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Abstract: Facing the problem of massive unlabeled data and limited labeled samples, semi-supervised
learning is favored, especially co-training. Standard co-training requires sufficiently redundant and
conditionally independent dual views; however, in fact, few dual views exist that satisfy this condition.
To solve this problem, we propose a co-training method based on semi-decoupling features, that is,
semi-decoupling features based on a known single view and then constructing independent and
redundant dual views: (1) take a small number of important features as shared features of the dual
views according to the importance of the features; (2) separate the remaining features one by one
or in small batches according to the correlation between the features to make “divergent” features
of the dual views; (3) combine the shared features and the “divergent” features to construct dual
views. In this paper, the experimental dataset was from the edX dataset jointly released by Harvard
University and MIT; the evaluation metrics adopted F1, Precision, and Recall. The analysis methods
included three experiments: multiple models, iterations, and hyperparameters. The experimental
results show that the effect of this model on MOOC learner behavior prediction was better than
the other models, and the best prediction result was obtained in iteration 2. These all verify the
effectiveness and superiority of this algorithm and provide a scientific and feasible reference for the
development of the future education industry.

Keywords: semi-supervised; co-training; semi-decoupling; feature importance; Pearson correlation
coefficient

1. Introduction

The basic purpose of machine learning is to learn useful knowledge from data and
to use inductive laws to analyze and predict future results. Machine learning methods
are mainly divided into supervised learning, unsupervised learning, and semi-supervised
learning [1,2]. Among them, supervised learning needs a large number of labeled data [3–6],
while unsupervised learning does not need any prior knowledge, but it clusters similar
samples into one category by fitting the internal distribution of unlabeled data [7–12]. With
the rapid development of technology for data collection and storage, the acquisition of
unlabeled data has become quite easy [3], but labeled data often require a lot of manual
intervention and, in some cases, even professional advice. Thus, in most scenarios, the
amount of labeled data are still insufficient for many practical applications. However, if
only a small amount of labeled data are used, it is easy to cause an overfitting problem
for the learning model and leads to a lack of good generalization ability. The challenge of
using a large number of idle unlabeled samples to effectively enhance the generalization of
the model has become one of the hotspots in the machine learning field [13,14].

Semi-supervised learning is an important research hotspot that combines supervised
learning with unsupervised learning [15]. The aim is to use massive unlabeled data and
limited labeled data to train the model, learn the potential information of the unlabeled
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data, ensure the good performance of the model on the basis of supervised learning, and
improve the generalization of the model [16,17]. According to different learning methods,
it is mainly divided into four categories: a generative model-based method [18], a graph-
based method [19], a semi-supervised support vector machine-based method [20], and a
co-training algorithm [21,22].

Compared to other methods, co-training is simpler and more efficient. It must be
assumed that there are sufficiently redundant and conditionally independent dual views
in the problem domain. Here, “sufficiently redundant” means that each view contains
enough information to produce an optimal model, and “conditionally independent” means
that under the category label of given data, the two views are independent and do not
interfere with each other. By using the dual view, two classifiers are trained from different
perspectives, and then the data with the higher confidence are selected as a pseudo-label
sample to add another view to achieve complementary advantages. They learn from each
other and make progress together until they no longer change or reach a preset iteration.

Among the existing co-training studies, there are several models based on different
learning algorithms, different data adoptions, different parameter settings, and different
multi-view acquisitions such as tri-training and random segmentation. They all enhance
the classification performance of co-training and reveal the intrinsic mechanism. However,
the data obtained by these models’ algorithms still suffer from conflicting feature attributes
with poor relevance, difficulty in optimizing important features, and the limitations of
irrelevant features in real application scenarios. These all directly affect the performance
of classifiers and, so far, there has been no research to address these issues in depth. To
solve this situation, we propose a co-training method based on semi-decoupling feature:
segmentation of a single view based on feature attributes. The main steps are as follows:

(1) Calculate the feature importance of the dataset and rank them, and then select a
number of the most important features as the shared features of the dual views;

(2) Calculate the correlation coefficients between features, process the remaining features
according to the correlation coefficients, and then add them to the dual views as
other features. While not reducing the data and ensuring the sufficiency of the
data, separate the two views as independently as possible according to the feature
correlation and difference;

(3) Combine shared features and “divergent” features to complete feature semi-decoupling,
and then construct independent and redundant dual views for co-training.

This algorithm was tested on the edX dataset released by Harvard University and MIT,
evaluated with F1, Precision, and Recall, and analyzed by multiple models, iterations, and
hyperparameters. The experiments show that our model obtained better performance on
MOOC learner behavior prediction. In addition, they also demonstrated the further effec-
tiveness and superiority of the algorithm that is proposed and implemented in this paper.

In this paper, we aimed to disentangle the independent and redundant dual views on
a known single view as much as possible to satisfy the assumptions of standard co-training
multiple views, to avoid the problems of conflicting feature attributes and difficulties in
optimizing important features, and to improve the performance of the classifier.

2. Related Work

Since 1998, when A. Blum and T. Mitchell first proposed the formal co-training algo-
rithm, co-training has gradually become one of the most important mainstream directions
in the field of semi-supervised learning [23]. The existing literature makes further im-
provements on the standard co-training. On the one hand, it improves co-training for
single views and generates multiple sub-learners with differences by different learning
algorithms [24], different data adoptions [25], and different parameter settings [26] so that
multi-view learning can be accomplished even when the views are not redundant and the
view features are not independent. On the other hand, there are also some studies around
view segmentation to achieve co-training by differential multi-view acquisition [27].
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The co-training model proposed by A. Blum and T. Mitchell first assumes that there are
two fully redundant and conditionally independent views in the dataset. They use labeled
samples to train different classifiers on these two views, and then select a number of samples
with higher confidence from the unlabeled samples. After, those samples are added to
each other’s classifier to realize differences and complete an update. In this way, the whole
process is continuously iterated until it reaches a certain stop condition. Subsequently,
based on different learning algorithms, co-training, tri-training, co-forest, and co-trade
variants have been derived [28–30]. References [31,32] suggested the tri-training algorithm;
it neither requires fully redundant multiple views nor various types of base classifiers
but combines semi-supervised learning and integrates learning mechanisms to obtain
three labeled training sets by repeatedly sampling from labeled samples and generating
three classifiers to achieve prediction on the same unlabeled sample. References [33,34]
also proposed the co-forest algorithm, which uses a combination of several classification
decision trees to ensure the difference and robustness of each classifier. Unlike the tri-
training and co-forest models, the co-trade model follows the standard co-training premise
assumptions [35,36]. It uses a data editing technique based on cutting-edge weight statistics
to determine the labeling confidence. Then, the pseudo-labeled data with the lowest error
rate is selected to join the next round of training data for another classifier. The algorithm
provides the exact value of the error rate for each iteration and reduces the introduction of
noisy samples during the training process.

There are also some studies around view segmentation, so as to achieve adequate
and redundant multi-view acquisition [37,38]. The literature [39] has proposed a random
subspace partitioning algorithm, which mainly discusses the influence of the numbers and
dimensions of subspaces on the classification performance. The more random the subspaces,
the worse the classification performance. The main reason for this is that the quality of
the optimal subspace selection is limited by the irrelevant features. The literature [40]
suggests a view adequacy-based segmentation algorithm, which is based on attribute
simplification in rough set theory. In this algorithm, high-dimensional data are reduced
to low-dimensional subspaces, and important attributes are added sequentially until the
current mutual information and the original mutual information are equal. Reference [41]
proposed a view independence-based segmentation algorithm. The core idea is to use
the maxInd algorithm of graph, add mutual information index to measure the amount of
information sharing between features, and realize multi-view acquisition. The literature [42]
suggests an automatic segmentation algorithm, mainly by initializing the weights of two
classifiers, and then the two classifiers split the single view based on the optimal loss
function to obtain two new views.

3. Materials and Methods
3.1. Co-Training

In this section, we briefly review co-training and the relevant concepts. Co-training was
first introduced in 1998, which was originally designed for independent redundant “multi-
view” data and was a kind of semi-supervised learning method based on “divergence”. The
key to the algorithm is to assume that there are two independent redundant views. First,
two classifiers with large differences are trained and the unlabeled sample set is classified.
Subsequently, the positive and negative samples, respectively, with high confidence or that
meet the set threshold are labeled, and then they complement each other by adding these
samples to form a new view. Lastly, the filtered pseudo-label samples are deleted from the
unlabeled sample set. Iterations occur, as described above, until the unlabeled sample set is
empty or meets a specific stop criterion.

In Figure 1, the process of co-training is described. View1 and View2 denote the known
view 1 and known view 2, respectively; Test denotes the test set or unlabeled sampling set.
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3.2. Semi-Decoupled Features

In this section, we introduce the research background of semi-decoupled features and
the specific process of the algorithm. The feature set itself cannot be separated naturally.
Therefore, it is difficult to ensure the independence between the views if it is randomly
divided. That is, there is still a strong correlation between multiple views, which makes it
difficult to realize the difference complementing of the independent views.

In the process of obtaining independent dual views based on random segmentation,
we propose the innovation of semi-decoupled feature co-training. It mainly includes three
steps: shared important features selection, remaining features separation, and features
combination. First, the importance of the features is calculated and ranked [43,44], and a
few important features are selected and added to the dual view together. In addition, we
compute the correlation coefficients of the remaining features. Those with larger correlation
coefficients are placed in the same view, while those with smaller correlation coefficients are
divided into two different views so that the remaining features are retained or separated in
two; then, the important features and separated features are combined. With the two views’
acquisition based on semi-decoupled features, on the one hand, it ensures that the strong
features continue to play an essential role in the semi-decoupled double view; on the other
hand, it minimizes the interference between weak features and weak features in the process
of model training and avoids the negative influence caused by attribute conflict between
features as much as possible. The major calculations in this process are shown below.

3.2.1. Feature Importance

According to the Gini index and the random forest algorithm, feature importance is
calculated and ranked. The smaller the Gini index, the better the feature attributes. The
calculation formula is as follows, where D denotes a certain dataset; v and V refer to the
value of a feature and the total number of features respectively; pfx means the proportion of
positive cases of feature fx in the dataset; pfx

′ = 1 − pfx.

Gini(View) =
V

∑
v=1

∑
fx ′6= fx

p fx × p fx ′ = 1−
V

∑
v=1

p fx
2 (1)

Gini( f eature, fx) =
V

∑
v=1

| Dv|
| D | Gini(Dv) (2)
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The concept of shared features is displayed in Figure 2. The orange part of the View
shows the important features, and the other two colored parts show the remaining features.
The feature importance histogram was used to select the important features, and View1 and
View2 both stand for the dual views after sharing the important features.
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Figure 2. The selection of shared features. Orange parts: the important features, which are selected
by feature importance; blue and green parts: the remaining features.

3.2.2. Correlation Coefficient between Features and Features

Through calculating the Pearson correlation coefficient and the assistance of a heat
map, the remaining features are separated. The process needs to satisfy the following
criteria:

• Those with weak feature correlation do not co-exist in the same view;
• Those with strong feature correlation must co-exist in the same view.

By following the above premise, the features are separated one by one or in small
batches, and they are added to View1 or View2, accordingly, until the two views have
completed the feature selection of the original single view. Then, the final redundant and
more independent dual views, View1 and View2, are formed for co-training. The formula is
shown below, where fx and fy stand for features x and y; σfx and σfx represent the variance
of features x and y; E(fx) and E(fy) denote the mean values of features x and y, respectively.

ρ fx , fy =
cov
(

fx, fy
)

σfx σfy

=
E
[(

f x− µ f x

)(
f y− µ f y

)]
σf xσf y

(3)

The concept of remaining feature separation is presented in Figure 3. The blue part
and the green part show the remaining features, and the orange part represents those
important features. This figure extracts the correlation coefficients of some features, for
example, to draw a heat map. View1 and View2 indicate that the single view View started to
separate the remaining features after removing the shared features.
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3.3. The Algorithm of Semi-Decoupled Feature Co-Training

The algorithm is presented in Algorithm 1. Here, the samples of the single-view View
are labeled, but the samples of Test are not. View1, View2 are empty; ρmax, ρmin correspond
to maximum threshold, minimum threshold; w1 and w2 mean the weights of the predictions
from View1 and View2; the whole View includes n features, among them, the set of features
F = {f 1, f 2, f 3, . . . , f y, . . . , fn}, where fy is the label of the sample.

Algorithm 1: Semi-decoupled feature co-training algorithm.

Input: Single-view View, View1, and View2; ρmax and ρmin; w1 and w2; Test.
Output: final_prediction.
1: importance = F.feature_importances_(). //F = F.drop(F.fy)
2: Sort importance.
3: Achieve View’s features sharing.
4: ρfx, ρfy = F.corr(fx, fy). //F includes the feature of fy
5: Divide remaining features.
6: Get View1, View2 with divergence.
7: for iteration = 1, 2, . . . in iterations:
8: predict the Test.
9: if prediction > ρmax
10: prediction = 1
11: if prediction < ρmin
12: prediction = 0
13: end if
14: both classifiers no longer change or reach a predetermined
15: number of iterative rounds.
16: end for

The process of the semi-decoupled feature co-training algorithm is shown in Figure 4.
At first, the features are shared; then, those features represented by orange are separated in
View1 and View2; in addition, the other features are separated by green into a View1 and the
blue into a View2; then, the orange View1 and green View1 and the orange View2 and the
blue View2 are combined to realize the construction of a new View1 and new View2; finally,
the formal co-training can begin.
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4. Results
4.1. Evaluation Metrics

The evaluation metrics used in the experiment included F1, Precision, and Recall.

• F1: The combination of Precision and Recall. Precision and Recall influence each other. If
Precision increases then Recall decreases; if Recall increases then Precision decreases; if
both need to be balanced, then F1 measure is needed.

F1 =
2

1
Precision + 1

Recall
(4)

• Precision: The precision rate, which indicates the percent of the positive category
samples that were actually positive. TP means that the original case was positive and
was predicted to be positive; FP means that the original case was negative but was
predicted to be positive.

Precision =
TP

TP + FP
(5)

• Recall: The recall rate, which also refers to as the check-all rate, means the percentage
of positive class samples marked as positive. FN represents cases that were originally
positive but were predicted to be negative.

Recall =
TP

TP + FN
(6)

4.2. Comparative Experiment

To verify the effectiveness of the innovation model and prevent overfittings in this
paper, we introduced K-fold cross-validation to avoid a high variance and bias. First, we
set the K-fold cross-validation fold number, K, as 2, 3, and 5. When K = 2, the proportion of
the training set and test set was 5:5; when K = 3, the proportion of the training set and test
set was 1:2 or 2:1; when K = 5, the proportion of the training set and test set was 2:8 or 8:2.
Then, we compared our model with a traditional supervised model, three tree models, and
three conventional semi-supervised models. The traditional supervised model used logistic
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regression (LR) [45]; the integrated tree models used random forest (RF), LightGBM (LGB),
and gradient boosting decision tree (GBDT) [46]; the conventional semi-supervised models
used self-training [47], co-training, and tri-training. Among them, self-training used GBDT
as the base model for screening pseudo-labeled samples; co-training used both LGB and
GBDT as the base model to build classifiers with “divergence” [48]; tri-training used GBDT
as the base model to vote so as to select the appropriate pseudo-labeled samples.

4.2.1. Test on the edX Dataset

To prove the effectiveness of the algorithm, we used the edX dataset [49], jointly
published by Harvard University and MIT, as the sample set for the experiments. This
release is composed of de-identified data from the first year (academic year 2013: fall 2012,
spring 2013, and summer 2013) of HarvardX courses on the edX platform along with related
documentation. There were 338,223 samples in total, and each sample contained 20 features.
The specific features and their descriptions [50] are shown in Table 1. Among them, certified
was the sample label and the criterion for the accuracy. The more similar the result was to
the label, the more accurate the algorithm. When certified = 1, this meant that the certificate
was obtained, and when certified = 0, this meant that the certificate was not obtained. The
number of samples that obtained a certificate or not was 6570 and 331,653 respectively.
The website for downloading and detailing data is https://doi.org/10.7910/DVN/26147
(accessed on 11 January 2022).

Table 1. The features table of the edX dataset.

Feature Feature Description Feature Feature Description

course_id The id of all courses grade The grade of a course
userid_DI The id of all users start_time_DI The start time of registration
registered Whether to register for the course last_event_DI The last time of visit
viewed Whether to access the courseware nchapters The learning chapter
explored Whether to explore the process ndays_act The days of interaction
certified Whether to obtain a certificate nforum_posts The number of forum posts
final_cc_cname_ Nationality nplay_video The number of videos played
LoE_DI Academic qualifications nevents The number of interactions in the course
YoB Birthday roles The role that MOOC learner played
gender Gender (male or female) incomplete_flag Whether the information is filled in completely

Table 2 illustrates the F1, Precision, and Recall values of different models tested on the
edX dataset with the different folds of K-fold cross-validation and different proportions.
First, it can be seen that with the increase in the proportion of the training set, when K
was the same, the score value for each model also increased, indicating that an increase
in training samples can effectively improve the performance of the model. Second, the
model metrics can roughly be divided into three intervals. The metrics of models LR and
RF were basically below 0.9; the scores of models LGB, GBDT, self-training, co-training, and
tri-training were all roughly below 0.99, which reflects a greater performance advantage
than LR and RF; while the scores for our model in this paper were all about above 0.99, and
the highest scores were achieved in almost every division proportion. These analyses fully
illustrate the stability and superiority of the model in this paper. Furthermore, compared
with the traditional co-training method, our model had significantly improved scores
in each division proportion in which the F1 values increased by 2–3 percentage points,
indicating the effectiveness of the semi-decoupled feature method proposed in this paper.
In conclusion, this algorithm constructs multiple views with “moderate divergence” based
on the perspective of semi-decoupled features, which not only ensures that the important
features are shared to play their proper role but also reduces the negative impact caused by
feature conflicts.

https://doi.org/10.7910/DVN/26147
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Table 2. Comparison of the results of various models on the edX dataset.

K-Fold
Cross-Validation

Division
Proportion Metric LR RF LGB GBDT Self-

Training
Co-

Training
Tri-

Training Ours

K = 2 5:5
F1 0.7345 0.8944 0.9273 0.9754 0.9669 0.9772 0.9781 0.9946

Precision 0.6562 0.8646 0.8995 0.9658 0.9519 0.9597 0.9712 0.9908
Recall 0.8339 0.9263 0.9568 0.9851 0.9823 0.9953 0.9851 0.9983

K = 3

1:2
F1 0.7351 0.8859 0.9314 0.9720 0.9686 0.9755 0.9712 0.9940

Precision 0.6581 0.8550 0.9046 0.9609 0.9574 0.9569 0.9585 0.9898
Recall 0.8326 0.9191 0.9600 0.9833 0.9801 0.9948 0.9843 0.9982

2:1
F1 0.7350 0.8927 0.9314 0.9769 0.9684 0.9777 0.9810 0.9941

Precision 0.6613 0.8708 0.9046 0.9675 0.9574 0.9594 0.9719 0.9893
Recall 0.8274 0.9158 0.9600 0.9865 0.9798 0.9966 0.9903 0.9990

K = 5

2:8
F1 0.7326 0.8753 0.9198 0.9674 0.9590 0.9727 0.9626 0.9935

Precision 0.6581 0.8497 0.8912 0.9553 0.9457 0.9536 0.9518 0.9902
Recall 0.8261 0.9025 0.9504 0.9799 0.9727 0.9927 0.9737 0.9968

8:2
F1 0.7350 0.8942 0.9322 0.9759 0.9685 0.9771 0.9832 0.9953

Precision 0.6603 0.8668 0.9028 0.9677 0.9538 0.9584 0.9754 0.9920
Recall 0.8288 0.9234 0.9636 0.9842 0.9837 0.9965 0.9910 0.9986

Figure 5 shows the confusion matrix for each model. It was tested on the edX dataset
when K = 2 and train:test = 5:5. Figure 5a shows that the LR model obtained the maxi-
mum classification error with 0.0115. Figure 5f shows that ours obtained the minimum
classification error with 0.0004, 0.0004 higher than the second minimum error produced by
tri-training in Figure 5g.

As shown in Figure 6, the evaluation metrics and performance visualization of the
different models were carried out. The semi-decoupled feature co-training algorithm
presented in this paper all achieved the best results, followed by other semi-supervised
models. The LR model showed the worst performance with metrics all lower than 0.85.

4.2.2. Test on the Breast Cancer Wisconsin Dataset

To prove the effectiveness of the model and test its robustness in depth, we also used
the Breast Cancer Wisconsin Dataset [51] as the benchmark tested for testing. The dataset
can be easily obtained through scikit-learn. There were 569 records in the dataset, with
357 benign and 212 malignant in total. Each sample contained 32 columns with 30 features,
and the remaining two were Id and Diagnostic. Every sample was labeled with the benign
and malignant results of diagnosis.
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Figure 5. The confusion matrix for each model: (a–h) the confusion matrices obtained using the edX
dataset with different models when K = 2 and train:test = 5:5.

Table 3 illustrates the F1, Precision, and Recall values of the different models tested on
this dataset, using the different folds of K-fold cross-validation and different proportions.
First, it can be seen that all models obtained good metrics of approximately 0.95 or more.
Moreover, in the supervised model, RF presented the best performance; for the semi-
supervised models, both self-training and co-training presented good metrics. However,
in most cases, compared with the existing models stated above, our co-training model
based on semi-decoupling features still retained the highest metrics when the K and the
proportion of the dataset were the same, which proves our model had the best performance
once again.
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Figure 6. The evaluation metrics for each model: (a–e) the metrics obtained on the edX dataset with
different models, which were tested under the different K-fold cross-validation and the different
proportional divisions. Blue: F1; orange: Precision; green: Recall.

Table 3. Comparison of the results of various models on the Breast Cancer Wisconsin Dataset.

K-Fold
Cross-Validation Train:Test Metric LR RF LGB GBDT Self-

Training
Co-

Training
Tri-

Training Ours

K = 2 5:5
F1 0.9541 0.9721 0.9720 0.9625 0.9760 0.9803 0.9791 0.9859

Precision 0.9506 0.9721 0.9724 0.9560 0.9674 0.9765 0.9777 0.9748
Recall 0.9581 0.9721 0.9721 0.9693 0.9847 0.9842 0.9804 0.9974

K = 3

1:2
F1 0.9503 0.9678 0.9644 0.9477 0.9835 0.9831 0.9630 0.9872

Precision 0.9485 0.9665 0.9599 0.9313 0.9798 0.9755 0.9584 0.9747
Recall 0.9524 0.9692 0.9692 0.9650 0.9873 0.9908 0.9678 1.0000

2:1
F1 0.9587 0.9723 0.9767 0.9555 0.9911 0.9909 0.9696 0.9860

Precision 0.9439 0.9617 0.9597 0.9247 0.9875 0.9847 0.9591 0.9725
Recall 0.9748 0.9832 0.9944 0.9888 0.9949 0.9974 0.9804 1.0000

K = 5

2:8
F1 0.9432 0.9572 0.9536 0.9288 0.9755 0.9666 0.9578 0.9758

Precision 0.9344 0.9518 0.9498 0.9072 0.9660 0.9628 0.9531 0.9553
Recall 0.9524 0.9629 0.9580 0.9517 0.9860 0.9718 0.9629 0.9974

8:2
F1 0.9574 0.9767 0.9794 0.9622 0.9899 0.9869 0.9767 0.9885

Precision 0.9491 0.9676 0.9729 0.9422 0.9900 0.9819 0.9678 0.9772
Recall 0.9667 0.9861 0.9861 0.9833 0.9899 0.9921 0.9861 1.0000

4.3. Iteration Analysis and Discussion

To evaluate the semi-decoupled feature model’s performance at each iteration, on the
edX dataset, we used K-fold cross-validation with K = 2, 3, and 5, and then we set the
proportion of the training set and test set as 5:5, 1:2, 2:1, 2:8, and 8:2 as well. To explore the
iteration’s influence on the model, we conducted four experiments regarding iteration for
analysis and discussion.

In Table 4, the results under different iterations of K-fold cross-validation and propor-
tional division are shown. Top-down, it can be seen that the evaluation metrics increased
unstably with the increase in the number of iterations and, overall, the best results were
shown at iteration 2. Taking K = 2 and train:test = 5:5 as an example, for iteration 2, F1,
Precision, and Recall were 0.9946, 0.9908, and 0.9983, respectively, which were 7–18 thousand
points higher than for iteration 1. Then, the overall model improvement effect was gradu-
ally limited in iteration 3 and iteration 4. From left to right, when K was the same, with
the increase in the samples in the training set, each metric of our model increased, and the
highest metric of the model reached 0.9990. On the whole, Table 4 shows that the metrics
improved and the performance was optimized with the number of iterations. However,
with an increase in the pseudo-label samples, more noise samples will be introduced at the
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same time. Therefore, the iteration should be stopped after iteration 2, which achieved the
best effect in general.

Table 4. Analysis and discussion of the number of iterations.

K-Fold
Cross-Validation Train:Test Metric Iteration 1 Iteration 2 Iteration 3 Iteration 4

K = 2 5:5
F1 0.9820 0.9946 0.9902 0.9891

Precision 0.9729 0.9908 0.9840 0.9815
Recall 0.9912 0.9983 0.9964 0.9969

K = 3

1:2
F1 0.9804 0.9940 0.9892 0.9871

Precision 0.9710 0.9898 0.9827 0.9785
Recall 0.9900 0.9982 0.9957 0.9959

2:1
F1 0.9825 0.9941 0.9906 0.9891

Precision 0.9735 0.9893 0.9845 0.9804
Recall 0.9917 0.9990 0.9967 0.9980

K = 5

2:8
F1 0.9733 0.9935 0.9860 0.9857

Precision 0.9615 0.9902 0.9797 0.9791
Recall 0.9853 0.9968 0.9923 0.9925

8:2
F1 0.9838 0.9953 0.9899 0.9895

Precision 0.9763 0.9920 0.9825 0.9806
Recall 0.9914 0.9986 0.9974 0.9986

Figure 7 visualizes the effect of our model at different iterations. In Figure 7, we
divided the edX dataset into a training set and a testing set with K-fold cross-validation and
proportion division. The best effect generated by the iterations was produced and stabilized
in iteration 2, and all metrics declined gradually in iteration 3 and iteration 4. In iteration 2,
the metrics increased slightly when K = 3, train:test = 2:1 and K = 5, train:test = 8:2, which
was due to the greater number of labeled samples and less noise records.
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4.4. Hyperparameters

In every experiment, the hyperparameters for the models’ training were all important.
Here, we introduce the hyperparameters of some important models tested in experiments:
GBDT model, self-training model, co-training model, tri-training model, and co-training
model based on semi-decoupling feature. We used GBDT with a learning rate = 0.1,
n_estimators = 100, and random_state = 0. In the self-training model, co-training model, tri-
training model, and the model proposed in this paper, we used GBDT as the base model and
its parameters as the training hyperparameters. In addition, we added LGB as the other base
model in co-training with n_estimators = 100, num_leaves = 12, colsample_bytree = 0.5,
max_depth = 5, ρmin < 0.00001, and ρmax > 0.5. Among them, the hyperparameters ρmin and
ρmax can be adjusted by the results of the models’ prediction.

5. Discussion

In the comparative experiments of the multiple models, through F1, Precision, Recall,
and the confusion matrix, our model showed the better performance and could improve
the previous studies by semi-decoupled features. Compared with traditional supervised
models, the co-training method based on a semi-decoupling feature model combined the
unlabeled and labeled samples fully. Compared with the semi-decoupled models, such as
co-training and tri-training, our model made the following main improvements: satisfied
the assumptions of standard co-training multiple views; disentangled independent and
redundant dual views as much as possible; avoided optimization of the difficulties and
conflict problems for important feature attribute features.

The process of semi-decoupled features was mainly based on the importance of fea-
tures and correlation between features so as to construct “divergent” views. On the one
hand, we separated irrelevant features or redundant features based on the Pearson correla-
tion coefficient and a heat map to reduce feature-to-feature interference; on the other hand,
we enhanced the influence of important features on the model based on the calculation of
feature importance by RF. Since the newly constructed dual views retained the relevant
features, the model could achieve significant results. Meanwhile, those important features
still continued to play an important role, and features with low correlation coefficients
interfered less with each other after view segmentation.

In the process of semi-decoupling features, the importance of features can be calculated
and selected not only by using the Gini index but also by combining the ANOVA f-test,
mutual information, chi-square test, regression t-test, and variance check, etc., which may
offer more reasonable and stable conclusions. The correlation between features can be
assessed not only by the Pearson correlation coefficient but also by Spearman, Kendall, etc.,
in order to realize feature coexistence or separation.

This improved model is certainly applicable to semi-supervised learning of other
tabular data, which can be achieved by semi-decoupling the data features into two tables
with independence and redundancy. In addition, this work is not only limited to regular
data but can be extended into the field of deep learning with non-tabular data.

Overall, this paper proposed a semi-decoupled feature co-training method that solves
the current challenge, where the acquisition of multiple views is difficult to achieve. It
improves the accuracy of the model, increases the high applicability of standard co-training,
and opens up a further development prospect for semi-supervised learning.

6. Conclusions

In this paper, we proposed a co-training algorithm based on semi-decoupled features,
which solves the problem of how to obtain fully redundant, conditionally independent
dual views. It applied Precision, Recall, F1, and confusion matrix as the evaluation criteria to
verify the generalization and learning performance of the training model with the algorithm.
Through the experiments, we make the following conclusions.

Different from supervised learning and unsupervised learning, semi-supervised learn-
ing can learn on both the massive unlabeled data and limited labeled data at the same



Axioms 2022, 11, 223 14 of 16

time so as to improves the performance in depth. As a popular semi-supervised learning
algorithm, co-training has become a research hotspot in the field of machine learning.
Co-training requires sufficiently redundant and conditionally independent dual views,
which is hard to achieve in real situations. Although many existing improvements generate
different learners through different learning algorithms, different data adoptions, etc., they
are still unable to meet the requirements of co-training. Thus, we proposed the co-training
method based on a semi-decoupling feature algorithm. The innovate algorithm effectively
solved the problem of independent view division, according to the two semi-decoupled
standards of feature importance and correlation coefficients between features. This created
both sufficient and different dual views for standard co-training. The experiments were
conducted from three aspects: multiple models, iterations, and hyperparameters.

The contributions of the present study are three-fold. First, we innovated the algorithm
in terms of view segmentation, which solved the common problem of massive single views
but few multi-views in real scenes. Second, in co-training, there are some algorithms based
on view segmentation that exist, but they still suffer from shortcomings with conflicting
feature attributes and limitations of irrelevant features. In this study, we can avoid these
disadvantages and can make more contributions: disentangling independent and redun-
dant dual views on known single views as much as possible; satisfying the assumptions of
standard co-training multiple views; avoiding the problems of conflicting feature attributes
and difficulties in optimizing important features; improving the performance of the classi-
fier. Third, the algorithm in this paper is really easy to achieve and effectively solves the
problem that multiple views are difficult to see in many practical applications.

Although, the experiments prove that the algorithm in this paper has some improve-
ments in co-training, there are still some limitations for future research to explore. First,
with the increase in iterations, the noise samples added to the next training iteration will
accumulate step by step and, consequently, its negative effect will become increasingly
larger. Second, in a dataset with inadequate features, if the features are still semi-decoupled,
the features used for training will be extremely scarce and may cause the results to be very
poor. Third, in a dataset with enormous features, if we use feature semi-decoupling to
realize feature separation according to feature importance and correlation coefficients, the
workload will be very large.

As a summary of the above, the methodology used in this study can be extended to
several solid future research directions. This paper did not discuss the problem of noise
samples caused by pseudo-label samples. Thus, how to find and deal with these noisy data
is a direction that deserves study in depth. In addition, in co-training, how to deal with
those noise features, which are not important and have low Pearson correlation coefficients,
is another direction. Furthermore, in a dataset with enormous features, with minimal
workload, how to apply the idea of feature semi-decoupling is also a direction.
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