by a Hamilton canonical equation in the form [2]

.
q = ∇pH(p, q),

.
p = −∇q(p, q) (1)

where p, q ∈ Rn, H : Rn × Rn → Rn is called the Hamiltonian function. A natural ques-
tion is what happens when (1) is constrained by algebraic equations on q and/or p. That is,
there are Hamiltonian constraints of the form g(q) = 0, and it leads to the constraints of
Hamiltonian equations as [3,4]

.
q = ∇pH(p, q),

.
p = −∇q H(p, q)− λG(q)t, (2)

where g : Rn → Rn , G(q) = gq(q) ∈ Rn×m and λ ∈ Rm. Equation (2) is called a con-
strained Hamiltonian system, which is not only a relatively loose concept but also a general
constrained mechanical system. The flow of a Hamiltonian system like (1) possesses an
important symplectic geometric structure. It has been observed in numerical experiments
that symplectic methods with fixed step-size possess better long-term stability properties.
Leimkuhler and Skeel [5] investigated symplectic numerical integrators of constrained
Hamiltonian systems in molecular dynamics. By composition methods, Reich [6] studied
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symplectic integration of the constrained Hamiltonian systems. The method they proposed
can reduce Hamiltonian differential-algebraic equations to ordinary differential equations
in Euclidean space.

When studying symmetry properties of classical and quantum constrained systems,
Li [7,8] found that via Legendre transformation, a singular Lagrangian system can be
transformed into the phase space determined by generalized momenta and generalized
coordinates. Since there are inherent constraints between generalized momenta and gen-
eralized coordinates, it is named a constrained Hamiltonian system. A lot of important
physical systems belong to this system, such as quantum electrodynamics, quantum flavor
dynamics, and so on. Even many electromechanical coupled systems belong to constrained
Hamiltonian systems. For a Lagrangian system, if the value of determinant det

(
∂2L

∂qs∂qk

)
vanishes, then it is named as a singular Lagrange system. The Lagrangian function of
supersymmetry, supergravity, and string theory are all singular. Therefore, the fundamental
theory of constrained Hamiltonian systems acts an important role in modern quantum field
theory [9].

In the late 1980s, Feng et al. established the so-called symplectic algorithms to study
the equations in Hamiltonian form and showed that these methods are more superior over
a long time by combining theoretical analysis and computer experimentation [10,11]. The
symplectic method has been widely recognized as a suitable numerical integrator with
global conservation properties for canonical Hamiltonian systems. It has been well applied
in testing particle simulation and some physical experiments in plasma physics, and thus
derived a series of results, for instance, a variational multi-symplectic particle-in-cell algo-
rithm of the Vlasov-Maxwell system [12], the practical symplectic partitioned Runge-Kutta
and Runge-Kutta-Nystrom methods [13], the symplectic integrations of Hamiltonian sys-
tems [14], symplectic integrators of the Ablowitz–Ladik discrete nonlinear Schrödinger
equation [15], etc. The standard symplectic scheme normally works for a canonical struc-
ture of the dynamical system. However, the symplectic simulation for the constrained
Hamiltonian systems is beset with difficulties since the constrained Hamiltonian systems
are usually non-canonical.

In this paper, we will present a general procedure for constructing the canonical
coordinates of constrained Hamiltonian systems. By defining a variable transformation and
calculations, the canonical variables for constrained Hamiltonian systems can be derived,
and thus the constrained Hamiltonian systems are canonicalized. Once the canonical
coordinates of constrained Hamiltonian systems are derived, one can employ the standard
canonical symplectic methods to study the constrained Hamiltonian systems. The method
we proposed is of importance in the study of constrained Hamiltonian systems. We believe
that the symplectic method of constrained Hamiltonian systems given in this paper can be
used in the study of quantum dynamics, electromechanical coupled systems, and strange
constrained dynamics as well.

To verify the effect of the canonicalization and illustrate the advantage of the canonical
symplectic simulation, a numerical example of the constrained Hamiltonian system is
presented. Clearly, the numerical results derived by the canonical symplectic method are
more accurate in the long-term simulation since they can maintain conservation properties.

2. Canonicalization of Constrained Hamiltonian Systems

Assume that a mechanical system is determined by the generalized coordinates
qi(i = 1, 2, . . . , n), and the Lagrangian function L = L(t, qi,

.
qi) satisfies det

(
∂2L

∂qs∂qk

)
= 0

When the generalized momenta and Hamiltonian of the system are constructed, there are
inherent constraints between the canonical variables in the phase space

φj(t, qi, pi) = 0 (j = 1, 2, . . . , n− r, i = j = 1, 2, . . . , n) (3)

this is the constraint equation that should be obtained between the generalized coordinates
and the generalized momenta of the constrained Hamiltonian system.



Axioms 2022, 11, 217 3 of 7

Then the motion equations of a singular system can be written as [11]

.
qi =

∂Hc

∂pi
+ λj

∂ϕj

∂pi
,

.
pi = −

∂Hc
∂qi
− λj

∂ϕj
∂qi

(i = 1, 2, . . . , n) (4)

where Hc is the Hamiltonian of the system and λj is the Lagrange multiplier. The multiplier
in Formula (4) can be given by Equations (3) and (4).

The motion Equation (4) of the constrained Hamiltonian system can be rewritten as



.
p1
...
.
pi.
q1
...

.
qn


=

(
0n Sn
Tn 0n

)


∂Hc
∂p1
...

∂Hc
∂pi
∂Hc
∂q1
...

∂Hc
∂qi


= M2n×2n



∂Hc
∂p1
...

∂Hc
∂pi
∂Hc
∂q1
...

∂Hc
∂qi


, (5)

where

Sn =


−1− λj

∂ϕj
∂Hc

. . . 0
...

. . .
...

0 · · · −1− λj
∂ϕj
∂Hc


n×n

, Tn =


1 + λj

∂ϕj
∂Hc

. . . 0
...

. . .
...

0 · · · 1 + λj
∂ϕj
∂Hc


n×n

(6)

and M2n×2n is an anti-symmetric matrix.
Let v = (p, q)T , where p = (p1, p2, . . . , pn), q = (q1, q2, . . . , qn) , then Equation (5)

can be rewritten as
.
v = K(v)−1∇Hc(v), (7)

where

K(v) =
(

0n T−1
n

S−1
n 0n

)
. (8)

It is easy to see that Equations (5) and (7) are non-canonical Hamiltonian systems.
To rewrite the non-canonical Hamiltonian system in canonical form, we let Z = Ψ(v)

be the corresponding canonical variables which is a transformation from R2n to R2n.
Z = ( p̃, q̃)T are new variables after canonicalization. By the chain rule, the canonicalization
of Equation (7) can be written as [11]

.
Z =

(
∂Ψ
∂v

)
K(v)−1

(
∂Ψ
∂v

)T
∇H̃(Z), (9)

where H̃(Z) = Hc(v). If we let
(

∂Ψ
∂v

)
K(v)−1

(
∂Ψ
∂v

)T
= J−1, i.e.,

K(v) =
(

∂Ψ
∂v

)T
J
(

∂Ψ
∂v

)
(10)

Note that K(v) is a given matrix and v = (p, q)T is the original variable, so we
can get Ψ(v) through this transformation, which is a set of canonical new generalized
momenta p̃ = ( p̃1, p̃2, . . . , p̃n) and generalized coordinates q̃ = (q̃1, q̃2, . . . , q̃n). Now, we
have transformed the non-canonical Hamiltonian system into a canonical Hamiltonian
system.

By substituting the new variables into the original Hamiltonian of the constrained
system, it becomes canonical. Based on the canonical Hamiltonian equations, one can
examine their properties and hence some useful algorithms can be applied to examine
the numerical solutions and numerical simulation of the constrained Hamilton systems.
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The results of the original system can be obtained by replacing the new variables with the
old ones.

3. Symplectic Method for Constrained Hamiltonian Systems

The constrained Hamiltonian systems are transformed in the canonical form (9):

dZ
dt

= J−1∇̃H(Z), (11)

that is, the canonical Hamiltonian system is

dZ
dt = J−1∇̃H(Z), J =

(
0 In
−In 0

)
, Z ∈ R2n (12)

We now show that the properties, conclusions, and calculation methods of canonical
Hamiltonian systems can be extended to constrained Hamiltonian systems. We give the
symplectic method for constrained Hamiltonian systems as follows.

A transformation of the constrained Hamiltonian system

Ψ : R2n → R2n, v =

(
p
q

)
→ Z̃ =

(
p̃
q̃

)
(13)

is called the symplectic transformation for a system if its Jacobian is a symplectic matrix(
dZ̃
dZ

)T

J

(
dZ̃
dZ

)
= J ⇔

n

∑
k=1

dp̃k ∧ dq̃k =
n

∑
k=1

dpk ∧ dqk. (14)

For the canonical Hamiltonian system (9), if

p̃ = p− τ ∂H
∂q ( p̃, q), q̃ = q + τ ∂H

∂p ( p̃, q), (15)

then it is a first-order symplectic scheme. When H(p, q) = U(p) + V(q), Equation (15)
becomes

p̃ = p− τ ∂V
∂q (q), q̃ = q + τ ∂U

∂p ( p̃), (16)

which is an explicit symplectic scheme. For the canonical Hamiltonian system (9), the Euler
midpoint rule is

Z̃ = Z + τ J−1∇H(
Z̃ + Z

2
), (17)

which is a second-order symplectic scheme. A Runge-Kutta method

Z̃ = Z + τ
m
∑

i=1
bi J−1∇H(Ki), Ki = Z + τ

m
∑

i=1
aij J−1∇H(Kj), i = 1, . . . , m, (18)

is symplectic if and only if bibj − biaij − bjaij = 0. In Equations (15)–(18), τ represents the
time step size.

4. Example

The Lotka-Volterra model can be expressed as a non-canonical Hamiltonian system
with n = 1 ( .

p
.
q

)
=

(
0 −pq
pq 0

)
∇H(p, q), (19)

where H(p, q) = p− 2 log p + q− log q.
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The Hamiltonian H can be rewritten as H = H1 + H2 with H1 = p − 2 log p and
H2 = q− log q. According to the canonialization method shown in Section 2, we have

K =

(
0 1

pq
− 1

pq 0

)
. (20)

According to Equation (10), we get

∂ p̃
∂p

∂q̃
∂p −

∂ p̃
∂p

∂q̃
∂p = 0, ∂ p̃

∂p
∂q̃
∂q −

∂q̃
∂p

∂ p̃
∂q =

1
pq

(21)

and
p̃ = log(p), q̃ = log(q). (22)

Hence, we have
p = exp( p̃), q = exp(q̃) (23)

and thus
H̃( p̃, q̃) = exp( p̃)− 2p̃ + exp(q̃)− q̃, (24)

which is a canonical Hamiltonian system. Using the second-order explicit symplectic
scheme on the basis of the canonicalization, we get the trajectory of the canonical variable

p̃, q̃ , where p̃(0) = ln 2, q̃(0) = ln 3, and time step size τ = 0.1 (see Figure 1).
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Figure 1. Trajectory of the canonical variable qp ~,~ . Figure 1. Trajectory of the canonical variable p̃, q̃ .

Using Equation (23) we can obtain p, q, and p(0) = 2, q(0) = 3, and time step size
τ = 0.1, then using the second-order explicit symplectic scheme on the basis of p, q, we get
the trajectory of the non-canonical variable p, q (see Figure 2).
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In addition, the implicit Runge-Kutta method of order 3 is applied directly to the
non-canonical Hamiltonian system directly, and then we get the trajectory of the original
variables p, q, and p(0) = 2, q(0) = 3 and time step size τ = 0.1 (see Figure 3).
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Figure 3. Trajectory of the non-canonical variable.

As can be seen from Figures 1 and 2, the trajectory diagrams of regularized variables
and initial variables are kept unchanged by a symplectic algorithm. After 1,000,000 steps,
the graph remains basically unchanged, which indicates that the symplectic algorithm of
constrained Hamiltonian systems has the property of preserving structure. Namely, the
physical properties of constrained Hamiltonian systems can be maintained by a symplectic
method. One can see from Figure 3 that the graph using the third-order Runge Kutta
method (or general numerical calculation method) is very unstable. This method does
not have the property of preserving the structure, that is, it cannot maintain the physical
properties of the constrained Hamiltonian systems. It is shown clearly from the three
figures that the symplectic algorithm has better structure-preserving properties. It is of
great significance to study the constrained Hamiltonian systems using the symplectic
algorithm.

5. Conclusions

In this paper, we discuss the canonicalization method of the constrained Hamiltonian
systems, then the symplectic method is applied to the constrained Hamiltonian systems on
the basis of the canonicalization. Compared with the traditional Runge-Kutta method, they
have better structural preservation properties. Consequently, the symplectic methods can
be applied to more noncanonical Hamiltonian systems, which will be further investigated
in our next work.
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