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1. Introduction

In the literature, the quantities

A(s, t) =
s + t

2
, G(s, t) =

√
st , H(s, t) =

2st
s + t

,

C(s, t) =
2(s2 + st + t2)

3(s + t)
, C(s, t) =

s2 + t2

s + t
,

S(s, t) =

√
s2 + t2

2
, Mp(s, t) =


(

sp + tp

2

)1/p

, p 6= 0;
√

st , p = 0

are called in [1–3], for example, the arithmetic mean, geometric mean, harmonic mean,
centroidal mean, contra-harmonic mean, root-square mean, and the power mean of order p
of two positive numbers s and t, respectively.

For s, t > 0 with s 6= t, the first Seiffert means P(s, t), the second Seiffert means T(s, t),
and Neuman–Sándor mean M(s, t) are, respectively, defined [4–6] by

P(s, t) =
s− t

4 arctan
(√ s

t
)
− π

, T(s, t) =
s− t

2 arctan s−t
s+t

, M(s, t) =
s− t

2 arsinh s−t
s+t

,

where arsinh v = ln
(
v +
√

v2 + 1
)

is the inverse hyperbolic sine function.
The first Seiffert mean P(s, t) can be rewritten [6] (Equation (2.4]) as

P(s, t) =
s− t

2 arcsin s−t
s+t

.

A chain of inequalities

G(s, t) < L−1(s, t) < P(s, t) < A(s, t) < M(s, t) < T(s, t) < Q(s, t)
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were given in [6], where

Lp(s, t) =



[
tp+1 − sp+1

(p + 1)(t− s)

]1/p

, p 6= −1, 0;

1
e

(
tt

ss

)1/(t−s)

, p = 0;

t− s
ln t− ln s

, p = −1

is the p-th generalized logarithmic mean of s and t with s 6= t.
In [6,7], three double inequalities

A(s, t) < M(s, t) < T(s, t), P(s, t) < M(s, t) < T2(s, t),

and

A(s, t)T(s, t) < M2(s, t) <
A2(s, t) + T2(s, t)

2
were established for s, t > 0 with s 6= t.

For 0 < s, t < 1
2 with s 6= t, the inequalities

G(s, t)
G(1− s, 1− t)

<
L−1(s, t)

L−1(1− s, 1− t)
<

P(s, t)
P(1− s, 1− t)

<
A(s, t)

A(1− s, 1− t)
<

M(s, t)
M(1− s, 1− t)

<
T(s, t)

T(1− s, 1− t)

of Ky Fan type were presented in [6] (Proposition 2.2).
In [8], Li and their two coauthors showed that the double inequality

Lp0(s, t) < M(s, t) < L2(s, t)

holds for all s, t > 0 with s 6= t and for p0 = 1.843 . . . , where p0 is the unique solution of
the equation (p + 1)1/p = 2 ln

(
1 +
√

2
)
.

In [9], Neuman proved that the double inequalities

αQ(s, t) + (1− α)A(s, t) < M(s, t) < βQ(s, t) + (1− β)A(s, t)

and
λC(s, t) + (1− λ)A(s, t) < M(s, t) < µC(s, t) + (1− µ)A(s, t)

hold for all s, t > 0 with s 6= t if and only if

α ≤
1− ln

(
1 +
√

2
)(√

2 − 1
)

ln
(
1 +
√

2
) = 0.3249 . . . , β ≥ 1

3

and

λ ≤
1− ln

(
1 +
√

2
)

ln
(
1 +
√

2
) = 0.1345 . . . , µ ≥ 1

6
.

In [10], (Theorems 1.1 to 1.3), it was found that the double inequalities

α1H(s, t) + (1− α1)Q(s, t) < M(s, t) < β1H(s, t) + (1− β1)Q(s, t),

α2G(s, t) + (1− α2)Q(s, t) < M(s, t) < β2G(s, t) + (1− β2)Q(s, t),

and
α3H(s, t) + (1− α3)C(s, t) < M(s, t) < β3H(s, t) + (1− β3)C(s, t)
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hold for all s, t > 0 with s 6= t if and only if

α1 ≥
2
9
= 0.2222 . . . , β1 ≤ 1− 1√

2 ln
(
1 +
√

2
) = 0.1977 . . . ,

α2 ≥
1
3
= 0.3333 . . . , β2 ≤ 1− 1√

2 ln
(
1 +
√

2
) = 0.1977 . . . ,

and
α3 ≥ 1− 1

2 ln
(
1 +
√

2
) = 0.4327 . . . , β3 ≤

5
12

= 0.4166 . . .

In 2017, Chen and their two coauthors [11] established bounds for Neuman–Sándor
mean M(s, t) in terms of the convex combination of the logarithmic mean and the second
Seiffert mean T(s, t). In 2022, Wang and Yin [12] obtained bounds for the reciprocals of the
Neuman–Sándor mean M(s, t).

In [13], it was showed that the double inequality

α

A(s, t)
+

1− α

C(s, t)
<

1
TD(s, t)

<
β

A(s, t)
+

1− β

C(s, t)
(1)

holds for all s, t > 0 with s 6= t if and only if α ≤ π − 3 and β ≥ 1
4 , where TD(s, t) is the

Toader mean introduced in [14] by

TD(s, t) =
2
π

∫ π/2

0

√
s2 cos2 φ + t2 sin2 φ d φ.

In this paper, motivated by the double inequality (1), we will aim to find out the largest
values α1, α2, and α3 and the smallest values β1, β2, and β3 such that the double inequalities

α1

C(s, t)
+

1− α1

A(s, t)
<

1
M(s, t)

<
β1

C(s, t)
+

1− β1

A(s, t)
, (2)

α2

C2(s, t)
+

1− α2

A2(s, t)
<

1
M2(s, t)

<
β2

C2(s, t)
+

1− β2

A2(s, t)
, (3)

and
α3C2(s, t) + (1− α3)A2(s, t) < M2(s, t) < β3C2(s, t) + (1− β3)A2(s, t) (4)

hold for all positive real numbers s and t with s 6= t.

2. Lemmas

To attain our main purposes, we need the following lemmas.

Lemma 1 ([15] (Theorem 1.25)). For −∞ < s < t < ∞, let f , g : [s, t]→ R be continuous on
[s, t], differentiable on (s, t), and g′(v) 6= 0 on (s, t). If f ′(v)

g′(v) is (strictly) increasing (or (strictly)
decreasing, respectively) on (s, t), so are the functions

f (v)− f (s)
g(v)− g(s)

and
f (v)− f (t)
g(v)− g(t)

.

Lemma 2 ([16] (Lemma 1.1)). Suppose that the power series f (v) = ∑∞
`=0 u`v` and g(v) =

∑∞
`=0 w`v` have the convergent radius r > 0 and w` > 0 for all ` ∈ N = {0, 1, 2, . . . }. Let

h(v) = f (v)
g(v) . Then the following statements are true.

1. If the sequence { u`
w`
}∞
`=0 is (strictly) increasing (or decreasing, respectively), then h(v) is also

(strictly) increasing (or decreasing, respectively) on (0, r).
2. If the sequence { u`

w`
}∞
`=0 is (strictly) increasing (or decreasing resepctively) for 0 < ` ≤ `0

and (strictly) decreasing (or increasing resepctively) for ` > `0, then there exists x0 ∈ (0, r)
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such that h(v) is (strictly) increasing (decreasing) on (0, x0) and (strictly) decreasing (or
increasing resepctively) on (x0, r).

Lemma 3. Let
h1(v) =

2v sinh v + cosh v− 1
3 sinh2 v

.

Then h1(v) is strictly decreasing on (0, ∞) with limv→0+ h1(v) = 5
6 and limv→∞ h1(v) = 0.

Proof. Let

f1(v) = 2v sinh v + cosh v− 1 and f2(v) = 3 sinh2 v =
3
2
[cosh(2v)− 1].

Using the power series

sinh v =
∞

∑
`=0

v2`+1

(2`+ 1)!
and cosh v =

∞

∑
`=0

v2`

(2`)!
, (5)

we can express the functions f1(v) and f2(v) as

f1(v) =
∞

∑
`=0

2(2`+ 2)! + (2`+ 1)!
(2`+ 1)!(2`+ 2)!

v2`+2 and f2(v) =
3
2

∞

∑
`=0

22`+2v2`+2

(2`+ 2)!
.

Hence, we have

h1(v) =
∑∞
`=0 u`v2`+2

∑∞
`=0 w`v2`+2 , (6)

where u` =
2(2`+2)!+(2`+1)!
(2`+1)!(2`+2)! and w` =

3×22`+1

(2`+2)! .

Let c` =
u`
w`

. Then

c` =
2(2`+ 2)! + (2`+ 1)!

3(2`+ 1)!22`+1 and c`+1 − c` = −
4(3`+ 4)(2`+ 2)! + 3(2`+ 3)!

3(2`+ 3)!22`+3 < 0.

As a result, by Lemma 2, it follows that the function h1(v) is strictly decreasing on
(0, ∞). From (6), it is easy to see that limv→0+ h1(v) =

u0
w0

= 5
6 .

Using the L’Hospital rule leads to limv→∞ h1(v) = 0 immediately. The proof of
Lemma 3 is complete.

Lemma 4. Let

h2(v) =

(
sinh2 v− v2) cosh4 v(
cosh2 v + 1

)
sinh4 v

.

Then h2(v) is strictly increasing on v ∈ (0, ∞) and has the limit limv→0+ h2(v) = 1
6 and

limv→∞ h2(v) = 1.

Proof. Let

f3(v) =
(
sinh2 v− v2) cosh4 v and f4(v) =

(
cosh2 v + 1

)
sinh4 v.

Since

f ′3(v) = 2
(
sinh v + 3 sinh3 v− v cosh v− 2v2 sinh v

)
cosh3 v

and

f ′4(v) = 2
(
3 cosh2 v + 1

)
sinh3 v cosh v,
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we obtain

f ′3(v)
f ′4(v)

=

(
sinh v + 3 sinh3 v− v cosh v− 2v2 sinh v

)
cosh2 v(

3 cosh2 v + 1
)

sinh3 v

=
cosh2 v

3 cosh2 v + 1
sinh v + 3 sinh3 v− v cosh v− 2v2 sinh v

sinh3 v

=
1

3 + 1
cosh2 v

(
3 +

sinh v− v cosh v− 2v2 sinh v
sinh3 v

)
=

1
3 + 1

cosh2 v

[3 + g(v)],

where

g(v) =
sinh v− v cosh v− 2v2 sinh v

sinh3 v
.

By using the identity that sinh(3v) = 3 sinh v + 4 sinh3 v, we arrive at

g(v) = 4
sinh v− v cosh v− 2v2 sinh v

sinh(3v)− 3 sinh v
, 4

g1(v)
g2(v)

,

where g1(v) = sinh v− v cosh v− 2v2 sinh v and g2(v) = sinh(3v)− 3 sinh v.
Straightforward computation gives

g′1(v) = −
(
5v sinh v + 2v2 cosh v

)
, g′2(v) = 3[cosh(3v)− cosh v],

g′′1 (v) = −
(
5 sinh v + 9v cosh v + 2v2 sinh v

)
, g′′2 (v) = 3[3 sinh(3v)− sinh v],

and
g1
(
0+
)
= g2

(
0+
)
= g′1

(
0+
)
= g′2

(
0+
)
= g′′1

(
0+
)
= g′′2

(
0+
)
= 0.

Consequently, we obtain

g′′1 (v)
g′′2 (v)

= −5 sinh v + 9v cosh v + 2v2 sinh v
3[3 sinh(3v)− sinh v]

, −1
3

g3(v)
g4(v)

Using the power series of sinh v and cosh v, we deduce

g3(v) = 5
∞

∑
`=0

v2`+1

(2`+ 1)!
+ 9

∞

∑
`=0

v2`+1

(2`)!
+ 2

∞

∑
`=0

v2`+3

(2`+ 1)!

= 14v +
∞

∑
`=1

[
5

(2`+ 1)!
+

9
(2`)!

+
2

(2`− 1)!

]
v2`+1

= 14v +
∞

∑
`=1

[
(4`+ 7)(2`)! + 9(2`+ 1)!

(2`)!(2`+ 1)!

]
v2`+1

and

g4(v) = 3
∞

∑
`=0

(3v)2`+1

(2`+ 1)!
−

∞

∑
`=0

v2`+1

(2`+ 1)!
=

∞

∑
`=0

[
32`+2 − 1
(2`+ 1)!

]
v2`+1.

Therefore, we find
g3(v)
g4(v)

=
∑∞
`=0 u`v2`+1

∑∞
`=0 w`v2`+1 ,
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where

u` =


14, ` = 0;

(4`+ 7)(2`)! + 9(2`+ 1)!
(2`)!(2`+ 1)!

, ` ≥ 1
and w` =


8 > 0, ` = 0;

32`+2 − 1
(2`+ 1)!

, ` ≥ 1.

Let c` =
u`
w`

. Then

c` =


7
4

, ` = 0;

(4`+ 7)(2`)! + 9(2`+ 1)!(
32`+2 − 1

)
(2`)!

, ` ≥ 1.

When ` = 0, we have c1 − c0 = − 51
40 < 0. When ` ≥ 1, it follows that

c`+1 − c` =
(4`+ 11)(2`+ 2)! + 9(2`+ 3)!(

32`+4 − 1
)
(2`+ 2)!

− (4`+ 7)(2`)! + 9(2`+ 1)!(
32`+2 − 1

)
(2`)!

=
1(

32`+2 − 1
)(

32`+4 − 1
)
(2`+ 2)!

{
[(4`+ 11)(2`+ 2)!

+ 9(2`+ 3)!]
(
32`+2 − 1

)
− [(4`+ 7)(2`)! + 9(2`+ 1)!](2`+ 2)

(
32`+4 − 1

)}
=

1(
32`+2 − 1

)(
32`+4 − 1

)
(2`+ 2)!

{
[(4`+ 11)(2`+ 2)!

+ 9(2`+ 3)!]32`+2 − [(4`+ 7)(2`)! + 9(2`+ 1)!](2`+ 2)32`+4

+ (2`+ 2)[(4`+ 7)(2`)! + 9(2`+ 1)!]− [(4`+ 11)(2`+ 2)! + 9(2`+ 3)!]
}

= − 1(
32`+2 − 1

)(
32`+4 − 1

)
(2`+ 2)!

{
[(8`+ 13)(2`+ 2)!

+ 9(16`+ 15)(2`+ 1)!]32`+2 + 9(2`+ 1)! + 4(2`+ 2)!}
< 0.

By Lemma 2, it follows that the function g3(v)
g4(v)

is strictly decreasing on (0, ∞), so

the function g′′1 (v)
g′′2 (v)

is strictly increasing on (0, ∞). Applying Lemma 1, it follows that the

function g(v) is strictly increasing on (0, ∞). By the L’Hospital rule, we have

lim
v→0+

g(v) = −7
3

and lim
v→∞

g(v) = 0.

It is common knowledge that the function cosh v is strictly increasing on (0, ∞). Hence,
the function 1

3+ 1
cosh2 v

is strictly increasing on (0, ∞). Therefore, the function h2(v) is strictly

increasing on (0, ∞) with the limits

lim
v→0

h2(v) =
1
6

and lim
v→∞

h2(v) = 1.

The proof of Lemma 3 is complete.

Lemma 5. Let

h3(v) =
2v cosh2 v

sinh v
.

Then h3(v) is strictly increasing on (0, ∞) and has the limit limv→0+ h3(v) = 2.
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Proof. Let k1(v) = 2v cosh2 v = v cosh(2v) + v and k2(v) = sinh v. By Equation (5), we
have

k1(v) = 2v +
∞

∑
`=1

22`

(2`)!
v2`+1 and k2(v) =

∞

∑
`=0

v2`+1

(2`+ 1)!
.

Hence,

h3(v) =
2v + ∑∞

`=1 u`v2`+1

∑∞
`=0 w`v2`+1 , (7)

where

u` =


2, ` = 0;

22`

(2`)!
, ` ≥ 1

and w` =
1

(2`+ 1)!
.

Let c` =
u`
w`

. Then

c` =


2, ` = 0;

(2`+ 1)!22`

(2`)!
, ` ≥ 1

and c`+1 − c` =


10, ` = 0;

(3`+ 5)(2`+ 1)!22`+1

(2`+ 2)!
> 0, ` ≥ 1.

Thus, by Lemma 2, it follows that the function h3(v) is strictly increasing on (0, ∞).
From (7), it is easy to see that limv→0+ h3(v) =

u0
w0

= 2. The proof of Lemma 5 is complete.

3. Bounds for Neuman–Sándor Mean

Now we are in a position to state and prove our main results.

Theorem 1. For s, t > 0 with s 6= t, the double inequality (2) holds if and only if

α1 ≥ 2
[
1− ln

(
1 +
√

2
)]

= 0.237253 . . . and β1 ≤
1
6

.

Proof. Without loss of generality, we assume that s > t > 0. Let q = s−t
s+t . Then q ∈ (0, 1) and

1
M(s,t) −

1
A(s,t)

1
C(s,t) −

1
A(s,t)

=

arsinh q
q − 1
1

1+q2 − 1
.

Let q = sinh φ. Then φ ∈
(
0, ln

(
1 +
√

2
))

and

1
M(s,t) −

1
A(s,t)

1
C(s,t) −

1
A(s,t)

=

φ
sinh φ − 1

1
cosh2 φ

− 1
=

(sinh φ− φ) cosh2 φ

sinh3 φ
, F(φ) =

k1(φ)

k2(φ)
.

Let
k1(φ) = (sinh φ− φ) cosh2 φ and k2(φ) = sinh3 φ.

Then elaborated computations lead to k1
(
0+
)
= k2

(
0+
)
= 0 and

k′1(φ)
k′2(φ)

=
2(sinh φ− φ) sinh φ + (cosh φ− 1) cosh φ

3 sinh2 φ
= 1− 2φ sinh φ + cosh φ− 1

3 sinh2 φ
.

Combining this with Lemmas 1 and 3 reveals that the function F(φ) is strictly increas-
ing on

(
0, ln

(
1 +
√

2
))

. Moreover, it is easy to compute the limits

lim
φ→0+

F(φ) =
1
6

and lim
φ→ln(1+

√
2 )−

F(φ) = 2− 2 ln
(
1 +
√

2
)
.
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The proof of Theorem 1 is thus complete.

Corollary 1. For all φ ∈
(
0, ln

(
1 +
√

2
))

, the double inequality

1− β1

(
1− 1

cosh2 φ

)
<

φ

sinh φ
< 1− α1

(
1− 1

cosh2 φ

)
(8)

holds if and only if

α1 ≤
1
6

and β1 ≥ 2
[
1− ln

(
1 +
√

2
)]

= 0.237253 . . . .

Theorem 2. For s, t > 0 with s 6= t, the double inequality (3) holds if and only if

α2 ≥
4
3
[1− ln2(1 +√2

)
] = 0.297574 . . . and β2 ≤

1
6

.

Proof. Without loss of generality, we assume that s > t > 0. Let q = s−t
s+t . Then q ∈ (0, 1) and

1
M2(s,t) −

1
A2(s,t)

1
C2(s,t) −

1
A2(s,t)

=

arsinh2 q
q2 − 1
1

(1+q2)2 − 1
.

Let q = sinh φ. Then φ ∈
(
0, ln

(
1 +
√

2
))

and

1
M2(s,t) −

1
A2(s,t)

1
C2(s,t) −

1
A2(s,t)

=

φ2

sinh2 φ
− 1

1
cosh4 φ

− 1
=

(sinh2 φ− φ2) cosh4 φ

(cosh2 φ + 1) sinh4 φ
, H(φ).

By Lemma 4, it is easy to show that H(φ) is strictly increasing on
(
0, ln

(
1 +
√

2
))

.
Moreover, the limits

lim
φ→0+

H(φ) =
1
6

and lim
φ→ln(1+

√
2 )−

H(φ) =
4
3
[
1− ln2(1 +√2

)]
can be computed readily. The double inequality (3) is thus proved.

Corollary 2. For all φ ∈
(
0, ln

(
1 +
√

2
))

, the double inequality

1− β2

(
1− 1

cosh4 φ

)
<

(
φ

sinh φ

)2

< 1− α2

(
1− 1

cosh4 φ

)
(9)

holds if and only if

α2 ≤
1
6

and β2 ≥
4
3
[
1− ln2(1 +√2

)]
= 0.297574 . . . .

Theorem 3. For s, t > 0 with s 6= t, the double inequality (4) holds if and only if

α3 ≤
1− ln2(1 +√2

)
3 ln2(1 +√2

) = 0.095767 . . . and β3 ≥
1
6

.

Proof. Without loss of generality, we assume that s > t > 0. Let q = s−t
s+t . Then q ∈ (0, 1) and

M2(s, t)− A2(s, t)
C2(s, t)− A2(s, t)

=

q2

arsinh2 q
− 1

(1 + q2)2 − 1
.
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Let q = sinh φ. Then φ ∈
(
0, ln

(
1 +
√

2
))

and

M2(s, t)− A2(s, t)
C2(s, t)− A2(s, t)

=

sinh2 φ

φ2 − 1

cosh4 φ− 1
, G(φ) =

k1(φ)

k2(φ)
,

where

k1(φ) =
sinh2 φ

φ2 − 1 and k2(φ) = cosh4 φ− 1.

Then k1
(
0+
)
= k2

(
0+
)
= 0 and

k′1(φ)
k′2(φ)

=
φ cosh φ− sinh φ

2φ3 cosh3 φ
.

Denote
k3(φ) = φ cosh φ− sinh φ and k4(φ) = 2φ3 cosh3 φ,

it is easy to obtain k3
(
0+
)
= k4

(
0+
)
= 0 and

k′4(φ)
k′3(φ)

=
6φ cosh2 φ

sinh φ
+ 6φ2 cosh2 φ. (10)

Since the function v2 cosh2 v is strictly increasing on (0, ∞), by Lemma 5, we see that

the ratio in (10) is strictly increasing and k′3(φ)
k′4(φ)

is strictly decreasing on
(
0, ln

(
1 +
√

2
))

.

Consequently, from Lemma 1, it follows that G(φ) is strictly decreasing on
(
0, ln

(
1 +
√

2
))

.
The limits

lim
φ→0+

G(φ) =
1
6

and lim
φ→ln(1+

√
2 )−

G(φ) =
1− ln2(1 +√2

)
3 ln2(1 +√2

)
can be computed easily. The proof of Theorem 3 is thus complete.

Corollary 3. For all φ ∈
(
0, ln

(
1 +
√

2
))

, the double inequality

1 + α3
(
cosh4 φ− 1

)
<

(
sinh φ

φ

)2

< 1 + β3
(
cosh4 φ− 1

)
(11)

holds if and only if

α3 ≤
1− ln2(1 +√2

)
3 ln2(1 +√2

) = 0.095767 . . . and β3 ≥
1
6

.

4. A Double Inequality

From Lemma 5, we can deduce

sinh v
v

< cosh2 v and
sinh v

v
>

tanh2 x
v2 (12)

for v ∈ (0, ∞). The inequality (
sinh v

v

)3

> cosh v (13)
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for v ∈ (0, ∞) can be found and has been applied in [17] (p. 65), [18] (p. 300), [19] (pp. 279,
3.6.9), and [20] (p. 260). In [21], (Lemma 3), Zhu recovered the fact stated in [19] (pp. 279,
3.6.9) that the exponent 3 in the inequality (13) is the least possible, that is, the inequality(

sinh v
v

)p

> cosh v (14)

for x > 0 holds if and only if p ≤ 3.
Inspired by (12) and (14), we find out the following double inequality.

Theorem 4. The inequality

coshα v <
sinh v

v
< coshβ v (15)

for v 6= 0 holds if and only if α ≤ 1
3 and β ≥ 1.

Proof. Let

h(v) =
ln sinh v− ln v

ln cosh v
,

f1(v)
f2(v)

.

Direct calculation yields

f ′1(v)
f ′2(v)

=
v cosh2 v− sinh v cosh v

v sinh2 v
=

v cosh(2v) + v− sinh(2v)
v cosh(2v)− v

,
f3(v)
f4(v)

.

Using the power series of sinh v and cosh v, we obtain

f3(v) = v + v
∞

∑
`=0

(2v)2`

(2`)!
−

∞

∑
`=0

(2v)2`+1

(2`+ 1)!
=

∞

∑
`=1

[
22`

(2`)!
− 22`+1

(2`+ 1)!

]
v2`+1

=
∞

∑
`=0

(2`+ 1)22`+2

(2`+ 3)!
v2`+3 ,

∞

∑
`=0

u`v2`+3

and

f4(v) = v
∞

∑
`=0

(2v)2`

(2`)!
− v =

∞

∑
`=1

22`

(2`)!
v2`+1 =

∞

∑
`=0

22`+2

(2`+ 2)!
v2`+3 ,

∞

∑
`=0

w`v2`+3,

where

u` =
(2`+ 1)22`+2

(2`+ 3)!
and w` =

22`+2

(2`+ 2)!
.

When setting c` =
u`
w`

, we obtain

c` =
2`+ 1
2`+ 3

= 1− 2
2`+ 3

is increasing on ` ∈ N. Therefore, by Lemma 2, the ratio f3(v)
f4(v)

is increasing on (0, ∞). Using
Lemma 1, we obtain that

h(v) =
f1(v)
f2(v)

=
f1(v)− f1

(
0+
)

f2(v)− f2
(
0+
)

is increasing on (0, ∞).
Moreover, the limits limv→0+ h1 = 1

3 and limv→∞ h1 = 1 are obvious. The proof of
Lemma 4 is thus complete.
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5. A Remark

For v, r ∈ R, we have(
sinh v

v

)r

= 1 +
∞

∑
m=1

[
2m

∑
k=1

(−r)k
k!

k

∑
j=1

(−1)j
(

k
j

)
T(2m + j, j)

(2m+j
j )

]
(2v)2m

(2m)!
, (16)

where the rising factorial (r)k is defined by

(r)k =
k−1

∏
`=0

(r + `) =

{
r(r + 1) · · · (r + k− 1), k ≥ 1
1, k = 0

and T(2m + j, j) is called central factorial numbers of the second kind and can be com-
puted by

T(n, `) =
1
`!

`

∑
j=0

(−1)j
(
`

j

)(
`

2
− j
)n

.

for n ≥ ` ≥ 0.
The series expansion (16) was recently derived in [22] (Corollary 4.1).
Can one find bounds of the function

( sinh v
v
)r for v, r ∈ R \ {0}?

6. Conclusions

In this paper, we found out the largest values α1, α2, α3 and the smallest values β1, β2,
β3 such that the double inequalities (2), (3), and (4) hold for all positive real number s, t > 0
with s 6= t. Moreover, we presented some new sharp inequalities (8), (9), (11), and (15)
involving the hyperbolic sine function sinh φ and the hyperbolic cosine function cosh φ.
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